view

Independent Review of the APS : priorities for change / Independent Review of the APS.




view

Realising the Potential : a review of the Army Aboriginal Community Assistance Programme : a collaborative report researched and prepared by the Australian Government Department of the Prime Minister and Cabinet and the Australian Army / written by

In 2017 the Department of the Prime Minister and Cabinet and Australian Defence Force (Australian Army) undertook a joint review of the Army Aboriginal Community Assistance Programme (AACAP) to assess its efficiency and effectiveness. The review found AACAP is a highly regarded and effective means of achieving positive environmental and primary health outcomes for Aboriginal and Torres Strait Islander communities while providing valuable training outcomes for Army. AACAP's objectives align with the Council of Australian Governments (COAG) 'Closing the Gap' targets in Indigenous disadvantage and with the Australian Government's Indigenous Advancement Strategy (IAS). The report identified areas for potential improvement, recommending greater support for the sustainability of infrastructure and project investment, enhanced employment and training opportunities and strengthening of project governance.




view

Report of the Independent Review Panel- Gaming machines licensing process: regulatory review.




view

Report on review of detriment : Aboriginal land claims recommended for grant but not yet finalised / the Hon John Mansfield AM QC, Aboriginal Land Commissioner.




view

Review of the Australian Qualifications Framework : final report 2019.




view

Evaluating behaviour change communication campaigns in health and safety : a literature review / TJ Bailey [and] LN Wundersitz.




view

The relationship between self-reported and actual driving-related behaviours : a literature review / TJ Bailey, LN Wundersitz.




view

Oliver Sacks : the last interview and other conversations.

Sacks, Oliver, 1933-2015 -- Interviews.




view

Exploded view / Carrie Tiffany.

Families -- Fiction.




view

Global discontents : conversations on the rising threats to democracy / Noam Chomsky ; interviews with David Barsamian.

Chomsky, Noam -- Political and social views.




view

Drug & Alcohol Info Hub - a year in review

The Drug & Alcohol Info Hub is a travelling interactive information and display program for NSW public libraries.




view

Diarrhoea and dysentery : modern views of their pathology and treatment / by Alonzo B. Palmer.

Detroit, Mich. : G.S. Davis, 1887.




view

Diseases of the bladder, prostate gland, and urethra : including a practical view of urinary diseases deposits and calculi / by Frederick James Gant.

London : J. & A. Churchill, 1876.




view

Diseases of the bladder, prostate gland, and urethra : including a practical view of urinary diseases deposits and calculi / by Frederick James Gant.

London : Bailliere, Tindall and Cox, 1884.




view

A dissertation on the best mode of treating spasmodic cholera ; with a view of its history and progress, from its origin in India, in 1817 down to the present time ; together with an appendix, containing a review of Dr McCormac's pamphlet, &c / by

London : Longman, Rees, Orme, Brown, and Green, 1834.




view

An enquiry into the source from whence the symptoms of the scurvy and of putrid fevers, arise : and into the seat which those affections occupy in the animal oeconomy; with a view of ascertaining a more just idea of putrid diseases than has generally been

London : printed for J. Dodsley, 1782.




view

State offficials to review complaint against Florida sheriff




view

Rediscovering School Quality Reviews

Resurrecting an old idea about assessing school quality could allow schools to examine a broad range of data on performance and practices and lead to improvement.




view

The skeleton of a horse: right side view. Line engraving with etching by A. Bell, ca. 1790.

[Edinburgh], [between 1788 and 1797]




view

New approaches to treatment of chronic pain : a review of multidisciplinary pain clinics and pain centers / editor, Lorenz K.Y. Ng.

Rockville, Maryland : National Institute on Drug Abuse, 1981.




view

The nature and treatment of nonopiate abuse : a review of the literature. Volume 2 / Wynne Associates for Division of Research, National Institute on Drug Abuse, Alcohol, Drug Abuse and Mental Health Administration, Department of Health, Education and Wel

Washington, D.C. : Wynne Associates, 1974.




view

Latent Simplex Position Model: High Dimensional Multi-view Clustering with Uncertainty Quantification

High dimensional data often contain multiple facets, and several clustering patterns can co-exist under different variable subspaces, also known as the views. While multi-view clustering algorithms were proposed, the uncertainty quantification remains difficult --- a particular challenge is in the high complexity of estimating the cluster assignment probability under each view, and sharing information among views. In this article, we propose an approximate Bayes approach --- treating the similarity matrices generated over the views as rough first-stage estimates for the co-assignment probabilities; in its Kullback-Leibler neighborhood, we obtain a refined low-rank matrix, formed by the pairwise product of simplex coordinates. Interestingly, each simplex coordinate directly encodes the cluster assignment uncertainty. For multi-view clustering, we let each view draw a parameterization from a few candidates, leading to dimension reduction. With high model flexibility, the estimation can be efficiently carried out as a continuous optimization problem, hence enjoys gradient-based computation. The theory establishes the connection of this model to a random partition distribution under multiple views. Compared to single-view clustering approaches, substantially more interpretable results are obtained when clustering brains from a human traumatic brain injury study, using high-dimensional gene expression data.




view

Self-paced Multi-view Co-training

Co-training is a well-known semi-supervised learning approach which trains classifiers on two or more different views and exchanges pseudo labels of unlabeled instances in an iterative way. During the co-training process, pseudo labels of unlabeled instances are very likely to be false especially in the initial training, while the standard co-training algorithm adopts a 'draw without replacement' strategy and does not remove these wrongly labeled instances from training stages. Besides, most of the traditional co-training approaches are implemented for two-view cases, and their extensions in multi-view scenarios are not intuitive. These issues not only degenerate their performance as well as available application range but also hamper their fundamental theory. Moreover, there is no optimization model to explain the objective a co-training process manages to optimize. To address these issues, in this study we design a unified self-paced multi-view co-training (SPamCo) framework which draws unlabeled instances with replacement. Two specified co-regularization terms are formulated to develop different strategies for selecting pseudo-labeled instances during training. Both forms share the same optimization strategy which is consistent with the iteration process in co-training and can be naturally extended to multi-view scenarios. A distributed optimization strategy is also introduced to train the classifier of each view in parallel to further improve the efficiency of the algorithm. Furthermore, the SPamCo algorithm is proved to be PAC learnable, supporting its theoretical soundness. Experiments conducted on synthetic, text categorization, person re-identification, image recognition and object detection data sets substantiate the superiority of the proposed method.




view

Time series of count data: A review, empirical comparisons and data analysis

Glaura C. Franco, Helio S. Migon, Marcos O. Prates.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 756--781.

