pro A service-based approach to cryoEM facility processing pipelines at eBIC By journals.iucr.org Published On :: 2024-02-20 Electron cryo-microscopy image-processing workflows are typically composed of elements that may, broadly speaking, be categorized as high-throughput workloads which transition to high-performance workloads as preprocessed data are aggregated. The high-throughput elements are of particular importance in the context of live processing, where an optimal response is highly coupled to the temporal profile of the data collection. In other words, each movie should be processed as quickly as possible at the earliest opportunity. The high level of disconnected parallelization in the high-throughput problem directly allows a completely scalable solution across a distributed computer system, with the only technical obstacle being an efficient and reliable implementation. The cloud computing frameworks primarily developed for the deployment of high-availability web applications provide an environment with a number of appealing features for such high-throughput processing tasks. Here, an implementation of an early-stage processing pipeline for electron cryotomography experiments using a service-based architecture deployed on a Kubernetes cluster is discussed in order to demonstrate the benefits of this approach and how it may be extended to scenarios of considerably increased complexity. Full Article text
pro The crystal structure of mycothiol disulfide reductase (Mtr) provides mechanistic insight into the specific low-molecular-weight thiol reductase activity of Actinobacteria By journals.iucr.org Published On :: 2024-02-19 Low-molecular-weight (LMW) thiols are involved in many processes in all organisms, playing a protective role against reactive species, heavy metals, toxins and antibiotics. Actinobacteria, such as Mycobacterium tuberculosis, use the LMW thiol mycothiol (MSH) to buffer the intracellular redox environment. The NADPH-dependent FAD-containing oxidoreductase mycothiol disulfide reductase (Mtr) is known to reduce oxidized mycothiol disulfide (MSSM) to MSH, which is crucial to maintain the cellular redox balance. In this work, the first crystal structures of Mtr are presented, expanding the structural knowledge and understanding of LMW thiol reductases. The structural analyses and docking calculations provide insight into the nature of Mtrs, with regard to the binding and reduction of the MSSM substrate, in the context of related oxidoreductases. The putative binding site for MSSM suggests a similar binding to that described for the homologous glutathione reductase and its respective substrate glutathione disulfide, but with distinct structural differences shaped to fit the bulkier MSSM substrate, assigning Mtrs as uniquely functioning reductases. As MSH has been acknowledged as an attractive antitubercular target, the structural findings presented in this work may contribute towards future antituberculosis drug development. Full Article text
pro Advanced exploitation of unmerged reflection data during processing and refinement with autoPROC and BUSTER By journals.iucr.org Published On :: 2024-02-27 The validation of structural models obtained by macromolecular X-ray crystallography against experimental diffraction data, whether before deposition into the PDB or after, is typically carried out exclusively against the merged data that are eventually archived along with the atomic coordinates. It is shown here that the availability of unmerged reflection data enables valuable additional analyses to be performed that yield improvements in the final models, and tools are presented to implement them, together with examples of the results to which they give access. The first example is the automatic identification and removal of image ranges affected by loss of crystal centering or by excessive decay of the diffraction pattern as a result of radiation damage. The second example is the `reflection-auditing' process, whereby individual merged data items showing especially poor agreement with model predictions during refinement are investigated thanks to the specific metadata (such as image number and detector position) that are available for the corresponding unmerged data, potentially revealing previously undiagnosed instrumental, experimental or processing problems. The third example is the calculation of so-called F(early) − F(late) maps from carefully selected subsets of unmerged amplitude data, which can not only highlight the location and extent of radiation damage but can also provide guidance towards suitable fine-grained parametrizations to model the localized effects of such damage. Full Article text
pro A database overview of metal-coordination distances in metalloproteins By journals.iucr.org Published On :: 2024-04-29 Metalloproteins are ubiquitous in all living organisms and take part in a very wide range of biological processes. For this reason, their experimental characterization is crucial to obtain improved knowledge of their structure and biological functions. The three-dimensional structure represents highly relevant information since it provides insight into the interaction between the metal ion(s) and the protein fold. Such interactions determine the chemical reactivity of the bound metal. The available PDB structures can contain errors due to experimental factors such as poor resolution and radiation damage. A lack of use of distance restraints during the refinement and validation process also impacts the structure quality. Here, the aim was to obtain a thorough overview of the distribution of the distances between metal ions and their donor atoms through the statistical analysis of a data set based on more than 115 000 metal-binding sites in proteins. This analysis not only produced reference data that can be used by experimentalists to support the structure-determination process, for example as refinement restraints, but also resulted in an improved insight into how protein coordination occurs for different metals and the nature of their binding interactions. In particular, the features of carboxylate coordination were inspected, which is the only type of interaction that is commonly present for nearly all metals. Full Article text
pro New insights into the domain of unknown function (DUF) of EccC5, the pivotal ATPase providing the secretion driving force to the ESX-5 secretion system By journals.iucr.org Published On :: 2024-05-28 Type VII secretion (T7S) systems, also referred to as ESAT-6 secretion (ESX) systems, are molecular machines that have gained great attention due to their implications in cell homeostasis and in host–pathogen interactions in mycobacteria. The latter include important human pathogens such as Mycobacterium tuberculosis (Mtb), the etiological cause of human tuberculosis, which constitutes a pandemic accounting for more than one million deaths every year. The ESX-5 system is exclusively found in slow-growing pathogenic mycobacteria, where it mediates the secretion of a large family of virulence factors: the PE and PPE proteins. The secretion driving force is provided by EccC5, a multidomain ATPase that operates using four globular cytosolic domains: an N-terminal domain of unknown function (EccC5DUF) and three FtsK/SpoIIIE ATPase domains. Recent structural and functional studies of ESX-3 and ESX-5 systems have revealed EccCDUF to be an ATPase-like fold domain with potential ATPase activity, the functionality of which is essential for secretion. Here, the crystal structure of the MtbEccC5DUF domain is reported at 2.05 Å resolution, which reveals a nucleotide-free structure with degenerated cis-acting and trans-acting elements involved in ATP binding and hydrolysis. This crystallographic study, together with a biophysical assessment of the interaction of MtbEccC5DUF with ATP/Mg2+, supports the absence of ATPase activity proposed for this domain. It is shown that this degeneration is also present in DUF domains from other ESX and ESX-like systems, which are likely to exhibit poor or null ATPase activity. Moreover, based on an in silico model of the N-terminal region of MtbEccC5DUF, it is hypothesized that MtbEccC5DUF is a degenerated ATPase domain that may have retained the ability to hexamerize. These observations draw attention to DUF domains as structural elements with potential implications in the opening and closure of the membrane pore during the secretion process via their involvement in inter-protomer interactions. Full Article text
pro Deep-learning map segmentation for protein X-ray crystallographic structure determination By journals.iucr.org Published On :: 2024-06-27 When solving a structure of a protein from single-wavelength anomalous diffraction X-ray data, the initial phases obtained by phasing from an anomalously scattering substructure usually need to be improved by an iterated electron-density modification. In this manuscript, the use of convolutional neural networks (CNNs) for segmentation of the initial experimental phasing electron-density maps is proposed. The results reported demonstrate that a CNN with U-net architecture, trained on several thousands of electron-density maps generated mainly using X-ray data from the Protein Data Bank in a supervised learning, can improve current density-modification methods. Full Article text
