arm

Pharmacologic Inhibitor of DNA-PK, M3814, Potentiates Radiotherapy and Regresses Human Tumors in Mouse Models

Physical and chemical DNA-damaging agents are used widely in the treatment of cancer. Double-strand break (DSB) lesions in DNA are the most deleterious form of damage and, if left unrepaired, can effectively kill cancer cells. DNA-dependent protein kinase (DNA-PK) is a critical component of nonhomologous end joining (NHEJ), one of the two major pathways for DSB repair. Although DNA-PK has been considered an attractive target for cancer therapy, the development of pharmacologic DNA-PK inhibitors for clinical use has been lagging. Here, we report the discovery and characterization of a potent, selective, and orally bioavailable DNA-PK inhibitor, M3814 (peposertib), and provide in vivo proof of principle for DNA-PK inhibition as a novel approach to combination radiotherapy. M3814 potently inhibits DNA-PK catalytic activity and sensitizes multiple cancer cell lines to ionizing radiation (IR) and DSB-inducing agents. Inhibition of DNA-PK autophosphorylation in cancer cells or xenograft tumors led to an increased number of persistent DSBs. Oral administration of M3814 to two xenograft models of human cancer, using a clinically established 6-week fractionated radiation schedule, strongly potentiated the antitumor activity of IR and led to complete tumor regression at nontoxic doses. Our results strongly support DNA-PK inhibition as a novel approach for the combination radiotherapy of cancer. M3814 is currently under investigation in combination with radiotherapy in clinical trials.




arm

A rational approach to e-cigarettes: challenging ERS policy on tobacco harm reduction

We wish to thank J. Britton and co-workers for responding to our editorial and giving us an opportunity to clarify our position as well as correct a few misunderstandings. We definitely share the same goal, which is to relieve Europe and the rest of the world from the terrible results of the tobacco epidemic. We also do not "blankly oppose e-cigarettes"; however, we strongly advocate against a harm reduction strategy including e-cigarettes as well as heated tobacco products [1]. As clinicians we all see reluctant smokers where e-cigarettes can be tried as a last resort for getting off cigarette smoking, but that is of little relevance for a general harm reduction strategy. We also agree that the UK has achieved a lot in the area of smoking cessation but would argue that this has been achieved by impressive tobacco control, not by the use of e-cigarettes, and that a country such as Australia, which has banned nicotine-containing e-cigarettes, has achieved similar results.




arm

A rational approach to e-cigarettes: challenging ERS policy on tobacco harm reduction

The respiratory community is united in its desire to reduce and eliminate the harm caused by tobacco smoking, which is at present on course to kill one billion people in the 21st century. The stated policy of the European Respiratory Society is to strive "constantly to promote strong and evidence-based policies to reduce the burden of tobacco related diseases". In our view, the recent ERS Tobacco Control Committee statement on tobacco harm reduction [1], though well-intentioned, appears to be based on a number of false premises and draws its conclusions from a partial account of available data. It also presents a false dichotomy between the provision of "conventional" tobacco control and harm reduction approaches. We therefore respond, in turn, to the seven arguments presented against the adoption of harm reduction in the Committee's statement.




arm

Detecting electronic coherences by time-domain high-harmonic spectroscopy [Physics]

Ultrafast spectroscopy is capable of monitoring electronic and vibrational states. For electronic states a few eV apart, an X-ray laser source is required. We propose an alternative method based on the time-domain high-order harmonic spectroscopy where a coherent superposition of the electronic states is first prepared by the strong optical...




arm

Development of a therapeutic anti-HtrA1 antibody and the identification of DKK3 as a pharmacodynamic biomarker in geographic atrophy [Medical Sciences]

Genetic polymorphisms in the region of the trimeric serine hydrolase high-temperature requirement 1 (HTRA1) are associated with increased risk of age-related macular degeneration (AMD) and disease progression, but the precise biological function of HtrA1 in the eye and its contribution to disease etiologies remain undefined. In this study, we have...




arm

Svalbard ptarmigans don't prioritise fighting infection in winter [INSIDE JEB]

Kathryn Knight




arm

Consequences of being phenotypically mismatched with the environment: no evidence of oxidative stress in cold- and warm-acclimated birds facing a cold spell [RESEARCH ARTICLE]

Ana Gabriela Jimenez, Emily Cornelius Ruhs, Kailey J. Tobin, Katie N. Anderson, Audrey Le Pogam, Lyette Regimbald, and Francois Vezina