Abstract:
Observation and parameter driven models are commonly used in the literature to analyse time series of counts. In this paper, we study the characteristics of a variety of models and point out the main differences and similarities among these procedures, concerning parameter estimation, model fitting and forecasting. Alternatively to the literature, all inference was performed under the Bayesian paradigm. The models are fitted with a latent AR($p$) process in the mean, which accounts for autocorrelation in the data. An extensive simulation study shows that the estimates for the covariate parameters are remarkably similar across the different models. However, estimates for autoregressive coefficients and forecasts of future values depend heavily on the underlying process which generates the data. A real data set of bankruptcy in the United States is also analysed.




view

Stochastic monotonicity from an Eulerian viewpoint

Davide Gabrielli, Ida Germana Minelli.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 3, 558--585.

Abstract:
Stochastic monotonicity is a well-known partial order relation between probability measures defined on the same partially ordered set. Strassen theorem establishes equivalence between stochastic monotonicity and the existence of a coupling compatible with respect to the partial order. We consider the case of a countable set and introduce the class of finitely decomposable flows on a directed acyclic graph associated to the partial order. We show that a probability measure stochastically dominates another probability measure if and only if there exists a finitely decomposable flow having divergence given by the difference of the two measures. We illustrate the result with some examples.




view

A brief review of optimal scaling of the main MCMC approaches and optimal scaling of additive TMCMC under non-regular cases

Kushal K. Dey, Sourabh Bhattacharya.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 222--266.

Abstract:
Transformation based Markov Chain Monte Carlo (TMCMC) was proposed by Dutta and Bhattacharya ( Statistical Methodology 16 (2014) 100–116) as an efficient alternative to the Metropolis–Hastings algorithm, especially in high dimensions. The main advantage of this algorithm is that it simultaneously updates all components of a high dimensional parameter using appropriate move types defined by deterministic transformation of a single random variable. This results in reduction in time complexity at each step of the chain and enhances the acceptance rate. In this paper, we first provide a brief review of the optimal scaling theory for various existing MCMC approaches, comparing and contrasting them with the corresponding TMCMC approaches.The optimal scaling of the simplest form of TMCMC, namely additive TMCMC , has been studied extensively for the Gaussian proposal density in Dey and Bhattacharya (2017a). Here, we discuss diffusion-based optimal scaling behavior of additive TMCMC for non-Gaussian proposal densities—in particular, uniform, Student’s $t$ and Cauchy proposals. Although we could not formally prove our diffusion result for the Cauchy proposal, simulation based results lead us to conjecture that at least the recipe for obtaining general optimal scaling and optimal acceptance rate holds for the Cauchy case as well. We also consider diffusion based optimal scaling of TMCMC when the target density is discontinuous. Such non-regular situations have been studied in the case of Random Walk Metropolis Hastings (RWMH) algorithm by Neal and Roberts ( Methodology and Computing in Applied Probability 13 (2011) 583–601) using expected squared jumping distance (ESJD), but the diffusion theory based scaling has not been considered. We compare our diffusion based optimally scaled TMCMC approach with the ESJD based optimally scaled RWM with simulation studies involving several target distributions and proposal distributions including the challenging Cauchy proposal case, showing that additive TMCMC outperforms RWMH in almost all cases considered.




view

A review of dynamic network models with latent variables

Bomin Kim, Kevin H. Lee, Lingzhou Xue, Xiaoyue Niu.

Source: Statistics Surveys, Volume 12, 105--135.

Abstract:
We present a selective review of statistical modeling of dynamic networks. We focus on models with latent variables, specifically, the latent space models and the latent class models (or stochastic blockmodels), which investigate both the observed features and the unobserved structure of networks. We begin with an overview of the static models, and then we introduce the dynamic extensions. For each dynamic model, we also discuss its applications that have been studied in the literature, with the data source listed in Appendix. Based on the review, we summarize a list of open problems and challenges in dynamic network modeling with latent variables.




view

Statistical inference for dynamical systems: A review

Kevin McGoff, Sayan Mukherjee, Natesh Pillai.

Source: Statistics Surveys, Volume 9, 209--252.

Abstract:
The topic of statistical inference for dynamical systems has been studied widely across several fields. In this survey we focus on methods related to parameter estimation for nonlinear dynamical systems. Our objective is to place results across distinct disciplines in a common setting and highlight opportunities for further research.




view

Log-concavity and strong log-concavity: A review

Adrien Saumard, Jon A. Wellner.

Source: Statistics Surveys, Volume 8, 45--114.

Abstract:
We review and formulate results concerning log-concavity and strong-log-concavity in both discrete and continuous settings. We show how preservation of log-concavity and strong log-concavity on $mathbb{R}$ under convolution follows from a fundamental monotonicity result of Efron (1965). We provide a new proof of Efron’s theorem using the recent asymmetric Brascamp-Lieb inequality due to Otto and Menz (2013). Along the way we review connections between log-concavity and other areas of mathematics and statistics, including concentration of measure, log-Sobolev inequalities, convex geometry, MCMC algorithms, Laplace approximations, and machine learning.




view

A review of survival trees

Imad Bou-Hamad, Denis Larocque, Hatem Ben-Ameur

Source: Statist. Surv., Volume 5, 44--71.

Abstract:
This paper presents a non–technical account of the developments in tree–based methods for the analysis of survival data with censoring. This review describes the initial developments, which mainly extended the existing basic tree methodologies to censored data as well as to more recent work. We also cover more complex models, more specialized methods, and more specific problems such as multivariate data, the use of time–varying covariates, discrete–scale survival data, and ensemble methods applied to survival trees. A data example is used to illustrate some methods that are implemented in R.




view

Data confidentiality: A review of methods for statistical disclosure limitation and methods for assessing privacy

Gregory J. Matthews, Ofer Harel

Source: Statist. Surv., Volume 5, 1--29.