pro A structural role for tryptophan in proteins, and the ubiquitous Trp Cδ1—H⋯O=C (backbone) hydrogen bond By journals.iucr.org Published On :: 2024-06-28 Tryptophan is the most prominent amino acid found in proteins, with multiple functional roles. Its side chain is made up of the hydrophobic indole moiety, with two groups that act as donors in hydrogen bonds: the Nɛ—H group, which is a potent donor in canonical hydrogen bonds, and a polarized Cδ1—H group, which is capable of forming weaker, noncanonical hydrogen bonds. Due to adjacent electron-withdrawing moieties, C—H⋯O hydrogen bonds are ubiquitous in macromolecules, albeit contingent on the polarization of the donor C—H group. Consequently, Cα—H groups (adjacent to the carbonyl and amino groups of flanking peptide bonds), as well as the Cɛ1—H and Cδ2—H groups of histidines (adjacent to imidazole N atoms), are known to serve as donors in hydrogen bonds, for example stabilizing parallel and antiparallel β-sheets. However, the nature and the functional role of interactions involving the Cδ1—H group of the indole ring of tryptophan are not well characterized. Here, data mining of high-resolution (r ≤ 1.5 Å) crystal structures from the Protein Data Bank was performed and ubiquitous close contacts between the Cδ1—H groups of tryptophan and a range of electronegative acceptors were identified, specifically main-chain carbonyl O atoms immediately upstream and downstream in the polypeptide chain. The stereochemical analysis shows that most of the interactions bear all of the hallmarks of proper hydrogen bonds. At the same time, their cohesive nature is confirmed by quantum-chemical calculations, which reveal interaction energies of 1.5–3.0 kcal mol−1, depending on the specific stereochemistry. Full Article text
pro The crystal structure of Shethna protein II (FeSII) from Azotobacter vinelandii suggests a domain swap By journals.iucr.org Published On :: 2024-07-10 The Azotobacter vinelandii FeSII protein forms an oxygen-resistant complex with the nitrogenase MoFe and Fe proteins. FeSII is an adrenodoxin-type ferredoxin that forms a dimer in solution. Previously, the crystal structure was solved [Schlesier et al. (2016), J. Am. Chem. Soc. 138, 239–247] with five copies in the asymmetric unit. One copy is a normal adrenodoxin domain that forms a dimer with its crystallographic symmetry mate. The other four copies are in an `open' conformation with a loop flipped out exposing the 2Fe–2S cluster. The open and closed conformations were interpreted as oxidized and reduced, respectively, and the large conformational change in the open configuration allowed binding to nitrogenase. Here, the structure of FeSII was independently solved in the same crystal form. The positioning of the atoms in the unit cell is similar to the earlier report. However, the interpretation of the structure is different. The `open' conformation is interpreted as the product of a crystallization-induced domain swap. The 2Fe–2S cluster is not exposed to solvent, but in the crystal its interacting helix is replaced by the same helix residues from a crystal symmetry mate. The domain swap is complicated, as it is unusual in being in the middle of the protein rather than at a terminus, and it creates arrangements of molecules that can be interpreted in multiple ways. It is also cautioned that crystal structures should be interpreted in terms of the contents of the entire crystal rather than of one asymmetric unit. Full Article text
pro Protonation of histidine rings using quantum-mechanical methods By journals.iucr.org Published On :: 2024-07-25 Histidine can be protonated on either or both of the two N atoms of the imidazole moiety. Each of the three possible forms occurs as a result of the stereochemical environment of the histidine side chain. In an atomic model, comparing the possible protonation states in situ, looking at possible hydrogen bonding and metal coordination, it is possible to predict which is most likely to be correct. A more direct method is described that uses quantum-mechanical methods to calculate, also in situ, the minimum geometry and energy for comparison, and therefore to more accurately identify the most likely protonation state. Full Article text
pro Structural analysis of a ligand-triggered intermolecular disulfide switch in a major latex protein from opium poppy By journals.iucr.org Published On :: 2024-08-29 Several proteins from plant pathogenesis-related family 10 (PR10) are highly abundant in the latex of opium poppy and have recently been shown to play diverse and important roles in the biosynthesis of benzylisoquinoline alkaloids (BIAs). The recent determination of the first crystal structures of PR10-10 showed how large conformational changes in a surface loop and adjacent β-strand are coupled to the binding of BIA compounds to the central hydrophobic binding pocket. A more detailed analysis of these conformational changes is now reported to further clarify how ligand binding is coupled to the formation and cleavage of an intermolecular disulfide bond that is only sterically allowed when the BIA binding pocket is empty. To decouple ligand binding from disulfide-bond formation, each of the two highly conserved cysteine residues (Cys59 and Cys155) in PR10-10 was replaced with serine using site-directed mutagenesis. Crystal structures of the Cys59Ser mutant were determined in the presence of papaverine and in the absence of exogenous BIA compounds. A crystal structure of the Cys155Ser mutant was also determined in the absence of exogenous BIA compounds. All three of these crystal structures reveal conformations similar to that of wild-type PR10-10 with bound BIA compounds. In the absence of exogenous BIA compounds, the Cys59Ser and Cys155Ser mutants appear to bind an unidentified ligand or mixture of ligands that was presumably introduced during expression of the proteins in Escherichia coli. The analysis of conformational changes triggered by the binding of BIA compounds suggests a molecular mechanism coupling ligand binding to the disruption of an intermolecular disulfide bond. This mechanism may be involved in the regulation of biosynthetic reactions in plants and possibly other organisms. Full Article text
pro Post-translational modifications in the Protein Data Bank By journals.iucr.org Published On :: 2024-08-29 Proteins frequently undergo covalent modification at the post-translational level, which involves the covalent attachment of chemical groups onto amino acids. This can entail the singular or multiple addition of small groups, such as phosphorylation; long-chain modifications, such as glycosylation; small proteins, such as ubiquitination; as well as the interconversion of chemical groups, such as the formation of pyroglutamic acid. These post-translational modifications (PTMs) are essential for the normal functioning of cells, as they can alter the physicochemical properties of amino acids and therefore influence enzymatic activity, protein localization, protein–protein interactions and protein stability. Despite their inherent importance, accurately depicting PTMs in experimental studies of protein structures often poses a challenge. This review highlights the role of PTMs in protein structures, as well as the prevalence of PTMs in the Protein Data Bank, directing the reader to accurately built examples suitable for use as a modelling reference. Full Article text
pro CHiMP: deep-learning tools trained on protein crystallization micrographs to enable automation of experiments By journals.iucr.org Published On :: 2024-10-01 A group of three deep-learning tools, referred to collectively as CHiMP (Crystal Hits in My Plate), were created for analysis of micrographs of protein crystallization experiments at the Diamond Light Source (DLS) synchrotron, UK. The first tool, a classification network, assigns images into categories relating to experimental outcomes. The other two tools are networks that perform both object detection and instance segmentation, resulting in masks of individual crystals in the first case and masks of crystallization droplets in addition to crystals in the second case, allowing the positions and sizes of these entities to be recorded. The creation of these tools used transfer learning, where weights from a pre-trained deep-learning network were used as a starting point and repurposed by further training on a relatively small set of data. Two of the tools are now integrated at the VMXi macromolecular crystallography beamline at DLS, where they have the potential to absolve the need for any user input, both for monitoring crystallization experiments and for triggering in situ data collections. The third is being integrated into the XChem fragment-based drug-discovery screening platform, also at DLS, to allow the automatic targeting of acoustic compound dispensing into crystallization droplets. Full Article text
pro The success rate of processed predicted models in molecular replacement: implications for experimental phasing in the AlphaFold era By journals.iucr.org Published On :: 2024-10-03 The availability of highly accurate protein structure predictions from AlphaFold2 (AF2) and similar tools has hugely expanded the applicability of molecular replacement (MR) for crystal structure solution. Many structures can be solved routinely using raw models, structures processed to remove unreliable parts or models split into distinct structural units. There is therefore an open question around how many and which cases still require experimental phasing methods such as single-wavelength anomalous diffraction (SAD). Here, this question is addressed using a large set of PDB depositions that were solved by SAD. A large majority (87%) could be solved using unedited or minimally edited AF2 predictions. A further 18 (4%) yield straightforwardly to MR after splitting of the AF2 prediction using Slice'N'Dice, although different splitting methods succeeded on slightly different sets of cases. It is also found that further unique targets can be solved by alternative modelling approaches such as ESMFold (four cases), alternative MR approaches such as ARCIMBOLDO and AMPLE (two cases each), and multimeric model building with AlphaFold-Multimer or UniFold (three cases). Ultimately, only 12 cases, or 3% of the SAD-phased set, did not yield to any form of MR tested here, offering valuable hints as to the number and the characteristics of cases where experimental phasing remains essential for macromolecular structure solution. Full Article text