Seasonal changes in maximal thermogenic capacity (Msum) in wild black-capped chickadees suggests that adjustments in metabolic performance are slow and begin to take place before winter peaks. However, when mean minimal ambient temperature (Ta) reaches –10°C, the chickadee phenotype appears to provide enough spare capacity to endure days with colder Ta, down to –20°C or below. This suggests that birds could also maintain a higher antioxidant capacity as part of their cold-acclimated phenotype to deal with sudden decreases in temperature. Here, we tested how environmental mismatch affected oxidative stress by comparing cold-acclimated (–5°C) and transition (20°C) phenotypes in chickadees exposed to an acute 15°C drop in temperature with that of control individuals. We measured superoxide dismutase, catalase and glutathione peroxidase activities, as well as lipid peroxidation damage and antioxidant scavenging capacity in pectoralis muscle, brain, intestine and liver. We generally found differences between seasonal phenotypes and across tissues, but no differences with respect to an acute cold drop treatment. Our data suggest oxidative stress is closely matched to whole-animal physiology in cold-acclimated birds compared with transition birds, implying that changes to the oxidative stress system happen slowly.




arm

Fish embryo vulnerability to combined acidification and warming coincides with low capacity for homeostatic regulation [RESEARCH ARTICLE]

Flemming Dahlke, Magnus Lucassen, Ulf Bickmeyer, Sylke Wohlrab, Velmurugu Puvanendran, Atle Mortensen, Melissa Chierici, Hans-Otto Pörtner, and Daniela Storch

The vulnerability of fish embryos and larvae to environmental factors is often attributed to a lack of adult-like organ systems (gills) and thus insufficient homeostatic capacity. However, experimental data supporting this hypothesis are scarce. Here, by using Atlantic cod (Gadus morhua) as a model, the relationship between embryo vulnerability (to projected ocean acidification and warming) and homeostatic capacity was explored through parallel analyses of stage-specific mortality and in vitro activity and expression of major ion pumps (ATP-Synthase, Na+/K+-ATPase, H+-ATPase) and co-transporters (NBC1, NKCC1). Immunolocalization of these transporters was used to study ionocyte morphology in newly-hatched larvae. Treatment-related embryo mortality until hatch (+20% due to acidification and warming) occurred primarily during an early period (gastrulation) characterized by extremely low ion transport capacities. Thereafter, embryo mortality decreased in parallel with an exponential increase in activity and expression of all investigated ion transporters. Significant changes in transporter activity and expression in response to acidification (+15% activity) and warming (-30% expression) indicate some potential for short-term acclimatization, although likely associated with energetic trade-offs. Interestingly, whole-larvae enzyme capacities (supported by abundant epidermal ionocytes) reached levels similar to those previously measured in gill tissue of adult cod, suggesting that early-life stages without functional gills are better equipped in terms of ion homeostasis than previously thought. This study implies that the gastrulation period represents a critical transition from inherited (maternal) defenses to active homeostatic regulation, which facilitates enhanced resilience of later stages to environmental factors.




arm

Characterization of Antineovascularization Activity and Ocular Pharmacokinetics of Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Inhibitor GNE-947 [Articles]

The objectives of the present study were to characterize GNE-947 for its phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitory activities, in vitro anti–cell migration activity in human umbilical vein endothelial cells (HUVECs), in vivo antineovascularization activity in laser-induced rat choroidal neovascular (CNV) eyes, pharmacokinetics in rabbit plasma and eyes, and ocular distribution using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) and autoradioluminography. Its PI3K and mTOR Ki were 0.0005 and 0.045 µM, respectively, and its HUVEC IC50 was 0.093 µM. GNE-947 prevented neovascularization in the rat CNV model at 50 or 100 µg per eye with repeat dosing. After a single intravenous injection at 2.5 and 500 μg/kg in rabbits, its plasma terminal half-lives (t1/2) were 9.11 and 9.59 hours, respectively. After a single intravitreal injection of a solution at 2.5 μg per eye in rabbits, its apparent t1/2 values were 14.4, 16.3, and 23.2 hours in the plasma, vitreous humor, and aqueous humor, respectively. After a single intravitreal injection of a suspension at 33.5, 100, 200 μg per eye in rabbits, the t1/2 were 29, 74, and 219 days in the plasma and 46, 143, and 191 days in the eyes, respectively. MALDI-IMS and autoradioluminography images show that GNE-947 did not homogenously distribute in the vitreous humor and aggregated at the injection sites after injection of the suspension, which was responsible for the long t1/2 of the suspension because of the slow dissolution process. This hypothesis was supported by pharmacokinetic modeling analyses. In conclusion, the PI3K/mTOR inhibitor GNE-947 prevented neovascularization in a rat CNV model, with t1/2 up to approximately 6 months after a single intravitreal injection of the suspension in rabbit eyes.