Abstract:
There is an ever increasing demand from researchers for access to useful microdata files. However, there are also growing concerns regarding the privacy of the individuals contained in the microdata. Ideally, microdata could be released in such a way that a balance between usefulness of the data and privacy is struck. This paper presents a review of proposed methods of statistical disclosure control and techniques for assessing the privacy of such methods under different definitions of disclosure.

References:
Abowd, J., Woodcock, S., 2001. Disclosure limitation in longitudinal linked data. Confidentiality, Disclosure, and Data Access: Theory and Practical Applications for Statistical Agencies, 215–277.

Adam, N.R., Worthmann, J.C., 1989. Security-control methods for statistical databases: a comparative study. ACM Comput. Surv. 21 (4), 515–556.

Armstrong, M., Rushton, G., Zimmerman, D.L., 1999. Geographically masking health data to preserve confidentiality. Statistics in Medicine 18 (5), 497–525.

Bethlehem, J.G., Keller, W., Pannekoek, J., 1990. Disclosure control of microdata. Jorunal of the American Statistical Association 85, 38–45.

Blum, A., Dwork, C., McSherry, F., Nissam, K., 2005. Practical privacy: The sulq framework. In: Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. pp. 128–138.

Bowden, R.J., Sim, A.B., 1992. The privacy bootstrap. Journal of Business and Economic Statistics 10 (3), 337–345.

Carlson, M., Salabasis, M., 2002. A data-swapping technique for generating synthetic samples; a method for disclosure control. Res. Official Statist. (5), 35–64.

Cox, L.H., 1980. Suppression methodology and statistical disclosure control. Journal of the American Statistical Association 75, 377–385.

Cox, L.H., 1984. Disclosure control methods for frequency count data. Tech. rep., U.S. Bureau of the Census.

Cox, L.H., 1987. A constructive procedure for unbiased controlled rounding. Journal of the American Statistical Association 82, 520–524.

Cox, L.H., 1994. Matrix masking methods for disclosure limitation in microdata. Survey Methodology 6, 165–169.

Cox, L.H., Fagan, J.T., Greenberg, B., Hemmig, R., 1987. Disclosure avoidance techniques for tabular data. Tech. rep., U.S. Bureau of the Census.

Dalenius, T., 1977. Towards a methodology for statistical disclosure control. Statistik Tidskrift 15, 429–444.

Dalenius, T., 1986. Finding a needle in a haystack - or identifying anonymous census record. Journal of Official Statistics 2 (3), 329–336.

Dalenius, T., Denning, D., 1982. A hybrid scheme for release of statistics. Statistisk Tidskrift.

Dalenius, T., Reiss, S.P., 1982. Data-swapping: A technique for disclosure control. Journal of Statistical Planning and Inference 6, 73–85.

De Waal, A., Hundepool, A., Willenborg, L., 1995. Argus: Software for statistical disclosure control of microdata. U.S. Census Bureau.

DeGroot, M.H., 1962. Uncertainty, information, and sequential experiments. Annals of Mathematical Statistics 33, 404–419.

DeGroot, M.H., 1970. Optimal Statistical Decisions. Mansell, London.

Dinur, I., Nissam, K., 2003. Revealing information while preserving privacy. In: Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principlesof Database Systems. pp. 202–210.

Domingo-Ferrer, J., Torra, V., 2001a. A Quantitative Comparison of Disclosure Control Methods for Microdata. In: Doyle, P., Lane, J., Theeuwes, J., Zayatz, L. (Eds.), Confidentiality, Disclosure and Data Access - Theory and Practical Applications for Statistical Agencies. North-Holland, Amsterdam, Ch. 6, pp. 113–135.

Domingo-Ferrer, J., Torra, V., 2001b. Disclosure control methods and information loss for microdata. In: Doyle, P., Lane, J., Theeuwes, J., Zayatz, L. (Eds.), Confidentiality, Disclosure and Data Access - Theory and Practical Applications for Statistical Agencies. North-Holland, Amsterdam, Ch. 5, pp. 93–112.

Duncan, G., Lambert, D., 1986. Disclosure-limited data dissemination. Journal of the American Statistical Association 81, 10–28.

Duncan, G., Lambert, D., 1989. The risk of disclosure for microdata. Journal of Business & Economic Statistics 7, 207–217.

Duncan, G., Pearson, R., 1991. Enhancing access to microdata while protecting confidentiality: prospects for the future (with discussion). Statistical Science 6, 219–232.

Dwork, C., 2006. Differential privacy. In: ICALP. Springer, pp. 1–12.

Dwork, C., 2008. An ad omnia approach to defining and achieving private data analysis. In: Lecture Notes in Computer Science. Springer, p. 10.

Dwork, C., Lei, J., 2009. Differential privacy and robust statistics. In: Proceedings of the 41th Annual ACM Symposium on Theory of Computing (STOC). pp. 371–380.

Dwork, C., Mcsherry, F., Nissim, K., Smith, A., 2006. Calibrating noise to sensitivity in private data analysis. In: Proceedings of the 3rd Theory of Cryptography Conference. Springer, pp. 265–284.

Dwork, C., Nissam, K., 2004. Privacy-preserving datamining on vertically partitioned databases. In: Advances in Cryptology: Proceedings of Crypto. pp. 528–544.

Elliot, M., 2000. DIS: a new approach to the measurement of statistical disclosure risk. International Journal of Risk Assessment and Management 2, 39–48.

Federal Committee on Statistical Methodology (FCSM), 2005. Statistical policy working group 22 - report on statistical disclosure limitation methodology. U.S. Census Bureau.

Fellegi, I.P., 1972. On the question of statistical confidentiality. Journal of the American Statistical Association 67 (337), 7–18.

Fienberg, S.E., McIntyre, J., 2004. Data swapping: Variations on a theme by Dalenius and Reiss. In: Domingo-Ferrer, J., Torra, V. (Eds.), Privacy in Statistical Databases. Vol. 3050 of Lecture Notes in Computer Science. Springer Berlin/Heidelberg, pp. 519, http://dx.doi.org/10.1007/ 978-3-540-25955-8_2

Fuller, W., 1993. Masking procedurse for microdata disclosure limitation. Journal of Official Statistics 9, 383–406.