pro EMhub: a web platform for data management and on-the-fly processing in scientific facilities By journals.iucr.org Published On :: 2024-10-07 Most scientific facilities produce large amounts of heterogeneous data at a rapid pace. Managing users, instruments, reports and invoices presents additional challenges. To address these challenges, EMhub, a web platform designed to support the daily operations and record-keeping of a scientific facility, has been introduced. EMhub enables the easy management of user information, instruments, bookings and projects. The application was initially developed to meet the needs of a cryoEM facility, but its functionality and adaptability have proven to be broad enough to be extended to other data-generating centers. The expansion of EMHub is enabled by the modular nature of its core functionalities. The application allows external processes to be connected via a REST API, automating tasks such as folder creation, user and password generation, and the execution of real-time data-processing pipelines. EMhub has been used for several years at the Swedish National CryoEM Facility and has been installed in the CryoEM center at the Structural Biology Department at St. Jude Children's Research Hospital. A fully automated single-particle pipeline has been implemented for on-the-fly data processing and analysis. At St. Jude, the X-Ray Crystallography Center and the Single-Molecule Imaging Center have already expanded the platform to support their operational and data-management workflows. Full Article text
pro Analysis of crystallographic phase retrieval using iterative projection algorithms By journals.iucr.org Published On :: 2024-10-23 For protein crystals in which more than two thirds of the volume is occupied by solvent, the featureless nature of the solvent region often generates a constraint that is powerful enough to allow direct phasing of X-ray diffraction data. Practical implementation relies on the use of iterative projection algorithms with good global convergence properties to solve the difficult nonconvex phase-retrieval problem. In this paper, some aspects of phase retrieval using iterative projection algorithms are systematically explored, where the diffraction data and density-value distributions in the protein and solvent regions provide the sole constraints. The analysis is based on the addition of random error to the phases of previously determined protein crystal structures, followed by evaluation of the ability to recover the correct phase set as the distance from the solution increases. The properties of the difference-map (DM), relaxed–reflect–reflect (RRR) and relaxed averaged alternating reflectors (RAAR) algorithms are compared. All of these algorithms prove to be effective for crystallographic phase retrieval, and the useful ranges of the adjustable parameter which controls their behavior are established. When these algorithms converge to the solution, the algorithm trajectory becomes stationary; however, the density function continues to fluctuate significantly around its mean position. It is shown that averaging over the algorithm trajectory in the stationary region, following convergence, improves the density estimate, with this procedure outperforming previous approaches for phase or density refinement. Full Article text
pro The role of alkyl chain length in the melt and solution crystallization of paliperidone aliphatic prodrugs By journals.iucr.org Published On :: 2024-01-01 Fatty acid-derivative prodrugs have been utilized extensively to improve the physicochemical, biopharmaceutical and pharmacokinetic properties of active pharmaceutical ingredients. However, to our knowledge, the crystallization behavior of prodrugs modified with different fatty acids has not been explored. In the present work, a series of paliperidone aliphatic prodrugs with alkyl chain lengths ranging from C4 to C16 was investigated with respect to crystal structure, crystal morphology and crystallization kinetics. The paliperidone derivatives exhibited isostructural crystal packing, despite the different alkyl chain lengths, and crystallized with the dominant (100) face in both melt and solution. The rate of crystallization for paliperidone derivatives in the melt increases with alkyl chain length owing to greater molecular mobility. In contrast, the longer chains prolong the nucleation induction time and reduce the crystal growth kinetics in solution. The results show a correlation between difficulty of nucleation in solution and the interfacial energy. This work provides insight into the crystallization behavior of paliperidone aliphatic prodrugs and reveals that the role of alkyl chain length in the crystallization behavior has a strong dependence on the crystallization method. Full Article text
pro Conformation–aggregation interplay in the simplest aliphatic ethers probed under high pressure By journals.iucr.org Published On :: 2024-01-01 The structures of the simplest symmetric primary ethers [(CnH2n+1)2O, n = 1–3] determined under high pressure revealed their conformational preferences and intermolecular interactions. In three new polymorphs of diethyl ether (C2H5)2O, high pressure promotes intermolecular CH⋯O contacts and enforces a conversion from the trans–trans conformer present in the α, β and γ phases to the trans–gauche conformer, which is higher in energy by 6.4 kJ mol−1, in the δ phase. Two new polymorphs of dimethyl ether (CH3)2O display analogous transformations of the CH⋯O bonds. The crystal structure of di-n-propyl ether (C3H7)2O, determined for the first time, is remarkably stable over the whole pressure range investigated from 1.70 up to 5.30 GPa. Full Article text
pro Solving protein structures by combining structure prediction, molecular replacement and direct-methods-aided model completion By journals.iucr.org Published On :: 2024-01-13 Highly accurate protein structure prediction can generate accurate models of protein and protein–protein complexes in X-ray crystallography. However, the question of how to make more effective use of predicted models for completing structure analysis, and which strategies should be employed for the more challenging cases such as multi-helical structures, multimeric structures and extremely large structures, both in the model preparation and in the completion steps, remains open for discussion. In this paper, a new strategy is proposed based on the framework of direct methods and dual-space iteration, which can greatly simplify the pre-processing steps of predicted models both in normal and in challenging cases. Following this strategy, full-length models or the conservative structural domains could be used directly as the starting model, and the phase error and the model bias between the starting model and the real structure would be modified in the direct-methods-based dual-space iteration. Many challenging cases (from CASP14) have been tested for the general applicability of this constructive strategy, and almost complete models have been generated with reasonable statistics. The hybrid strategy therefore provides a meaningful scheme for X-ray structure determination using a predicted model as the starting point. Full Article text
pro The curious case of proton migration under pressure in the malonic acid and 4,4'-bipyridine cocrystal By journals.iucr.org Published On :: 2024-01-13 In the search for new active pharmaceutical ingredients, the precise control of the chemistry of cocrystals becomes essential. One crucial step within this chemistry is proton migration between cocrystal coformers to form a salt, usually anticipated by the empirical ΔpKa rule. Due to the effective role it plays in modifying intermolecular distances and interactions, pressure adds a new dimension to the ΔpKa rule. Still, this variable has been scarcely applied to induce proton-transfer reactions within these systems. In our study, high-pressure X-ray diffraction and Raman spectroscopy experiments, supported by DFT calculations, reveal modifications to the protonation states of the 4,4'-bipyridine (BIPY) and malonic acid (MA) cocrystal (BIPYMA) that allow the conversion of the cocrystal phase into ionic salt polymorphs. On compression, neutral BIPYMA and monoprotonated (BIPYH+MA−) species coexist up to 3.1 GPa, where a phase transition to a structure of P21/c symmetry occurs, induced by a double proton-transfer reaction forming BIPYH22+MA2−. The low-pressure C2/c phase is recovered at 2.4 GPa on decompression, leading to a 0.7 GPa hysteresis pressure range. This is one of a few studies on proton transfer in multicomponent crystals that shows how susceptible the interconversion between differently charged species is to even slight pressure changes, and how the proton transfer can be a triggering factor leading to changes in the crystal symmetry. These new data, coupled with information from previous reports on proton-transfer reactions between coformers, extend the applicability of the ΔpKa rule incorporating the pressure required to induce salt formation. Full Article text