SIGNIFICANCE STATEMENT

GNE-947 is a potent phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor and exhibits anti–choroidal neovascular activity in rat eyes. The duration of GNE-947 in the rabbit eyes after intravitreal injection in a solution is short, with a half-life (t1/2) of less than a day. However, the duration after intravitreal dose of a suspension is long, with t1/2 up to 6 months due to low solubility and slow dissolution. These results indicate that intravitreal injection of a suspension for low-solubility drugs can be used to achieve long-term drug exposure.




arm

Pharmacy-Based Infectious Disease Management Programs Incorporating CLIA-Waived Point-of-Care Tests [Minireviews]

There are roughly 48,000 deaths caused by influenza annually and an estimated 200,000 people who have undiagnosed human immunodeficiency virus (HIV). These are examples of acute and chronic illnesses that can be identified by employing a CLIA-waived test. Pharmacies across the country have been incorporating CLIA-waived point-of-care tests (POCT) into disease screening and management programs offered in the pharmacy. The rationale behind these programs is discussed. Additionally, a summary of clinical data for some of these programs in the infectious disease arena is provided. Finally, we discuss the future potential for CLIA-waived POCT-based programs in community pharmacies.




arm

Pre-eclamptic Fetal Programming Alters Neuroinflammatory and Cardiovascular Consequences of Endotoxemia in Sex-Specific Manners [Neuropharmacology]

Pre-eclampsia (PE)-induced fetal programming predisposes offspring to health hazards in adult life. Here, we tested the hypothesis that pre-eclamptic fetal programming elicits sexually dimorphic inflammatory and cardiovascular complications to endotoxemia in adult rat offspring. PE was induced by oral administration of L-NAME (50 mg/kg per day for seven consecutive days) starting from day 14 of conception. Cardiovascular studies were performed in conscious adult male and female offspring preinstrumented with femoral indwelling catheters. Compared with non-PE male counterparts, intravenous administration of lipopolysaccharide (LPS, 5 mg/kg) to PE male offspring caused significantly greater 1) falls in blood pressure, 2) increases in heart rate, 3) rises in arterial dP/dtmax, a correlate of left ventricular contractility, and 4) decreases in time- and frequency-domain indices of heart rate variability (HRV). By contrast, the hypotensive and tachycardic actions of LPS in female offspring were independent of the pre-eclamptic state and no clear changes in HRV or dP/dtmax were noted. Measurement of arterial baroreflex activity by vasoactive method revealed no sex specificity in baroreflex dysfunction induced by LPS. Immunohistochemical studies showed increased protein expression of toll-like receptor 4 in heart as well as in brainstem neuronal pools of the nucleus of solitary tract and rostral ventrolateral medulla in endotoxic PE male, but not female, offspring. Enhanced myocardial, but not neuronal, expression of monocyte chemoattractant protein-1 was also demonstrated in LPS-treated male offspring. Together, pre-eclamptic fetal programming aggravates endotoxic manifestations of hypotension and autonomic dysfunction in male offspring via exacerbating myocardial and neuromedullary inflammatory pathways.

SIGNIFICANCE STATEMENT

Current molecular and neuroanatomical evidence highlights a key role for pre-eclamptic fetal programming in offspring predisposition to health hazards induced by endotoxemia in adult life. Pre-eclampsia accentuates endotoxic manifestations of hypotension, tachycardia, and cardiac autonomic dysfunction in male offspring via exacerbating myocardial and central inflammatory pathways. The absence of such detrimental effects in female littermates suggests sexual dimorphism in the interaction of pre-eclamptic fetal programming with endotoxemia.




arm

Pharmacological Characterization of the Novel and Selective {alpha}7 Nicotinic Acetylcholine Receptor-Positive Allosteric Modulator BNC375 [Neuropharmacology]