General Assembly of the United Nations, 1948. Universal declaration of human rights.

Gouweleeuw, J., P. Kooiman, L.W., de Wolf, P.-P., 1998. Post randomisation for statistical disclosure control: Theory and implementation. Journal of Official Statistics 14 (4), 463–478.

Greenberg, B., 1987. Rank swapping for masking ordinal microdata. Tech. rep., U.S. Bureau of the Census (unpublished manuscript), Suitland, Maryland, USA.

Greenberg, B.G., Abul-Ela, A.-L.A., Simmons, W.R., Horvitz, D.G., 1969. The unrelated question randomized response model: Theoretical framework. Journal of the American Statistical Association 64 (326), 520–539.

Harel, O., Zhou, X.-H., 2007. Multiple imputation: Review and theory, implementation and software. Statistics in Medicine 26, 3057–3077.

Hundepool, A., Domingo-ferrer, J., Franconi, L., Giessing, S., Lenz, R., Longhurst, J., Nordholt, E.S., Seri, G., paul De Wolf, P., 2006. A CENtre of EXcellence for Statistical Disclosure Control Handbook on Statistical Disclosure Control Version 1.01.

Hundepool, A., Wetering, A. v.d., Ramaswamy, R., Wolf, P.d., Giessing, S., Fischetti, M., Salazar, J., Castro, J., Lowthian, P., Feb. 2005. τ-argus 3.1 user manual. Statistics Netherlands, Voorburg NL.

Hundepool, A., Willenborg, L., 1996. μ- and τ-argus: Software for statistical disclosure control. Third International Seminar on Statistical Confidentiality, Bled.

Karr, A., Kohnen, C.N., Oganian, A., Reiter, J.P., Sanil, A.P., 2006. A framework for evaluating the utility of data altered to protect confidentiality. American Statistician 60 (3), 224–232.

Kaufman, S., Seastrom, M., Roey, S., 2005. Do disclosure controls to protect confidentiality degrade the quality of the data? In: American Statistical Association, Proceedings of the Section on Survey Research.

Kennickell, A.B., 1997. Multiple imputation and disclosure protection: the case of the 1995 survey of consumer finances. Record Linkage Techniques, 248–267.

Kim, J., 1986. Limiting disclosure in microdata based on random noise and transformation. Bureau of the Census.

Krumm, J., 2007. Inference attacks on location tracks. Proceedings of Fifth International Conference on Pervasive Computingy, 127–143.

Li, N., Li, T., Venkatasubramanian, S., 2007. t-closeness: Privacy beyond k-anonymity and l-diversity. In: Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on. pp. 106–115.

Liew, C.K., Choi, U.J., Liew, C.J., 1985. A data distortion by probability distribution. ACM Trans. Database Syst. 10 (3), 395–411.

Little, R.J.A., 1993. Statistical analysis of masked data. Journal of Official Statistics 9, 407–426.

Little, R.J.A., Rubin, D.B., 1987. Statistical Analysis with Missing Data. John Wiley & Sons.

Liu, F., Little, R.J.A., 2002. Selective multiple mputation of keys for statistical disclosure control in microdata. In: Proceedings Joint Statistical Meet. pp. 2133–2138.

Machanavajjhala, A., Kifer, D., Abowd, J., Gehrke, J., Vilhuber, L., April 2008. Privacy: Theory meets practice on the map. In: International Conference on Data Engineering. Cornell University Comuputer Science Department, Cornell, USA, p. 10.

Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M., 2007. L-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1 (1), 3.

Manning, A.M., Haglin, D.J., Keane, J.A., 2008. A recursive search algorithm for statistical disclosure assessment. Data Min. Knowl. Discov. 16 (2), 165–196.

Marsh, C., Skinner, C., Arber, S., Penhale, B., Openshaw, S., Hobcraft, J., Lievesley, D., Walford, N., 1991. The case for samples of anonymized records from the 1991 census. Journal of the Royal Statistical Society 154 (2), 305–340.

Matthews, G.J., Harel, O., Aseltine, R.H., 2010a. Assessing database privacy using the area under the receiver-operator characteristic curve. Health Services and Outcomes Research Methodology 10 (1), 1–15.

Matthews, G.J., Harel, O., Aseltine, R.H., 2010b. Examining the robustness of fully synthetic data techniques for data with binary variables. Journal of Statistical Computation and Simulation 80 (6), 609–624.

Moore, Jr., R., 1996. Controlled data-swapping techniques for masking public use microdata. Census Tech Report.

Mugge, R., 1983. Issues in protecting confidentiality in national health statistics. Proceedings of the Section on Survey Research Methods.

Nissim, K., Raskhodnikova, S., Smith, A., 2007. Smooth sensitivity and sampling in private data analysis. In: STOC ’07: Proceedings of the thirty-ninth annual ACM symposium on Theory of computing. pp. 75–84.

Paass, G., 1988. Disclosure risk and disclosure avoidance for microdata. Journal of Business and Economic Statistics 6 (4), 487–500.

Palley, M., Simonoff, J., 1987. The use of regression methodology for the compromise of confidential information in statistical databases. ACM Trans. Database Systems 12 (4), 593–608.

Raghunathan, T.E., Reiter, J.P., Rubin, D.B., 2003. Multiple imputation for statistical disclosure limitation. Journal of Official Statistics 19 (1), 1–16.

Rajasekaran, S., Harel, O., Zuba, M., Matthews, G.J., Aseltine, Jr., R., 2009. Responsible data releases. In: Proceedings 9th Industrial Conference on Data Mining (ICDM). Springer LNCS, pp. 388–400.

Reiss, S.P., 1984. Practical data-swapping: The first steps. CM Transactions on Database Systems 9, 20–37.

Reiter, J.P., 2002. Satisfying disclosure restriction with synthetic data sets. Journal of Official Statistics 18 (4), 531–543.

Reiter, J.P., 2003. Inference for partially synthetic, public use microdata sets. Survey Methodology 29 (2), 181–188.

Reiter, J.P., 2004a. New approaches to data dissemination: A glimpse into the future (?). Chance 17 (3), 11–15.

Reiter, J.P., 2004b. Simultaneous use of multiple imputation for missing data and disclosure limitation. Survey Methodology 30 (2), 235–242.