pro Data reduction in protein serial crystallography By journals.iucr.org Published On :: 2024-02-08 Serial crystallography (SX) has become an established technique for protein structure determination, especially when dealing with small or radiation-sensitive crystals and investigating fast or irreversible protein dynamics. The advent of newly developed multi-megapixel X-ray area detectors, capable of capturing over 1000 images per second, has brought about substantial benefits. However, this advancement also entails a notable increase in the volume of collected data. Today, up to 2 PB of data per experiment could be easily obtained under efficient operating conditions. The combined costs associated with storing data from multiple experiments provide a compelling incentive to develop strategies that effectively reduce the amount of data stored on disk while maintaining the quality of scientific outcomes. Lossless data-compression methods are designed to preserve the information content of the data but often struggle to achieve a high compression ratio when applied to experimental data that contain noise. Conversely, lossy compression methods offer the potential to greatly reduce the data volume. Nonetheless, it is vital to thoroughly assess the impact of data quality and scientific outcomes when employing lossy compression, as it inherently involves discarding information. The evaluation of lossy compression effects on data requires proper data quality metrics. In our research, we assess various approaches for both lossless and lossy compression techniques applied to SX data, and equally importantly, we describe metrics suitable for evaluating SX data quality. Full Article text
pro The prediction of single-molecule magnet properties via deep learning By journals.iucr.org Published On :: 2024-02-01 This paper uses deep learning to present a proof-of-concept for data-driven chemistry in single-molecule magnets (SMMs). Previous discussions within SMM research have proposed links between molecular structures (crystal structures) and single-molecule magnetic properties; however, these have only interpreted the results. Therefore, this study introduces a data-driven approach to predict the properties of SMM structures using deep learning. The deep-learning model learns the structural features of the SMM molecules by extracting the single-molecule magnetic properties from the 3D coordinates presented in this paper. The model accurately determined whether a molecule was a single-molecule magnet, with an accuracy rate of approximately 70% in predicting the SMM properties. The deep-learning model found SMMs from 20 000 metal complexes extracted from the Cambridge Structural Database. Using deep-learning models for predicting SMM properties and guiding the design of novel molecules is promising. Full Article text
pro Structural dissection of two redox proteins from the shipworm symbiont Teredinibacter turnerae By journals.iucr.org Published On :: 2024-03-01 The discovery of lytic polysaccharide monooxygenases (LPMOs), a family of copper-dependent enzymes that play a major role in polysaccharide degradation, has revealed the importance of oxidoreductases in the biological utilization of biomass. In fungi, a range of redox proteins have been implicated as working in harness with LPMOs to bring about polysaccharide oxidation. In bacteria, less is known about the interplay between redox proteins and LPMOs, or how the interaction between the two contributes to polysaccharide degradation. We therefore set out to characterize two previously unstudied proteins from the shipworm symbiont Teredinibacter turnerae that were initially identified by the presence of carbohydrate binding domains appended to uncharacterized domains with probable redox functions. Here, X-ray crystal structures of several domains from these proteins are presented together with initial efforts to characterize their functions. The analysis suggests that the target proteins are unlikely to function as LPMO electron donors, raising new questions as to the potential redox functions that these large extracellular multi-haem-containing c-type cytochromes may perform in these bacteria. Full Article text
pro Cocrystals of a coumarin derivative: an efficient approach towards anti-leishmanial cocrystals against MIL-resistant Leishmania tropica By journals.iucr.org Published On :: 2024-03-01 Leishmaniasis is a neglected parasitic tropical disease with numerous clinical manifestations. One of the causative agents of cutaneous leishmaniasis (CL) is Leishmania tropica (L. tropica) known for causing ulcerative lesions on the skin. The adverse effects of the recommended available drugs, such as amphotericin B and pentavalent antimonial, and the emergence of drug resistance in parasites, mean the search for new safe and effective anti-leishmanial agents is crucial. Miltefosine (MIL) was the first recommended oral medication, but its use is now limited because of the rapid emergence of resistance. Pharmaceutical cocrystallization is an effective method to improve the physicochemical and biological properties of active pharmaceutical ingredients (APIs). Herein, we describe the cocrystallization of coumarin-3-carboxylic acid (CU, 1a; 2-oxobenzopyrane-3-carboxylic acid, C10H6O4) with five coformers [2-amino-3-bromopyridine (1b), 2-amino-5-(trifluoromethyl)-pyridine (1c), 2-amino-6-methylpyridine (1d), p-aminobenzoic acid (1e) and amitrole (1f)] in a 1:1 stoichiometric ratio via the neat grinding method. The cocrystals 2–6 obtained were characterized via single-crystal X-ray diffraction, powder X-ray diffraction, differential scanning calorimetry and thermogravimetric analysis, as well as Fourier transform infrared spectroscopy. Non-covalent interactions, such as van der Waals, hydrogen bonding, C—H⋯π and π⋯π interactions contribute significantly towards the packing of a crystal structure and alter the physicochemical and biological activity of CU. In this research, newly synthesized cocrystals were evaluated for their anti-leishmanial activity against the MIL-resistant L. tropica and cytotoxicity against the 3T3 (normal fibroblast) cell line. Among the non-cytotoxic cocrystals synthesized (2–6), CU:1b (2, IC50 = 61.83 ± 0.59 µM), CU:1c (3, 125.7 ± 1.15 µM) and CU:1d (4, 48.71 ± 0.75 µM) appeared to be potent anti-leishmanial agents and showed several-fold more anti-leishmanial potential than the tested standard drug (MIL, IC50 = 169.55 ± 0.078 µM). The results indicate that cocrystals 2–4 are promising anti-leishmanial agents which require further exploration. Full Article text
pro KINNTREX: a neural network to unveil protein mechanisms from time-resolved X-ray crystallography By journals.iucr.org Published On :: 2024-04-25 Here, a machine-learning method based on a kinetically informed neural network (NN) is introduced. The proposed method is designed to analyze a time series of difference electron-density maps from a time-resolved X-ray crystallographic experiment. The method is named KINNTREX (kinetics-informed NN for time-resolved X-ray crystallography). To validate KINNTREX, multiple realistic scenarios were simulated with increasing levels of complexity. For the simulations, time-resolved X-ray data were generated that mimic data collected from the photocycle of the photoactive yellow protein. KINNTREX only requires the number of intermediates and approximate relaxation times (both obtained from a singular valued decomposition) and does not require an assumption of a candidate mechanism. It successfully predicts a consistent chemical kinetic mechanism, together with difference electron-density maps of the intermediates that appear during the reaction. These features make KINNTREX attractive for tackling a wide range of biomolecular questions. In addition, the versatility of KINNTREX can inspire more NN-based applications to time-resolved data from biological macromolecules obtained by other methods. Full Article text
pro Crystal structure of human peptidylarginine deiminase type VI (PAD6) provides insights into its inactivity By journals.iucr.org Published On :: 2024-04-24 Human peptidylarginine deiminase isoform VI (PAD6), which is predominantly limited to cytoplasmic lattices in the mammalian oocytes in ovarian tissue, is essential for female fertility. It belongs to the peptidylarginine deiminase (PAD) enzyme family that catalyzes the conversion of arginine residues to citrulline in proteins. In contrast to other members of the family, recombinant PAD6 was previously found to be catalytically inactive. We sought to provide structural insight into the human homologue to shed light on this observation. We report here the first crystal structure of PAD6, determined at 1.7 Å resolution. PAD6 follows the same domain organization as other structurally known PAD isoenzymes. Further structural analysis and size-exclusion chromatography show that PAD6 behaves as a homodimer similar to PAD4. Differential scanning fluorimetry suggests that PAD6 does not coordinate Ca2+ which agrees with acidic residues found to coordinate Ca2+ in other PAD homologs not being conserved in PAD6. The crystal structure of PAD6 shows similarities with the inactive state of apo PAD2, in which the active site conformation is unsuitable for catalytic citrullination. The putative active site of PAD6 adopts a non-productive conformation that would not allow protein–substrate binding due to steric hindrance with rigid secondary structure elements. This observation is further supported by the lack of activity on the histone H3 and cytokeratin 5 substrates. These findings suggest a different mechanism for enzymatic activation compared with other PADs; alternatively, PAD6 may exert a non-enzymatic function in the cytoplasmic lattice of oocytes and early embryos. Full Article text