Treatments for cognitive deficits associated with central nervous system (CNS) disorders such as Alzheimer disease and schizophrenia remain significant unmet medical needs that incur substantial pressure on the health care system. The α7 nicotinic acetylcholine receptor (nAChR) has garnered substantial attention as a target for cognitive deficits based on receptor localization, robust preclinical effects, genetics implicating its involvement in cognitive disorders, and encouraging, albeit mixed, clinical data with α7 nAChR orthosteric agonists. Importantly, previous orthosteric agonists at this receptor suffered from off-target activity, receptor desensitization, and an inverted U-shaped dose-effect curve in preclinical assays that limit their clinical utility. To overcome the challenges with orthosteric agonists, we have identified a novel selective α7 positive allosteric modulator (PAM), BNC375. This compound is selective over related receptors and potentiates acetylcholine-evoked α7 currents with only marginal effect on the receptor desensitization kinetics. In addition, BNC375 enhances long-term potentiation of electrically evoked synaptic responses in rat hippocampal slices and in vivo. Systemic administration of BNC375 reverses scopolamine-induced cognitive deficits in rat novel object recognition and rhesus monkey object retrieval detour (ORD) task over a wide range of exposures, showing no evidence of an inverted U-shaped dose-effect curve. The compound also improves performance in the ORD task in aged African green monkeys. Moreover, ex vivo 13C-NMR analysis indicates that BNC375 treatment can enhance neurotransmitter release in rat medial prefrontal cortex. These findings suggest that α7 nAChR PAMs have multiple advantages over orthosteric α7 nAChR agonists for the treatment of cognitive dysfunction associated with CNS diseases.

SIGNIFICANCE STATEMENT

BNC375 is a novel and selective α7 nicotinic acetylcholine receptor (nAChR) positive allosteric modulator (PAM) that potentiates acetylcholine-evoked α7 currents in in vitro assays with little to no effect on the desensitization kinetics. In vivo, BNC375 demonstrated robust procognitive effects in multiple preclinical models across a wide exposure range. These results suggest that α7 nAChR PAMs have therapeutic potential in central nervous system diseases with cognitive impairments.




arm

Cinnamaldehyde Inhibits Inflammation of Human Synoviocyte Cells Through Regulation of Jak/Stat Pathway and Ameliorates Collagen-Induced Arthritis in Rats [Inflammation, Immunopharmacology, and Asthma]

Cinnamaldehyde (Cin), a bioactive cinnamon essential oil from traditional Chinese medicine herb Cinnamomum cassia, has been reported to have multipharmacological activities including anti-inflammation. However, its role and molecular mechanism of anti-inflammatory activity in musculoskeletal tissues remains unclear. Here, we first investigated the effects and molecular mechanisms of Cin in human synoviocyte cells. Then in vivo therapeutic effect of Cin on collagen-induced arthritis (CIA) also studied. Cell Counting Kit ‎CCK-8 assay was performed to evaluate the cell cytotoxicity. Proinflammatory cytokine expression was evaluated using quantitative polymerase chain reaction and ELISA. Protein expression was measured by western blotting. The in vivo effect of Cin (75 mg/kg per day) was evaluated in rats with CIA by gavage administration. Disease progression was assessed by clinical scoring, radiographic, and histologic examinations. Cin significantly inhibited interleukin (IL)-1β–induced IL-6, IL-8, and tumor necrosis factor-α release from human synoviocyte cells. The molecular analysis revealed that Cin impaired IL-6–induced activation of Janus kinase 2 (JAK2), signal transducer and activator of transcription 1 (STAT1), and STAT3 signaling pathway by inhibiting the phosphorylation of JAK2, STAT1, and STAT3, without affecting NF-B pathway. Cin reduced collagen-induced swollen paw volume of arthritic rats. The anti-inflammation effects of Cin were associated with decreased severity of arthritis, joint swelling, and reduced bone erosion and destruction. Furthermore, serum IL-6 level was decreased when Cin administered therapeutically to CIA rats. Cin suppresses IL-1β–induced inflammation in synoviocytes through the JAK/STAT pathway and alleviated collagen-induced arthritis in rats. These data indicated that Cin might be a potential traditional Chinese medicine–derived, disease-modifying, antirheumatic herbal drug.

SIGNIFICANCE STATEMENT

In this study, we found that cinnamaldehyde (Cin) suppressed proinflammatory cytokines secretion in rheumatology arthritis synoviocyte cells by Janus kinase/signal transducer and activator of transcription pathway. The in vivo results showed that Cin ameliorated collagen-induced arthritis in rats. These findings indicate that Cin is a potential traditional Chinese medicine–derived, disease-modifying, antirheumatic herbal drug.




arm

Dose Frequency Optimization of the Dual Amylin and Calcitonin Receptor Agonist KBP-088: Long-Lasting Improvement in Food Preference and Body Weight Loss [Behavioral Pharmacology]