Reiter, J.P., 2005a. Estimating risks of identification disclosure in microdata. Journal of the American Statistical Association 100, 1103–1112.

Reiter, J.P., 2005b. Releasing multiply imputed, synthetic public use microdata: An illustration and empirical study. Journal of the Royal Statistical Society, Series A: Statistics in Society 168 (1), 185–205.

Reiter, J.P., 2005c. Using CART to generate partially synthetic public use microdata. Journal of Official Statistics 21 (3), 441–462.

Rubin, D.B., 1987. Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons.

Rubin, D.B., 1993. Comment on “Statistical disclosure limitation”. Journal of Official Statistics 9, 461–468.

Rubner, Y., Tomasi, C., Guibas, L.J., 1998. A metric for distributions with applications to image databases. Computer Vision, IEEE International Conference on 0, 59.

Sarathy, R., Muralidhar, K., 2002a. The security of confidential numerical data in databases. Information Systems Research 13 (4), 389–403.

Sarathy, R., Muralidhar, K., 2002b. The security of confidential numerical data in databases. Info. Sys. Research 13 (4), 389–403.

Schafer, J.L., Graham, J.W., 2002. Missing data: Our view of state of the art. Psychological Methods 7 (2), 147–177.

Singh, A., Yu, F., Dunteman, G., 2003. MASSC: A new data mask for limiting statistical information loss and disclosure. In: Proceedings of the Joint UNECE/EUROSTAT Work Session on Statistical Data Confidentiality. pp. 373–394.

Skinner, C., 2009. Statistical disclosure control for survey data. In: Pfeffermann, D and Rao, C.R. eds. Handbook of Statistics Vol. 29A: Sample Surveys: Design, Methods and Applications. pp. 381–396.

Skinner, C., Marsh, C., Openshaw, S., Wymer, C., 1994. Disclosure control for census microdata. Journal of Official Statistics 10, 31–51.

Skinner, C., Shlomo, N., 2008. Assessing identification risk in survey microdata using log-linear models. Journal of the American Statistical Association 103, 989–1001.

Skinner, C.J., Elliot, M.J., 2002. A measure of disclosure risk for microdata. Journal of the Royal Statistical Society. Series B (Statistical Methodology) 64 (4), 855–867.

Smith, A., 2008. Efficient, dfferentially private point estimators. arXiv:0809.4794v1 [cs.CR].

Spruill, N.L., 1982. Measures of confidentiality. Statistics of Income and Related Administrative Record Research, 131–136.

Spruill, N.L., 1983. The confidentiality and analytic usefulness of masked business microdata. In: Proceedings of the Section on Survey Reserach Microdata. American Statistical Association, pp. 602–607.

Sweeney, L., 1996. Replacing personally-identifying information in medical records, the scrub system. In: American Medical Informatics Association. Hanley and Belfus, Inc., pp. 333–337.

Sweeney, L., 1997. Guaranteeing anonymity when sharing medical data, the datafly system. Journal of the American Medical Informatics Association 4, 51–55.

Sweeney, L., 2002a. Achieving k-anonymity privacy protection using generalization and suppression. International Journal of Uncertainty, Fuzziness and Knowledge Based Systems 10 (5), 571–588.

Sweeney, L., 2002b. k-anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge Based Systems 10 (5), 557–570.

Tendick, P., 1991. Optimal noise addition for preserving confidentiality in multivariate data. Journal of Statistical Planning and Inference 27 (2), 341–353.

United Nations Economic Comission for Europe (UNECE), 2007. Manging statistical cinfidentiality and microdata access: Principles and guidlinesof good practice.

Warner, S.L., 1965. Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical Association 60 (309), 63–69.

Wasserman, L., Zhou, S., 2010. A statistical framework for differential privacy. Journal of the American Statistical Association 105 (489), 375–389.

Willenborg, L., de Waal, T., 2001. Elements of Statistical Disclosure Control. Springer-Verlag.

Woodward, B., 1995. The computer-based patient record and confidentiality. The New England Journal of Medicine, 1419–1422.




view

Identifying the consequences of dynamic treatment strategies: A decision-theoretic overview

A. Philip Dawid, Vanessa Didelez

Source: Statist. Surv., Volume 4, 184--231.

Abstract:
We consider the problem of learning about and comparing the consequences of dynamic treatment strategies on the basis of observational data. We formulate this within a probabilistic decision-theoretic framework. Our approach is compared with related work by Robins and others: in particular, we show how Robins’s ‘ G -computation’ algorithm arises naturally from this decision-theoretic perspective. Careful attention is paid to the mathematical and substantive conditions required to justify the use of this formula. These conditions revolve around a property we term stability , which relates the probabilistic behaviours of observational and interventional regimes. We show how an assumption of ‘sequential randomization’ (or ‘no unmeasured confounders’), or an alternative assumption of ‘sequential irrelevance’, can be used to infer stability. Probabilistic influence diagrams are used to simplify manipulations, and their power and limitations are discussed. We compare our approach with alternative formulations based on causal DAGs or potential response models. We aim to show that formulating the problem of assessing dynamic treatment strategies as a problem of decision analysis brings clarity, simplicity and generality.

References:
Arjas, E. and Parner, J. (2004). Causal reasoning from longitudinal data. Scandinavian Journal of Statistics 31 171–187.

Arjas, E. and Saarela, O. (2010). Optimal dynamic regimes: Presenting a case for predictive inference. The International Journal of Biostatistics 6. http://tinyurl.com/33dfssf

Cowell, R. G., Dawid, A. P., Lauritzen, S. L. and Spiegelhalter, D. J. (1999). Probabilistic Networks and Expert Systems. Springer, New York.

Dawid, A. P. (1979). Conditional independence in statistical theory (with Discussion). Journal of the Royal Statistical Society, Series B 41 1–31.

Dawid, A. P. (1992). Applications of a general propagation algorithm for probabilistic expert systems. Statistics and Computing 2 25–36.

Dawid, A. P. (1998). Conditional independence. In Encyclopedia of Statistical Science ({U}pdate Volume 2) ( S. Kotz, C. B. Read and D. L. Banks, eds.) 146–155. Wiley-Interscience, New York.