pro Time-series analysis of rhenium(I) organometallic covalent binding to a model protein for drug development By journals.iucr.org Published On :: 2024-04-19 Metal-based complexes with their unique chemical properties, including multiple oxidation states, radio-nuclear capabilities and various coordination geometries yield value as potential pharmaceuticals. Understanding the interactions between metals and biological systems will prove key for site-specific coordination of new metal-based lead compounds. This study merges the concepts of target coordination with fragment-based drug methodologies, supported by varying the anomalous scattering of rhenium along with infrared spectroscopy, and has identified rhenium metal sites bound covalently with two amino acid types within the model protein. A time-based series of lysozyme-rhenium-imidazole (HEWL-Re-Imi) crystals was analysed systematically over a span of 38 weeks. The main rhenium covalent coordination is observed at His15, Asp101 and Asp119. Weak (i.e. noncovalent) interactions are observed at other aspartic, asparagine, proline, tyrosine and tryptophan side chains. Detailed bond distance comparisons, including precision estimates, are reported, utilizing the diffraction precision index supplemented with small-molecule data from the Cambridge Structural Database. Key findings include changes in the protein structure induced at the rhenium metal binding site, not observed in similar metal-free structures. The binding sites are typically found along the solvent-channel-accessible protein surface. The three primary covalent metal binding sites are consistent throughout the time series, whereas binding to neighbouring amino acid residues changes through the time series. Co-crystallization was used, consistently yielding crystals four days after setup. After crystal formation, soaking of the compound into the crystal over 38 weeks is continued and explains these structural adjustments. It is the covalent bond stability at the three sites, their proximity to the solvent channel and the movement of residues to accommodate the metal that are important, and may prove useful for future radiopharmaceutical development including target modification. Full Article text
pro RCSB Protein Data Bank: supporting research and education worldwide through explorations of experimentally determined and computationally predicted atomic level 3D biostructures By journals.iucr.org Published On :: 2024-04-10 The Protein Data Bank (PDB) was established as the first open-access digital data resource in biology and medicine in 1971 with seven X-ray crystal structures of proteins. Today, the PDB houses >210 000 experimentally determined, atomic level, 3D structures of proteins and nucleic acids as well as their complexes with one another and small molecules (e.g. approved drugs, enzyme cofactors). These data provide insights into fundamental biology, biomedicine, bioenergy and biotechnology. They proved particularly important for understanding the SARS-CoV-2 global pandemic. The US-funded Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) and other members of the Worldwide Protein Data Bank (wwPDB) partnership jointly manage the PDB archive and support >60 000 `data depositors' (structural biologists) around the world. wwPDB ensures the quality and integrity of the data in the ever-expanding PDB archive and supports global open access without limitations on data usage. The RCSB PDB research-focused web portal at https://www.rcsb.org/ (RCSB.org) supports millions of users worldwide, representing a broad range of expertise and interests. In addition to retrieving 3D structure data, PDB `data consumers' access comparative data and external annotations, such as information about disease-causing point mutations and genetic variations. RCSB.org also provides access to >1 000 000 computed structure models (CSMs) generated using artificial intelligence/machine-learning methods. To avoid doubt, the provenance and reliability of experimentally determined PDB structures and CSMs are identified. Related training materials are available to support users in their RCSB.org explorations. Full Article text
pro Structural insights into the molecular mechanism of phytoplasma immunodominant membrane protein By journals.iucr.org Published On :: 2024-04-24 Immunodominant membrane protein (IMP) is a prevalent membrane protein in phytoplasma and has been confirmed to be an F-actin-binding protein. However, the intricate molecular mechanisms that govern the function of IMP require further elucidation. In this study, the X-ray crystallographic structure of IMP was determined and insights into its interaction with plant actin are provided. A comparative analysis with other proteins demonstrates that IMP shares structural homology with talin rod domain-containing protein 1 (TLNRD1), which also functions as an F-actin-binding protein. Subsequent molecular-docking studies of IMP and F-actin reveal that they possess complementary surfaces, suggesting a stable interaction. The low potential energy and high confidence score of the IMP–F-actin binding model indicate stable binding. Additionally, by employing immunoprecipitation and mass spectrometry, it was discovered that IMP serves as an interaction partner for the phytoplasmal effector causing phyllody 1 (PHYL1). It was then shown that both IMP and PHYL1 are highly expressed in the S2 stage of peanut witches' broom phytoplasma-infected Catharanthus roseus. The association between IMP and PHYL1 is substantiated through in vivo immunoprecipitation, an in vitro cross-linking assay and molecular-docking analysis. Collectively, these findings expand the current understanding of IMP interactions and enhance the comprehension of the interaction of IMP with plant F-actin. They also unveil a novel interaction pathway that may influence phytoplasma pathogenicity and host plant responses related to PHYL1. This discovery could pave the way for the development of new strategies to overcome phytoplasma-related plant diseases. Full Article text
pro Evolution of structure and spectroscopic properties of a new 1,3-diacetylpyrene polymorph with temperature and pressure By journals.iucr.org Published On :: 2024-05-10 A new polymorph of 1,3-diacetylpyrene has been obtained from its melt and thoroughly characterized using single-crystal X-ray diffraction, steady-state UV–Vis spectroscopy and periodic density functional theory calculations. Experimental studies covered the temperature range from 90 to 390 K and the pressure range from atmospheric to 4.08 GPa. Optimal sample placement in a diamond anvil cell according to our previously presented methodology ensured over 80% data coverage up to 0.8 Å for a monoclinic sample. Unrestrained Hirshfeld atom refinement of the high-pressure crystal structures was successful and anharmonic behavior of carbonyl oxygen atoms was observed. Unlike the previously characterized polymorph, the structure of 2°AP-β is based on infinite π-stacks of antiparallel 2°AP molecules. 2°AP-β displays piezochromism and piezofluorochromism which are directly related to the variation in interplanar distances within the π-stacking. The importance of weak intermolecular interactions is reflected in the substantial negative thermal expansion coefficient of −55.8 (57) MK−1 in the direction of C—H⋯O interactions. Full Article text
pro Analysis of COF-300 synthesis: probing degradation processes and 3D electron diffraction structure By journals.iucr.org Published On :: 2024-05-10 Although COF-300 is often used as an example to study the synthesis and structure of (3D) covalent organic frameworks (COFs), knowledge of the underlying synthetic processes is still fragmented. Here, an optimized synthetic procedure based on a combination of linker protection and modulation was applied. Using this approach, the influence of time and temperature on the synthesis of COF-300 was studied. Synthesis times that were too short produced materials with limited crystallinity and porosity, lacking the typical pore flexibility associated with COF-300. On the other hand, synthesis times that were too long could be characterized by loss of crystallinity and pore order by degradation of the tetrakis(4-aminophenyl)methane (TAM) linker used. The presence of the degradation product was confirmed by visual inspection, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). As TAM is by far the most popular linker for the synthesis of 3D COFs, this degradation process might be one of the reasons why the development of 3D COFs is still lagging compared with 2D COFs. However, COF crystals obtained via an optimized procedure could be structurally probed using 3D electron diffraction (3DED). The 3DED analysis resulted in a full structure determination of COF-300 at atomic resolution with satisfying data parameters. Comparison of our 3DED-derived structural model with previously reported single-crystal X-ray diffraction data for this material, as well as parameters derived from the Cambridge Structural Database, demonstrates the high accuracy of the 3DED method for structure determination. This validation might accelerate the exploitation of 3DED as a structure determination technique for COFs and other porous materials. Full Article text
pro From X-ray crystallographic structure to intrinsic thermodynamics of protein–ligand binding using carbonic anhydrase isozymes as a model system By journals.iucr.org Published On :: 2024-06-10 Carbonic anhydrase (CA) was among the first proteins whose X-ray crystal structure was solved to atomic resolution. CA proteins have essentially the same fold and similar active centers that differ in only several amino acids. Primary sulfonamides are well defined, strong and specific binders of CA. However, minor variations in chemical structure can significantly alter their binding properties. Over 1000 sulfonamides have been designed, synthesized and evaluated to understand the correlations between the structure and thermodynamics of their binding to the human CA isozyme family. Compound binding was determined by several binding assays: fluorescence-based thermal shift assay, stopped-flow enzyme activity inhibition assay, isothermal titration calorimetry and competition assay for enzyme expressed on cancer cell surfaces. All assays have advantages and limitations but are necessary for deeper characterization of these protein–ligand interactions. Here, the concept and importance of intrinsic binding thermodynamics is emphasized and the role of structure–thermodynamics correlations for the novel inhibitors of CA IX is discussed – an isozyme that is overexpressed in solid hypoxic tumors, and thus these inhibitors may serve as anticancer drugs. The abundant structural and thermodynamic data are assembled into the Protein–Ligand Binding Database to understand general protein–ligand recognition principles that could be used in drug discovery. Full Article text