Dual amylin and calcitonin receptor agonists (DACRAs) are novel candidates for treatment of type 2 diabetes and obesity because of their beneficial effects on body weight, blood glucose, insulin sensitivity, and food preference, at least short-term. DACRAs activate the receptors for a prolonged time period, resulting in metabolic effects superior to those of amylin. Because of the prolonged receptor activation, different dosing intervals and, hence, less frequent receptor activation might change the efficacy of DACRA treatment in terms of weight loss and food preference. In this study, we compared daily dosing to dosing every other day with the aim of understanding the optimal balance between efficacy and tolerability. Obese and lean male Sprague-Dawley rats were treated with the DACRA KBP-088, applying two different dosing intervals (1.5 nmol/kg once daily and 3 nmol/kg every other day) to assess the effect on body weight, food intake, glucose tolerance, and food preference when given the choice between chow (13% fat) and a high-fat diet (60% fat). Treatment with KBP-088 induced significant weight loss, reduction in adiposity, improvement in glucose control, and altered food preference toward food that is less calorie-dense. KBP-088 dosed every other day (3 nmol/kg) was superior to KBP-088 once daily (1.5 nmol/kg) in terms of weight loss and improvement of food preference. The beneficial effects were evident in both lean and obese rats. Hence, dosing KBP-088 every other day positively affects overall efficacy on metabolic parameters regardless of the lean/obese state, suggesting that less-frequent dosing with KBP-088 could be feasible.

SIGNIFICANCE STATEMENT

Here, we show that food preference can be altered chronically toward choices that are less calorie-dense by pharmacological treatment. Further, pharmacological dosing regimens affect the efficacy differently, as dosing every other day improved body weight loss and alterations in food preference compared with daily dosing. This suggest that alterations of the dosing regimens could be feasible in the treatment of obesity.




arm

Hepatic Transporter Alterations by Nuclear Receptor Agonist T0901317 in Sandwich-Cultured Human Hepatocytes: Proteomic Analysis and PBPK Modeling to Evaluate Drug-Drug Interaction Risk [Metabolism, Transport, and Pharmacogenomics]

In vitro approaches for predicting drug-drug interactions (DDIs) caused by alterations in transporter protein regulation are not well established. However, reports of transporter regulation via nuclear receptor (NR) modulation by drugs are increasing. This study examined alterations in transporter protein levels in sandwich-cultured human hepatocytes (SCHH; n = 3 donors) measured by liquid chromatography–tandem mass spectrometry–based proteomic analysis after treatment with N-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenyl]-N-(2,2,2-trifluoroethyl)benzenesulfonamide (T0901317), the first described synthetic liver X receptor agonist. T0901317 treatment (10 μM, 48 hours) decreased the levels of organic cation transporter (OCT) 1 (0.22-, 0.43-, and 0.71-fold of control) and organic anion transporter (OAT) 2 (0.38-, 0.38-, and 0.53-fold of control) and increased multidrug resistance protein (MDR) 1 (1.37-, 1.48-, and 1.59-fold of control). The induction of NR downstream gene expression supports the hypothesis that T0901317 off-target effects on farnesoid X receptor and pregnane X receptor activation are responsible for the unexpected changes in OCT1, OAT2, and MDR1. Uptake of the OCT1 substrate metformin in SCHH was decreased by T0901317 treatment. Effects of decreased OCT1 levels on metformin were simulated using a physiologically-based pharmacokinetic (PBPK) model. Simulations showed a clear decrease in metformin hepatic exposure resulting in a decreased pharmacodynamic effect. This DDI would not be predicted by the modest changes in simulated metformin plasma concentrations. Altogether, the current study demonstrated that an approach combining SCHH, proteomic analysis, and PBPK modeling is useful for revealing tissue concentration–based DDIs caused by unexpected regulation of hepatic transporters by NR modulators.

SIGNIFICANCE STATEMENT

This study utilized an approach combining sandwich-cultured human hepatocytes, proteomic analysis, and physiologically based pharmacokinetic modeling to evaluate alterations in pharmacokinetics (PK) and pharmacodynamics (PD) caused by transporter regulation by nuclear receptor modulators. The importance of this approach from a mechanistic and clinically relevant perspective is that it can reveal drug-drug interactions (DDIs) caused by unexpected regulation of hepatic transporters and enable prediction of altered PK and PD changes, especially for tissue concentration–based DDIs.




arm

Translational Pharmacokinetic-Pharmacodynamic Modeling for an Orally Available Novel Inhibitor of Epigenetic Regulator Enhancer of Zeste Homolog 2 [Drug Discovery and Translational Medicine]