Dawid, A. P. (2000). Causal inference without counterfactuals (with Discussion). Journal of the American Statistical Association 95 407–448.

Dawid, A. P. (2001). Separoids: A mathematical framework for conditional independence and irrelevance. Annals of Mathematics and Artificial Intelligence 32 335–372.

Dawid, A. P. (2002). Influence diagrams for causal modelling and inference. International Statistical Review 70 161–189. Corrigenda, ibid ., 437.

Dawid, A. P. (2003). Causal inference using influence diagrams: The problem of partial compliance (with Discussion). In Highly Structured Stochastic Systems ( P. J. Green, N. L. Hjort and S. Richardson, eds.) 45–81. Oxford University Press.

Dawid, A. P. (2010). Beware of the DAG! In Proceedings of the NIPS 2008 Workshop on Causality. Journal of Machine Learning Research Workshop and Conference Proceedings ( D. Janzing, I. Guyon and B. Schölkopf, eds.) 6 59–86. http://tinyurl.com/33va7tm

Dawid, A. P. and Didelez, V. (2008). Identifying optimal sequential decisions. In Proceedings of the Twenty-Fourth Annual Conference on Uncertainty in Artificial Intelligence (UAI-08) ( D. McAllester and A. Nicholson, eds.). 113-120. AUAI Press, Corvallis, Oregon. http://tinyurl.com/3899qpp

Dechter, R. (2003). Constraint Processing. Morgan Kaufmann Publishers.

Didelez, V., Dawid, A. P. and Geneletti, S. G. (2006). Direct and indirect effects of sequential treatments. In Proceedings of the Twenty-Second Annual Conference on Uncertainty in Artificial Intelligence (UAI-06) ( R. Dechter and T. Richardson, eds.). 138-146. AUAI Press, Arlington, Virginia. http://tinyurl.com/32w3f4e

Didelez, V., Kreiner, S. and Keiding, N. (2010). Graphical models for inference under outcome dependent sampling. Statistical Science (to appear).

Didelez, V. and Sheehan, N. S. (2007). Mendelian randomisation: Why epidemiology needs a formal language for causality. In Causality and Probability in the Sciences, ( F. Russo and J. Williamson, eds.). Texts in Philosophy Series 5 263–292. College Publications, London.

Eichler, M. and Didelez, V. (2010). Granger-causality and the effect of interventions in time series. Lifetime Data Analysis 16 3–32.

Ferguson, T. S. (1967). Mathematical Statistics: A Decision Theoretic Approach. Academic Press, New York, London.

Geneletti, S. G. (2007). Identifying direct and indirect effects in a non–counterfactual framework. Journal of the Royal Statistical Society: Series B 69 199–215.

Geneletti, S. G. and Dawid, A. P. (2010). Defining and identifying the effect of treatment on the treated. In Causality in the Sciences ( P. M. Illari, F. Russo and J. Williamson, eds.) Oxford University Press (to appear).

Gill, R. D. and Robins, J. M. (2001). Causal inference for complex longitudinal data: The continuous case. Annals of Statistics 29 1785–1811.

Guo, H. and Dawid, A. P. (2010). Sufficient covariates and linear propensity analysis. In Proceedings of the Thirteenth International Workshop on Artificial Intelligence and Statistics, (AISTATS) 2010, Chia Laguna, Sardinia, Italy, May 13-15, 2010. Journal of Machine Learning Research Workshop and Conference Proceedings ( Y. W. Teh and D. M. Titterington, eds.) 9 281–288. http://tinyurl.com/33lmuj7

Henderson, R., Ansel, P. and Alshibani, D. (2010). Regret-regression for optimal dynamic treatment regimes. Biometrics (to appear). doi:10.1111/j.1541-0420.2009.01368.x

Hernán, M. A. and Taubman, S. L. (2008). Does obesity shorten life? The importance of well defined interventions to answer causal questions. International Journal of Obesity 32 S8–S14.

Holland, P. W. (1986). Statistics and causal inference (with Discussion). Journal of the American Statistical Association 81 945–970.

Huang, Y. and Valtorta, M. (2006). Identifiability in causal Bayesian networks: A sound and complete algorithm. In AAAI’06: Proceedings of the 21st National Conference on Artificial Intelligence 1149–1154. AAAI Press.

Kang, J. D. Y. and Schafer, J. L. (2007). Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data. Statistical Science 22 523–539.

Lauritzen, S. L., Dawid, A. P., Larsen, B. N. and Leimer, H. G. (1990). Independence properties of directed Markov fields. Networks 20 491–505.

Lok, J., Gill, R., van der Vaart, A. and Robins, J. (2004). Estimating the causal effect of a time-varying treatment on time-to-event using structural nested failure time models. Statistica Neerlandica 58 271–295.

Moodie, E. M., Richardson, T. S. and Stephens, D. A. (2007). Demystifying optimal dynamic treatment regimes. Biometrics 63 447–455.

Murphy, S. A. (2003). Optimal dynamic treatment regimes (with Discussion). Journal of the Royal Statistical Society, Series B 65 331-366.

Oliver, R. M. and Smith, J. Q., eds. (1990). Influence Diagrams, Belief Nets and Decision Analysis. John Wiley and Sons, Chichester, United Kingdom.

Pearl, J. (1995). Causal diagrams for empirical research (with Discussion). Biometrika 82 669-710.

Pearl, J. (2009). Causality: Models, Reasoning and Inference, Second ed. Cambridge University Press, Cambridge.

Pearl, J. and Paz, A. (1987). Graphoids: A graph-based logic for reasoning about relevance relations. In Advances in Artificial Intelligence ( D. Hogg and L. Steels, eds.) II 357–363. North-Holland, Amsterdam.

Pearl, J. and Robins, J. (1995). Probabilistic evaluation of sequential plans from causal models with hidden variables. In Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence ( P. Besnard and S. Hanks, eds.) 444–453. Morgan Kaufmann Publishers, San Francisco.

Raiffa, H. (1968). Decision Analysis. Addison-Wesley, Reading, Massachusetts.

Robins, J. M. (1986). A new approach to causal inference in mortality studies with sustained exposure periods—Application to control of the healthy worker survivor effect. Mathematical Modelling 7 1393–1512.