pro Benchmarking predictive methods for small-angle X-ray scattering from atomic coordinates of proteins using maximum likelihood consensus data By journals.iucr.org Published On :: 2024-07-10 Stimulated by informal conversations at the XVII International Small Angle Scattering (SAS) conference (Traverse City, 2017), an international team of experts undertook a round-robin exercise to produce a large dataset from proteins under standard solution conditions. These data were used to generate consensus SAS profiles for xylose isomerase, urate oxidase, xylanase, lysozyme and ribonuclease A. Here, we apply a new protocol using maximum likelihood with a larger number of the contributed datasets to generate improved consensus profiles. We investigate the fits of these profiles to predicted profiles from atomic coordinates that incorporate different models to account for the contribution to the scattering of water molecules of hydration surrounding proteins in solution. Programs using an implicit, shell-type hydration layer generally optimize fits to experimental data with the aid of two parameters that adjust the volume of the bulk solvent excluded by the protein and the contrast of the hydration layer. For these models, we found the error-weighted residual differences between the model and the experiment generally reflected the subsidiary maxima and minima in the consensus profiles that are determined by the size of the protein plus the hydration layer. By comparison, all-atom solute and solvent molecular dynamics (MD) simulations are without the benefit of adjustable parameters and, nonetheless, they yielded at least equally good fits with residual differences that are less reflective of the structure in the consensus profile. Further, where MD simulations accounted for the precise solvent composition of the experiment, specifically the inclusion of ions, the modelled radius of gyration values were significantly closer to the experiment. The power of adjustable parameters to mask real differences between a model and the structure present in solution is demonstrated by the results for the conformationally dynamic ribonuclease A and calculations with pseudo-experimental data. This study shows that, while methods invoking an implicit hydration layer have the unequivocal advantage of speed, care is needed to understand the influence of the adjustable parameters. All-atom solute and solvent MD simulations are slower but are less susceptible to false positives, and can account for thermal fluctuations in atomic positions, and more accurately represent the water molecules of hydration that contribute to the scattering profile. Full Article text
pro Comprehensive encoding of conformational and compositional protein structural ensembles through the mmCIF data structure By journals.iucr.org Published On :: 2024-06-25 In the folded state, biomolecules exchange between multiple conformational states crucial for their function. However, most structural models derived from experiments and computational predictions only encode a single state. To represent biomolecules accurately, we must move towards modeling and predicting structural ensembles. Information about structural ensembles exists within experimental data from X-ray crystallography and cryo-electron microscopy. Although new tools are available to detect conformational and compositional heterogeneity within these ensembles, the legacy PDB data structure does not robustly encapsulate this complexity. We propose modifications to the macromolecular crystallographic information file (mmCIF) to improve the representation and interrelation of conformational and compositional heterogeneity. These modifications will enable the capture of macromolecular ensembles in a human and machine-interpretable way, potentially catalyzing breakthroughs for ensemble–function predictions, analogous to the achievements of AlphaFold with single-structure prediction. Full Article text
pro Many locks to one key: N-acetylneuraminic acid binding to proteins By journals.iucr.org Published On :: 2024-07-04 Sialic acids play crucial roles in cell surface glycans of both eukaryotic and prokaryotic organisms, mediating various biological processes, including cell–cell interactions, development, immune response, oncogenesis and host–pathogen interactions. This review focuses on the β-anomeric form of N-acetylneuraminic acid (Neu5Ac), particularly its binding affinity towards various proteins, as elucidated by solved protein structures. Specifically, we delve into the binding mechanisms of Neu5Ac to proteins involved in sequestering and transporting Neu5Ac in Gram-negative bacteria, with implications for drug design targeting these proteins as antimicrobial agents. Unlike the initial assumptions, structural analyses revealed significant variability in the Neu5Ac binding pockets among proteins, indicating diverse evolutionary origins and binding modes. By comparing these findings with existing structures from other systems, we can effectively highlight the intricate relationship between protein structure and Neu5Ac recognition, emphasizing the need for tailored drug design strategies to inhibit Neu5Ac-binding proteins across bacterial species. Full Article text
pro Fixed-target pump–probe SFX: eliminating the scourge of light contamination By journals.iucr.org Published On :: 2024-07-09 X-ray free-electron laser (XFEL) light sources have enabled the rapid growth of time-resolved structural experiments, which provide crucial information on the function of macromolecules and their mechanisms. Here, the aim was to commission the SwissMX fixed-target sample-delivery system at the SwissFEL Cristallina experimental station using the PSI-developed micro-structured polymer (MISP) chip for pump–probe time-resolved experiments. To characterize the system, crystals of the light-sensitive protein light–oxygen–voltage domain 1 (LOV1) from Chlamydomonas reinhardtii were used. Using different experimental settings, the accidental illumination, referred to as light contamination, of crystals mounted in wells adjacent to those illuminated by the pump laser was examined. It was crucial to control the light scattering from and through the solid supports otherwise significant contamination occurred. However, the results here show that the opaque MISP chips are suitable for defined pump–probe studies of a light-sensitive protein. The experiment also probed the sub-millisecond structural dynamics of LOV1 and indicated that at Δt = 10 µs a covalent thioether bond is established between reactive Cys57 and its flavin mononucleotide cofactor. This experiment validates the crystals to be suitable for in-depth follow-up studies of this still poorly understood signal-transduction mechanism. Importantly, the fixed-target delivery system also permitted a tenfold reduction in protein sample consumption compared with the more common high-viscosity extrusion-based delivery system. This development creates the prospect of an increase in XFEL project throughput for the field. Full Article text
pro Phase quantification using deep neural network processing of XRD patterns By journals.iucr.org Published On :: 2024-08-12 Mineral identification and quantification are key to the understanding and, hence, the capacity to predict material properties. The method of choice for mineral quantification is powder X-ray diffraction (XRD), generally using a Rietveld refinement approach. However, a successful Rietveld refinement requires preliminary identification of the phases that make up the sample. This is generally carried out manually, and this task becomes extremely long or virtually impossible in the case of very large datasets such as those from synchrotron X-ray diffraction computed tomography. To circumvent this issue, this article proposes a novel neural network (NN) method for automating phase identification and quantification. An XRD pattern calculation code was used to generate large datasets of synthetic data that are used to train the NN. This approach offers significant advantages, including the ability to construct databases with a substantial number of XRD patterns and the introduction of extensive variability into these patterns. To enhance the performance of the NN, a specifically designed loss function for proportion inference was employed during the training process, offering improved efficiency and stability compared with traditional functions. The NN, trained exclusively with synthetic data, proved its ability to identify and quantify mineral phases on synthetic and real XRD patterns. Trained NN errors were equal to 0.5% for phase quantification on the synthetic test set, and 6% on the experimental data, in a system containing four phases of contrasting crystal structures (calcite, gibbsite, dolomite and hematite). The proposed method is freely available on GitHub and allows for major advances since it can be applied to any dataset, regardless of the mineral phases present. Full Article text