PF06821497 has been identified as an orally available small-molecule enhancer of zeste homolog 2 inhibitor. The objectives of the present study were to characterize pharmacokinetic-pharmacodynamic-disease relationships of PF06821497 in xenograft mouse models with diffuse large B-cell lymphoma (Karpas422). An indirect-response model reasonably fit dose-dependent pharmacodynamic responses [histone H3 on lysine 27 (H3K27) me3 inhibition] with an unbound EC50 of 76 nM, whereas a signal-transduction model sufficiently fit dose-dependent disease responses (tumor growth inhibition) with an unbound tumor stasis concentration (Tsc) of 168 nM. Thus, effective concentration for 70% of maximal effect (EC70) for H3K27me3 inhibition was roughly comparable to Tsc, suggesting that 70% H3K27me3 inhibition could be required for tumor stasis. Consistently, an integrated pharmacokinetic-pharmacodynamic-disease model adequately describing tumor growth inhibition also suggested that ~70% H3K27me3 inhibition was associated with tumor stasis. Based on these results, we would propose that an EC70 estimate for H3K27me3 inhibition corresponding to tumor stasis could be considered a minimum target efficacious concentration of PF06821497 in cancer patients.

SIGNIFICANCE STATEMENT

Using a mathematical modeling approach, the quantitative relationships of an orally available anticancer small-molecule enhancer of zeste homolog 2 inhibitor, PF06821497, were characterized among pharmacokinetics, pharmacodynamic biomarker inhibition, and disease responses in nonclinical xenograft models with diffuse large B-cell lymphoma. The modeling results suggest that >70% histone H3 on lysine 27 (H3K27) me3 inhibition would be required for tumor stasis (i.e., 100% tumor growth inhibition). Accordingly, we would propose that an effective concentration for 70% of maximal effect estimate for H3K27me3 inhibition could be considered a minimum target efficacious concentration of PF06821497 in cancer patients.




arm

Pharmacological Characterization of Apraglutide, a Novel Long-Acting Peptidic Glucagon-Like Peptide-2 Agonist, for the Treatment of Short Bowel Syndrome [Drug Discovery and Translational Medicine]

Glucagon-like peptide-2 (GLP-2) agonists have therapeutic potential in clinical indications in which the integrity or absorptive function of the intestinal mucosa is compromised, such as in short bowel syndrome (SBS). Native hGLP-2, a 33–amino acid peptide secreted from the small intestine, contributes to nutritional absorption but has a very short half-life because of enzymatic cleavage and renal clearance and thus is of limited therapeutic value. The GLP-2 analog teduglutide (Revestive/Gattex; Shire Inc.) has been approved for use in SBS since 2012 but has a once-daily injection regimen. Pharmacokinetic (PK) and pharmacodynamic studies confirm that apraglutide, a novel GLP-2 analog, has very low clearance, long elimination half-life, and high plasma protein binding compared with GLP-2 analogs teduglutide and glepaglutide. Apraglutide and teduglutide retain potency and selectivity at the GLP-2 receptor comparable to native hGLP-2, whereas glepaglutide was less potent and less selective. In rat intravenous PK studies, hGLP-2, teduglutide, glepaglutide, and apraglutide had clearances of 25, 9.9, 2.8, and 0.27 ml/kg per minute, respectively, and elimination half-lives of 6.4, 19, 16, and 159 minutes, respectively. The unique PK profile of apraglutide administered via intravenous and subcutaneous routes was confirmed in monkey and minipig and translated into significantly greater in vivo pharmacodynamic activity, measured as small intestinal growth in rats. Apraglutide showed greater intestinotrophic activity than the other peptides when administered at less-frequent dosing intervals because of its prolonged half-life. We postulate that apraglutide offers several advantages over existing GLP-2 analogs and is an excellent candidate for the treatment of gastrointestinal diseases, such as SBS.