Robins, J. M. (1987). Addendum to “A new approach to causal inference in mortality studies with sustained exposure periods—Application to control of the healthy worker survivor effect”. Computers & Mathematics with Applications 14 923–945.

Robins, J. M. (1989). The analysis of randomized and nonrandomized AIDS treatment trials using a new approach to causal inference in longitudinal studies. In Health Service Research Methodology: A Focus on AIDS ( L. Sechrest, H. Freeman and A. Mulley, eds.) 113–159. NCSHR, U.S. Public Health Service.

Robins, J. M. (1992). Estimation of the time-dependent accelerated failure time model in the presence of confounding factors. Biometrika 79 321–324.

Robins, J. M. (1997). Causal inference from complex longitudinal data. In Latent Variable Modeling and Applications to Causality, ( M. Berkane, ed.). Lecture Notes in Statistics 120 69–117. Springer-Verlag, New York.

Robins, J. M. (1998). Structural nested failure time models. In Survival Analysis, ( P. K. Andersen and N. Keiding, eds.). Encyclopedia of Biostatistics 6 4372–4389. John Wiley and Sons, Chichester, UK.

Robins, J. M. (2000). Robust estimation in sequentially ignorable missing data and causal inference models. In Proceedings of the American Statistical Association Section on Bayesian Statistical Science 1999 6–10.

Robins, J. M. (2004). Optimal structural nested models for optimal sequential decisions. In Proceedings of the Second Seattle Symposium on Biostatistics ( D. Y. Lin and P. Heagerty, eds.) 189–326. Springer, New York.

Robins, J. M., Greenland, S. and Hu, F. C. (1999). Estimation of the causal effect of a time-varying exposure on the marginal mean of a repeated binary outcome. Journal of the American Statistical Association 94 687–700.

Robins, J. M., Hernán, M. A. and Brumback, B. (2000). Marginal structural models and causal inference in epidemiology. Epidemiology 11 550–560.

Robins, J. M. and Wasserman, L. A. (1997). Estimation of effects of sequential treatments by reparameterizing directed acyclic graphs. In Proceedings of the 13th Annual Conference on Uncertainty in Artificial Intelligence ( D. Geiger and P. Shenoy, eds.) 409-420. Morgan Kaufmann Publishers, San Francisco. http://tinyurl.com/33ghsas

Rosthøj, S., Fullwood, C., Henderson, R. and Stewart, S. (2006). Estimation of optimal dynamic anticoagulation regimes from observational data: A regret-based approach. Statistics in Medicine 25 4197–4215.

Shpitser, I. and Pearl, J. (2006a). Identification of conditional interventional distributions. In Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intelligence (UAI-06) ( R. Dechter and T. Richardson, eds.). 437–444. AUAI Press, Corvallis, Oregon. http://tinyurl.com/2um8w47

Shpitser, I. and Pearl, J. (2006b). Identification of joint interventional distributions in recursive semi-Markovian causal models. In Proceedings of the Twenty-First National Conference on Artificial Intelligence 1219–1226. AAAI Press, Menlo Park, California.

Spirtes, P., Glymour, C. and Scheines, R. (2000). Causation, Prediction and Search, Second ed. Springer-Verlag, New York.

Sterne, J. A. C., May, M., Costagliola, D., de Wolf, F., Phillips, A. N., Harris, R., Funk, M. J., Geskus, R. B., Gill, J., Dabis, F., Miro, J. M., Justice, A. C., Ledergerber, B., Fatkenheuer, G., Hogg, R. S., D’Arminio-Monforte, A., Saag, M., Smith, C., Staszewski, S., Egger, M., Cole, S. R. and When To Start Consortium (2009). Timing of initiation of antiretroviral therapy in AIDS-Free HIV-1-infected patients: A collaborative analysis of 18 HIV cohort studies. Lancet 373 1352–1363.

Taubman, S. L., Robins, J. M., Mittleman, M. A. and Hernán, M. A. (2009). Intervening on risk factors for coronary heart disease: An application of the parametric g-formula. International Journal of Epidemiology 38 1599–1611.

Tian, J. (2008). Identifying dynamic sequential plans. In Proceedings of the Twenty-Fourth Annual Conference on Uncertainty in Artificial Intelligence (UAI-08) ( D. McAllester and A. Nicholson, eds.). 554–561. AUAI Press, Corvallis, Oregon. http://tinyurl.com/36ufx2h

Verma, T. and Pearl, J. (1990). Causal networks: Semantics and expressiveness. In Uncertainty in Artificial Intelligence 4 ( R. D. Shachter, T. S. Levitt, L. N. Kanal and J. F. Lemmer, eds.) 69–76. North-Holland, Amsterdam.




view

A Critical Overview of Privacy-Preserving Approaches for Collaborative Forecasting. (arXiv:2004.09612v3 [cs.LG] UPDATED)

Cooperation between different data owners may lead to an improvement in forecast quality - for instance by benefiting from spatial-temporal dependencies in geographically distributed time series. Due to business competitive factors and personal data protection questions, said data owners might be unwilling to share their data, which increases the interest in collaborative privacy-preserving forecasting. This paper analyses the state-of-the-art and unveils several shortcomings of existing methods in guaranteeing data privacy when employing Vector Autoregressive (VAR) models. The paper also provides mathematical proofs and numerical analysis to evaluate existing privacy-preserving methods, dividing them into three groups: data transformation, secure multi-party computations, and decomposition methods. The analysis shows that state-of-the-art techniques have limitations in preserving data privacy, such as a trade-off between privacy and forecasting accuracy, while the original data in iterative model fitting processes, in which intermediate results are shared, can be inferred after some iterations.




view

Machine learning in medicine : a complete overview

Cleophas, Ton J. M., author
9783030339708 (electronic bk.)




view

Green criminology and green theories of justice : an introduction to a political economic view of eco-justice

Lynch, Michael J., author
9783030285739 (electronic bk.)




view

Fitting a deeply nested hierarchical model to a large book review dataset using a moment-based estimator

Ningshan Zhang, Kyle Schmaus, Patrick O. Perry.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2260--2288.