pro Structure–property relationship of a complex photoluminescent arylacetylide-gold(I) compound. I: a pressure-induced phase transformation caught in the act By journals.iucr.org Published On :: 2024-08-23 A pressure-induced triclinic-to-monoclinic phase transition has been caught `in the act' over a wider series of high-pressure synchrotron diffraction experiments conducted on a large, photoluminescent organo-gold(I) compound. Here, we describe the mechanism of this single-crystal-to-single-crystal phase transition, the onset of which occurs at ∼0.6 GPa, and we report a high-quality structure of the new monoclinic phase, refined using aspherical atomic scattering factors. Our case illustrates how conducting a fast series of diffraction experiments, enabled by modern equipment at synchrotron facilities, can lead to overestimation of the actual pressure of a phase transition due to slow transformation kinetics. Full Article text
pro Structural characterization of TIR-domain signalosomes through a combination of structural biology approaches By journals.iucr.org Published On :: 2024-08-27 The TIR (Toll/interleukin-1 receptor) domain represents a vital structural element shared by proteins with roles in immunity signalling pathways across phyla (from humans and plants to bacteria). Decades of research have finally led to identifying the key features of the molecular basis of signalling by these domains, including the formation of open-ended (filamentous) assemblies (responsible for the signalling by cooperative assembly formation mechanism, SCAF) and enzymatic activities involving the cleavage of nucleotides. We present a historical perspective of the research that led to this understanding, highlighting the roles that different structural methods played in this process: X-ray crystallography (including serial crystallography), microED (micro-crystal electron diffraction), NMR (nuclear magnetic resonance) spectroscopy and cryo-EM (cryogenic electron microscopy) involving helical reconstruction and single-particle analysis. This perspective emphasizes the complementarity of different structural approaches. Full Article text
pro Crossing length scales: X-ray approaches to studying the structure of biological materials By journals.iucr.org Published On :: 2024-08-28 Biological materials have outstanding properties. With ease, challenging mechanical, optical or electrical properties are realised from comparatively `humble' building blocks. The key strategy to realise these properties is through extensive hierarchical structuring of the material from the millimetre to the nanometre scale in 3D. Though hierarchical structuring in biological materials has long been recognized, the 3D characterization of such structures remains a challenge. To understand the behaviour of materials, multimodal and multi-scale characterization approaches are needed. In this review, we outline current X-ray analysis approaches using the structures of bone and shells as examples. We show how recent advances have aided our understanding of hierarchical structures and their functions, and how these could be exploited for future research directions. We also discuss current roadblocks including radiation damage, data quantity and sample preparation, as well as strategies to address them. Full Article text
pro Quantum refinement in real and reciprocal space using the Phenix and ORCA software By journals.iucr.org Published On :: 2024-09-30 X-ray and neutron crystallography, as well as cryogenic electron microscopy (cryo-EM), are the most common methods to obtain atomic structures of biological macromolecules. A feature they all have in common is that, at typical resolutions, the experimental data need to be supplemented by empirical restraints, ensuring that the final structure is chemically reasonable. The restraints are accurate for amino acids and nucleic acids, but often less accurate for substrates, inhibitors, small-molecule ligands and metal sites, for which experimental data are scarce or empirical potentials are harder to formulate. This can be solved using quantum mechanical calculations for a small but interesting part of the structure. Such an approach, called quantum refinement, has been shown to improve structures locally, allow the determination of the protonation and oxidation states of ligands and metals, and discriminate between different interpretations of the structure. Here, we present a new implementation of quantum refinement interfacing the widely used structure-refinement software Phenix and the freely available quantum mechanical software ORCA. Through application to manganese superoxide dismutase and V- and Fe-nitrogenase, we show that the approach works effectively for X-ray and neutron crystal structures, that old results can be reproduced and structural discrimination can be performed. We discuss how the weight factor between the experimental data and the empirical restraints should be selected and how quantum mechanical quality measures such as strain energies should be calculated. We also present an application of quantum refinement to cryo-EM data for particulate methane monooxygenase and show that this may be the method of choice for metal sites in such structures because no accurate empirical restraints are currently available for metals. Full Article text
pro Tuning structural modulation and magnetic properties in metal–organic coordination polymers [CH3NH3]CoxNi1−x(HCOO)3 By journals.iucr.org Published On :: 2024-09-24 Three solid solutions of [CH3NH3]CoxNi1−x(HCOO)3, with x = 0.25 (1), x = 0.50 (2) and x = 0.75 (3), were synthesized and their nuclear structures and magnetic properties were characterized using single-crystal neutron diffraction and magnetization measurements. At room temperature, all three compounds crystallize in the Pnma orthorhombic space group, akin to the cobalt and nickel end series members. On cooling, each compound undergoes a distinct series of structural transitions to modulated structures. Compound 1 exhibits a phase transition to a modulated structure analogous to the pure Ni compound [Cañadillas-Delgado, L., Mazzuca, L., Fabelo, O., Rodríguez-Carvajal, J. & Petricek, V. (2020). Inorg. Chem. 59, 17896–17905], whereas compound 3 maintains the behaviour observed in the pure Co compound reported previously [Canadillas-Delgado, L., Mazzuca, L., Fabelo, O., Rodriguez-Velamazan, J. A. & Rodriguez-Carvajal, J. (2019). IUCrJ, 6, 105–115], although in both cases the temperatures at which the phase transitions occur differ slightly from the pure phases. Monochromatic neutron diffraction measurements showed that the structural evolution of 2 diverges from that of either parent compound, with competing hydrogen bond interactions that drive the modulation throughout the series, producing a unique sequence of phases. It involves two modulated phases below 96 (3) and 59 (3) K, with different q vectors, similar to the pure Co compound (with modulated phases below 128 and 96 K); however, it maintains the modulated phase below magnetic order [at 22.5 (7) K], resembling the pure Ni compound (which presents magnetic order below 34 K), resulting in an improper modulated magnetic structure. Despite these large-scale structural changes, magnetometry data reveal that the bulk magnetic properties of these solid solutions form a linear continuum between the end members. Notably, doping of the metal site in these solid solutions allows for tuning of bulk magnetic properties, including magnetic ordering temperature, transition temperatures and the nature of nuclear phase transitions, through adjustment of metal ratios. Full Article text
pro Waterless structures in the Protein Data Bank By journals.iucr.org Published On :: 2024-10-28 The absence of solvent molecules in high-resolution protein crystal structure models deposited in the Protein Data Bank (PDB) contradicts the fact that, for proteins crystallized from aqueous media, water molecules are always expected to bind to the protein surface, as well as to some sites in the protein interior. An analysis of the contents of the PDB indicated that the expected ratio of the number of water molecules to the number of amino-acid residues exceeds 1.5 in atomic resolution structures, decreasing to 0.25 at around 2.5 Å resolution. Nevertheless, almost 800 protein crystal structures determined at a resolution of 2.5 Å or higher are found in the current release of the PDB without any water molecules, whereas some other depositions have unusually low or high occupancies of modeled solvent. Detailed analysis of these depositions revealed that the lack of solvent molecules might be an indication of problems with either the diffraction data, the refinement protocol, the deposition process or a combination of these factors. It is postulated that problems with solvent structure should be flagged by the PDB and addressed by the depositors. Full Article text
pro Synthesis and properties of Sr2La2NiW2O12, a new S = 1 triangular lattice magnet By journals.iucr.org Published On :: 2024-08-30 Magnetic materials featuring triangular arrangements of spins are frequently investigated as platforms hosting magnetic frustration. Hexagonal perovskites with ordered vacancies serve as excellent candidates for two-dimensional triangular magnetism due to the considerable separation of the magnetic planes. In this work, the effects of chemical pressure on the ferromagnetic ground state of Ba2La2NiW2O12 by substitution of Ba2+ with Sr2+ to produce Sr2La2NiW2O12 are investigated. The two materials are characterized using synchrotron-based XRD, XANES and EXAFS in addition to magnetometry in order to correlate their crystal structures and magnetic properties. Both materials form in space group R3, yet as a result of the enhanced bending of key bond angles due to the effects of chemical pressure, the TC value of the magnetic Ni2+ sublattice is reduced from ∼6 K in Ba2La2NiW2O12 to 4 K in Sr2La2NiW2O12. Full Article text