SIGNIFICANCE STATEMENT

Apraglutide is a potent and selective GLP-2 agonist with an extremely low clearance and prolonged elimination half-life, which differentiates it from teduglutide (the only approved GLP-2 agonist). The enhanced pharmacokinetics of apraglutide will benefit patients by enabling a reduced dosing frequency and removing the need for daily injections.




arm

A Mechanistic and Translational Pharmacokinetic-Pharmacodynamic Model of Abicipar Pegol and Vascular Endothelial Growth Factor Inhibition [Drug Discovery and Translational Medicine]

Abicipar pegol (abicipar) is a novel DARPin therapeutic and highly potent vascular endothelial growth factor (VEGF) inhibitor intended for the treatment of neovascular age-related macular degeneration (nAMD). Here we develop a translational pharmacokinetic/pharmacodynamic (PK/PD) model for abicipar to guide dosing regimens in the clinic. The model incorporated abicipar-VEGF binding kinetics, VEGF expression levels, and VEGF turnover rates to describe the ocular and systemic PK data collected from the vitreous, aqueous humor (AH), choroid, retina, and serum of rabbits after a 1-mg abicipar intravitreal (IVT) dose. The model was translated to humans using human-specific mechanistic parameters and refitted to human serum and AH concentrations from patients with diabetic macular edema and nAMD. The model was then used to simulate 8-, 12- (quarterly), and 16-week dosing intervals in the clinic. Simulations of 2 mg abicipar IVT at 8-week or quarterly dosing in humans indicates minimum steady-state vitreal concentrations are maintained above both in vitro IC50 and in vivo human IC50 values. The model predicted virtually complete VEGF inhibition for the 8-week and quarterly dosing schedule during the 52-week treatment period. In the 16-week schedule, clinically significant VEGF inhibition was maintained during the 52-week period. The model quantitatively described abicipar-VEGF target engagement leading to rapid reduction of VEGF and a long duration of VEGF inhibition demonstrating the clinical feasibility of up to a 16-week dosing interval. Abicipar is predicted to reduce IVT dosing compared with other anti-VEGF therapies with the potential to lessen patient treatment burden.

SIGNIFICANCE STATEMENT

Current anti-VEGF treatments for neovascular age-related macular degeneration require frequent (monthly) intravitreal injections and monitoring, which increases patient burden. We developed a mechanistic pharmakinetic/pharmadynamic model to describe the interaction between abicipar (a novel VEGF inhibitor) and VEGF to evaluate the duration of action. The model demonstrates extended abicipar-VEGF target engagement leading to clinical feasibility of up to a 16-week dosing interval. Our model predicted that abicipar 8-week and quarterly dosing schedules maintain virtually complete VEGF inhibition during the 52-week period.




arm

Journal of Pharmacology and Experimental Therapeutics




arm

Molecular Pharmacology




arm

More than Smoke and Patches: The Quest for Pharmacotherapies to Treat Tobacco Use Disorder [Review Articles]

Tobacco use is a persistent public health issue. It kills up to half its users and is the cause of nearly 90% of all lung cancers. The main psychoactive component of tobacco is nicotine, primarily responsible for its abuse-related effects. Accordingly, most pharmacotherapies for smoking cessation target nicotinic acetylcholine receptors (nAChRs), nicotine’s major site of action in the brain. The goal of the current review is twofold: first, to provide a brief overview of the most commonly used behavioral procedures for evaluating smoking cessation pharmacotherapies and an introduction to pharmacokinetic and pharmacodynamic properties of nicotine important for consideration in the development of new pharmacotherapies; and second, to discuss current and potential future pharmacological interventions aimed at decreasing tobacco use. Attention will focus on the potential for allosteric modulators of nAChRs to offer an improvement over currently approved pharmacotherapies. Additionally, given increasing public concern for the potential health consequences of using electronic nicotine delivery systems, which allow users to inhale aerosolized solutions as an alternative to smoking tobacco, an effort will be made throughout this review to address the implications of this relatively new form of nicotine delivery, specifically as it relates to smoking cessation.

Significance Statement

Despite decades of research that have vastly improved our understanding of nicotine and its effects on the body, only a handful of pharmacotherapies have been successfully developed for use in smoking cessation. Thus, investigation of alternative pharmacological strategies for treating tobacco use disorder remains active; allosteric modulators of nicotinic acetylcholine receptors represent one class of compounds currently under development for this purpose.




arm

Transitioning from Basic toward Systems Pharmacodynamic Models: Lessons from Corticosteroids [Review Articles]