Abstract:
We consider a particular instance of a common problem in recommender systems, using a database of book reviews to inform user-targeted recommendations. In our dataset, books are categorized into genres and subgenres. To exploit this nested taxonomy, we use a hierarchical model that enables information pooling across across similar items at many levels within the genre hierarchy. The main challenge in deploying this model is computational. The data sizes are large and fitting the model at scale using off-the-shelf maximum likelihood procedures is prohibitive. To get around this computational bottleneck, we extend a moment-based fitting procedure proposed for fitting single-level hierarchical models to the general case of arbitrarily deep hierarchies. This extension is an order of magnitude faster than standard maximum likelihood procedures. The fitting method can be deployed beyond recommender systems to general contexts with deeply nested hierarchical generalized linear mixed models.




view

Item 01: Box 1 Views of Brisbane, ca. 1889-1901




view

An Overview of Semiparametric Extensions of Finite Mixture Models

Sijia Xiang, Weixin Yao, Guangren Yang.

Source: Statistical Science, Volume 34, Number 3, 391--404.

Abstract:
Finite mixture models have offered a very important tool for exploring complex data structures in many scientific areas, such as economics, epidemiology and finance. Semiparametric mixture models, which were introduced into traditional finite mixture models in the past decade, have brought forth exciting developments in their methodologies, theories, and applications. In this article, we not only provide a selective overview of the newly-developed semiparametric mixture models, but also discuss their estimation methodologies, theoretical properties if applicable, and some open questions. Recent developments are also discussed.




view

Statistical Analysis of Zero-Inflated Nonnegative Continuous Data: A Review

Lei Liu, Ya-Chen Tina Shih, Robert L. Strawderman, Daowen Zhang, Bankole A. Johnson, Haitao Chai.

Source: Statistical Science, Volume 34, Number 2, 253--279.

Abstract:
Zero-inflated nonnegative continuous (or semicontinuous) data arise frequently in biomedical, economical, and ecological studies. Examples include substance abuse, medical costs, medical care utilization, biomarkers (e.g., CD4 cell counts, coronary artery calcium scores), single cell gene expression rates, and (relative) abundance of microbiome. Such data are often characterized by the presence of a large portion of zero values and positive continuous values that are skewed to the right and heteroscedastic. Both of these features suggest that no simple parametric distribution may be suitable for modeling such type of outcomes. In this paper, we review statistical methods for analyzing zero-inflated nonnegative outcome data. We will start with the cross-sectional setting, discussing ways to separate zero and positive values and introducing flexible models to characterize right skewness and heteroscedasticity in the positive values. We will then present models of correlated zero-inflated nonnegative continuous data, using random effects to tackle the correlation on repeated measures from the same subject and that across different parts of the model. We will also discuss expansion to related topics, for example, zero-inflated count and survival data, nonlinear covariate effects, and joint models of longitudinal zero-inflated nonnegative continuous data and survival. Finally, we will present applications to three real datasets (i.e., microbiome, medical costs, and alcohol drinking) to illustrate these methods. Example code will be provided to facilitate applications of these methods.




view

Matching Methods for Causal Inference: A Review and a Look Forward

Elizabeth A. Stuart

Source: Statist. Sci., Volume 25, Number 1, 1--21.

Abstract:
When estimating causal effects using observational data, it is desirable to replicate a randomized experiment as closely as possible by obtaining treated and control groups with similar covariate distributions. This goal can often be achieved by choosing well-matched samples of the original treated and control groups, thereby reducing bias due to the covariates. Since the 1970s, work on matching methods has examined how to best choose treated and control subjects for comparison. Matching methods are gaining popularity in fields such as economics, epidemiology, medicine and political science. However, until now the literature and related advice has been scattered across disciplines. Researchers who are interested in using matching methods—or developing methods related to matching—do not have a single place to turn to learn about past and current research. This paper provides a structure for thinking about matching methods and guidance on their use, coalescing the existing research (both old and new) and providing a summary of where the literature on matching methods is now and where it should be headed.




view

The Axon Initial Segment: An Updated Viewpoint

Christophe Leterrier
Feb 28, 2018; 38:2135-2145
Viewpoints




view

4 Sales Presentation Innovations That Keep Viewers on the Edge of Their Seats

People have been giving presentations for thousands of years, from Moses with his stone tablets to Elon Musk revealing his grand plans to colonize Mars. While the elements of a great pitchman generally have remained the same over the past 5,000 years -- conviction, charisma, credibility -- today's successful presenters do more than just get in front of an audience and talk.




view

BIS Quarterly Review, September 2019 - media briefing

On-the-record remarks of the September 2019 Quarterly Review media briefing by Mr Claudio Borio, Head of the Monetary and Economic Department, and Mr Hyun Song Shin, Economic Adviser and Head of Research, 20 September 2019.




view

Interview with Brazil's EXAME

Original quotes from interview by Mr Agustin Carstens, General Manager of the BIS, with Exame, conducted by Mr Felipe Serrano on 9 October 2019 and published on 24 October 2019.




view

BIS Quarterly Review, December 2019 - media briefing

On-the-record remarks of the December 2019 Quarterly Review media briefing by Mr Claudio Borio, Head of the Monetary and Economic Department, and Mr Hyun Song Shin, Economic Adviser and Head of Research, 6 December 2019.




view

BIS Quarterly Review, March 2020 - media remarks

On-the-record remarks of the March 2020 Quarterly Review media briefing by Mr Claudio Borio, Head of the Monetary and Economic Department, and Mr Hyun Song Shin, Economic Adviser and Head of Research, 28 February 2020.




view

Interview: Luiz Awazu Pereira da Silva

Interview with Luiz A Pereira da Silva, Deputy General Manager of the BIS, in Central Banking, conducted by Ms Rachael King and published on 16 February 2020.




view

A review of FAO's fight against hunger and malnutrition and challenges ahead

A review of FAO’s fight against hunger and malnutrition and challenges ahead with the participation of José Graziano da Silva, Director-General of FAO. 

Where: Sheikh Zayed Centre at FAO headquarters 

When: Friday, 26th [...]




view

JCCCII Performer Interview TOMPKINS.m4v       [1m56s]


David Rees interviews Paul F. Tompkins in anticipation of JoCoCruiseCrazy II.




view

2008-05-27_Ketchikan_overview