pro Synthesis, crystal structure and properties of chloridotetrakis(pyridine-3-carbonitrile)thiocyanatoiron(II) By journals.iucr.org Published On :: 2023-11-21 Reaction of FeCl2·4H2O with KSCN and 3-cyanopyridine (pyridine-3-carbonitrile) in ethanol accidentally leads to the formation of single crystals of Fe(NCS)(Cl)(3-cyanopyridine)4 or [FeCl(NCS)(C6H4N2)4]. The asymmetric unit of this compound consists of one FeII cation, one chloride and one thiocyanate anion that are located on a fourfold rotation axis as well as of one 3-cyanopyridine coligand in a general position. The FeII cations are sixfold coordinated by one chloride anion and one terminally N-bonding thiocyanate anion in trans-positions and four 3-cyanopyridine coligands that coordinate via the pyridine N atom to the FeII cations. The complexes are arranged in columns with the chloride anions, with the thiocyanate anions always oriented in the same direction, which shows the non-centrosymmetry of this structure. No pronounced intermolecular interactions are observed between the complexes. Initially, FeCl2 and KSCN were reacted in a 1:2 ratio, which lead to a sample that contains the title compound as the major phase together with a small amount of an unknown crystalline phase, as proven by powder X-ray diffraction (PXRD). If FeCl2 and KSCN is reacted in a 1:1 ratio, the title compound is obtained as a nearly pure phase. IR investigations reveal that the CN stretching vibration for the thiocyanate anion is observed at 2074 cm−1, and that of the cyano group at 2238 cm−1, which also proves that the anionic ligands are only terminally bonded and that the cyano group is not involved in the metal coordination. Measurements with thermogravimetry and differential thermoanalysis reveal that the title compound decomposes at 169°C when heated at a rate of 4°C min−1 and that the 3-cyanopyridine ligands are emitted in two separate poorly resolved steps. After the first step, an intermediate compound with the composition Fe(NCS)(Cl)(3-cyanopyridine)2 of unknown structure is formed, for which the CN stretching vibration of the thiocyanate anion is observed at 2025 cm−1, whereas the CN stretching vibration of the cyano group remain constant. This strongly indicates that the FeII cations are linked by μ-1,3-bridging thiocyanate anions into chains or layers. Full Article text
pro Crystal structure, Hirshfeld surface analysis, intermolecular interaction energies, energy frameworks and DFT calculations of 4-amino-1-(prop-2-yn-1-yl)pyrimidin-2(1H)-one By journals.iucr.org Published On :: 2023-11-21 In the title molecule, C7H7N3O, the pyrimidine ring is essentially planar, with the propynyl group rotated out of this plane by 15.31 (4)°. In the crystal, a tri-periodic network is formed by N—H⋯O, N—H⋯N and C—H⋯O hydrogen-bonding and slipped π–π stacking interactions, leading to narrow channels extending parallel to the c axis. Hirshfeld surface analysis of the crystal structure reveals that the most important contributions for the crystal packing are from H⋯H (36.2%), H⋯C/C⋯H (20.9%), H⋯O/O⋯H (17.8%) and H⋯N/N⋯H (12.2%) interactions, showing that hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the electrostatic energy contributions. The molecular structure optimized by density functional theory (DFT) calculations at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined structure in the solid state. The HOMO–LUMO behaviour was also elucidated to determine the energy gap. Full Article text
pro Synthesis, crystal structure and hydrogenation properties of MgxLi3 − xB48 − y (x = 1.11, y = 0.40) By journals.iucr.org Published On :: 2024-01-01 The ternary magnesium/lithium boride, MgxLi3 − xB48 − y (x = 1.11, y = 0.40, idealized formula MgLi2B48), crystallizes as its own structure type in P43212, which is closely related to the structural family comprising α-AlB12, Be0.7Al1.1B22 and tetragonal β-boron. The asymmetric unit of title structure contains two statistical mixtures Mg/Li in Wyckoff sites 8b with relative occupancies Mg:Li = 0.495 (9):0.505 (9) and 4a with Mg:Li = 0.097 (8):0.903 (8). The boron atoms occupy 23 8b sites and two 4a sites. One of the latter sites has a partial occupancy factor of 0.61 (2). Both unique Mg/Li atoms adopt a twelvefold coordination environment in the form of truncated tetrahedra (Laves polyhedra). These polyhedra are connected by triangular faces to four [B12] icosahedra. The boron atoms exhibit four kinds of polyhedra, namely pentagonal pyramid (coordination number CN = 6), distorted tetragonal pyramid (CN = 5), bicapped hexagon (CN = 8) and gyrobifastigium (CN = 8). At the gas hydrogenation of MgLi2B48 alloy, formation of the eutectic composite hydride LiBH4+Mg(BH4)2 and amorphous boron is observed. In the temperature range 543–623 K, the hydride eutectics decompose, forming MgH2, LiH, MgB4, B and H2. Full Article text
pro Synthesis, crystal structure and Hirshfeld surface analysis of the tetrakis complex NaNdPyr4(i-PrOH)2·i-PrOH with a carbacylamidophosphate of the amide type By journals.iucr.org Published On :: 2023-11-30 The tetrakis complex of neodymium(III), tetrakis{μ-N-[bis(pyrrolidin-1-yl)phosphoryl]acetamidato}bis(propan-2-ol)neodymiumsodium propan-2-ol monosolvate, [NaNd(C10H16Cl3N3O2)4(C3H8O)2]·C3H8O or NaNdPyr4(i-PrOH)2·i-PrOH, with the amide type CAPh ligand bis(N,N-tetramethylene)(trichloroacetyl)phosphoric acid triamide (HPyr), has been synthesized, crystallized and characterized by X-ray diffraction. The complex does not have the tetrakis(CAPh)lanthanide anion, which is typical for ester-type CAPh-based coordination compounds. Instead, the NdO8 polyhedron is formed by one oxygen atom of a 2-propanol molecule and seven oxygen atoms of CAPh ligands in the title compound. Three CAPh ligands are coordinated in a bidentate chelating manner to the NdIII ion and simultaneously binding the sodium cation by μ2-bridging PO and CO groups while the fourth CAPh ligand is coordinated to the sodium cation in a bidentate chelating manner and, due to the μ2-bridging function of the PO group, also binds the neodymium ion. Full Article text
pro The synthesis and structural properties of a chloridobis{N-[(4-methoxyphenyl)imino]pyrrolidine-1-carboxamide}zinc(II) (acetonitrile)trichloridozincate coordination complex By journals.iucr.org Published On :: 2024-01-01 The title complex, [ZnCl(C12H15N3O2)2][ZnCl3(CH3CN)], was synthesized and its structure was fully characterized through single-crystal X-ray diffraction analysis. The complex crystallizes in the orthorhombic system, space group Pbca (61), with a central zinc atom coordinating one chlorine atom and two pyrrolidinyl-4-methoxyphenyl azoformamide ligands in a bidentate manner, utilizing both the nitrogen and oxygen atoms in a 1,3-heterodiene (N=N—C=O) motif for coordinative bonding, yielding an overall positively (+1) charged complex. The complex is accompanied by a [(CH3CN)ZnCl3]− counter-ion. The crystal data show that the harder oxygen atoms in the heterodiene zinc chelate form bonding interactions with distances of 2.002 (3) and 2.012 (3) Å, while nitrogen atoms are coordinated by the central zinc cation with bond lengths of 2.207 (3) and 2.211 (3) Å. To gain further insight into the intermolecular interactions within the crystal, Hirshfeld surface analysis was performed, along with the calculation of two-dimensional fingerprint plots. This analysis revealed that H⋯H (39.9%), Cl⋯H/H⋯Cl (28.2%) and C⋯H/H⋯C (7.2%) interactions are dominant. This unique crystal structure sheds light on arrangement and bonding interactions with azoformamide ligands, and their unique qualities over similar semicarbazone and azothioformamide structures. Full Article text
pro Synthesis, crystal structure and properties of poly[(μ-2-methylpyridine N-oxide-κ2O:O)bis(μ-thiocyanato-κ2N:S)cobalt(II)] By journals.iucr.org Published On :: 2024-01-01 The title compound, [Co(NCS)2(C6H7NO)]n or Co(NCS)2(2-methylpyridine N-oxide), was prepared by the reaction of Co(NCS)2 and 2-methylpyridine N-oxide in methanol. All crystals obtained by this procedure show reticular pseudo-merohedric twinning, but after recrystallization, one crystal was found that had a minor component with only a very few overlapping reflections. The asymmetric unit consists of one CoII cation, two thiocyanate anions and one 2-methylpyridine N-oxide coligand in general positions. The CoII cations are octahedrally coordinated by two O-bonding 2-methylpyridine N-oxide ligands, as well as two S- and two N-bonding thiocyanate anions, and are connected via μ-1,3(N,S)-bridging thiocyanate anions into chains that are linked by μ-1,1(O,O) bridging coligands into layers. No pronounced directional intermolecular interactions are observed between the layers. The 2-methylpyridine coligand is disordered over two orientations and was refined using a split model with restraints. Powder X-ray diffraction (PXRD) indicates that a pure sample was obtained and IR spectroscopy confirms that bridging thiocyanate anions are present. Thermogravimetry and differential thermoanalysis (TG-DTA) shows one poorly resolved mass loss in the TG curve that is accompanied by an exothermic and an endothermic signal in the DTA curve, which indicate the decomposition of the 2-methylpyridine N-oxide coligands. Full Article text
pro Synthesis, structure and Hirshfeld surface analysis of 2-oxo-2H-chromen-6-yl 4-tert-butylbenzoate: work carried out as part of the AFRAMED project By journals.iucr.org Published On :: 2024-01-05 In the title compound, C20H18O4, the dihedral angle between the 2H-chromen-2-one ring system and the phenyl ring is 89.12 (5)°. In the crystal, the molecules are connected through C—H⋯O hydrogen bonds to generate [010] double chains that are reinforced by weak aromatic π–π stacking interactions. The unit-cell packing can be described as a tilted herringbone motif. The H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and C⋯C contacts contribute 46.7, 24.2, 16.7 and 7.6%, respectively, to its Hirshfeld surface. Full Article text