Technology in bioanalysis, -omics, and computation have evolved over the past half century to allow for comprehensive assessments of the molecular to whole body pharmacology of diverse corticosteroids. Such studies have advanced pharmacokinetic and pharmacodynamic (PK/PD) concepts and models that often generalize across various classes of drugs. These models encompass the "pillars" of pharmacology, namely PK and target drug exposure, the mass-law interactions of drugs with receptors/targets, and the consequent turnover and homeostatic control of genes, biomarkers, physiologic responses, and disease symptoms. Pharmacokinetic methodology utilizes noncompartmental, compartmental, reversible, physiologic [full physiologically based pharmacokinetic (PBPK) and minimal PBPK], and target-mediated drug disposition models using a growing array of pharmacometric considerations and software. Basic PK/PD models have emerged (simple direct, biophase, slow receptor binding, indirect response, irreversible, turnover with inactivation, and transduction models) that place emphasis on parsimony, are mechanistic in nature, and serve as highly useful "top-down" methods of quantitating the actions of diverse drugs. These are often components of more complex quantitative systems pharmacology (QSP) models that explain the array of responses to various drugs, including corticosteroids. Progressively deeper mechanistic appreciation of PBPK, drug-target interactions, and systems physiology from the molecular (genomic, proteomic, metabolomic) to cellular to whole body levels provides the foundation for enhanced PK/PD to comprehensive QSP models. Our research based on cell, animal, clinical, and theoretical studies with corticosteroids have provided ideas and quantitative methods that have broadly advanced the fields of PK/PD and QSP modeling and illustrates the transition toward a global, systems understanding of actions of diverse drugs.

Significance Statement

Over the past half century, pharmacokinetics (PK) and pharmacokinetics/pharmacodynamics (PK/PD) have evolved to provide an array of mechanism-based models that help quantitate the disposition and actions of most drugs. We describe how many basic PK and PK/PD model components were identified and often applied to the diverse properties of corticosteroids (CS). The CS have complications in disposition and a wide array of simple receptor-to complex gene-mediated actions in multiple organs. Continued assessments of such complexities have offered opportunities to develop models ranging from simple PK to enhanced PK/PD to quantitative systems pharmacology (QSP) that help explain therapeutic and adverse CS effects. Concurrent development of state-of-the-art PK, PK/PD, and QSP models are described alongside experimental studies that revealed diverse CS actions.




arm

Pharmacological Reviews




arm

Managing Excipient Supplier Name and Address Changes in the Pharmaceutical Quality System

It is important to identify, assess, and address current barriers to implementation of post-approval changes that are intended to ensure continued (uninterrupted) operations and drive innovation and continual improvement in a maximally efficient, agile, and flexible pharmaceutical manufacturing sector. Leveraging the International Conference for Harmonisation Quality Guideline Q10 provides regulatory relief when it comes to addressing changes related to excipients, specifically excipient supplier's name and address changes, which will ensure a sustainable, reliable global supply and the availability of high quality product to patients through the entire commercial lifecycle of a product without extensive regulatory oversight.




arm

PDA Journal of Pharmaceutical Science and Technology




arm

Erratum. Ten-Year Outcome of Islet Alone or Islet After Kidney Transplantation in Type 1 Diabetes: A Prospective Parallel-Arm Cohort Study. Diabetes Care 2019;42:2042-2049




arm

Role of the GP in the management of patients with self-harm behaviour: a systematic review

BackgroundSelf-harm is a serious risk factor for suicide, a major public health concern, and a significant burden on the NHS. Rates of self-harm presentation in primary care are rising and GPs interact with patients both before and after they have self-harmed. There is significant public and political interest in reducing rates of self-harm, but there has been no robust synthesis of the existing literature on the role of GPs in the management of patients who self-harm.AimThis study aimed to explore the role of the GP in the management of patients with self-harm behaviour.Design and settingA systematic review and narrative synthesis of primary care literature.MethodThis systematic review was conducted and is reported in line with PRISMA guidance. Electronic databases systematically searched were MEDLINE, PsycINFO, EMBASE, CINAHL, Web of Science, and AMED. Two independent reviewers conducted study screening and selection, data extraction, and quality appraisal of all included studies. Thematic analysis was conducted.ResultsFrom 6976 unique citations, 12 studies met eligibility criteria and were included. These 12 studies, published from 1997–2016, of 789 GPs/family medicine physicians from Europe, the US, and Australia were of good methodological quality. Five themes were identified for facilitating GP management of self-harm: GP training, improved communication, service provision, clinical guidelines, and young people. Four barriers for GP management of self-harm were identified: assessment, service provision, local, and systemic factors.ConclusionGPs recognise self-harm as a serious risk factor for suicide, but some feel unprepared for managing self-harm. The role of the GP is multidimensional and includes frontline assessment and treatment, referral to specialist care, and the provision of ongoing support.




arm

Books: Pain and Prejudice: a Call to Arms for Women and Their Bodies




arm

As the profession soldiers on, all members hear the call to arms




arm

Assessing Risks of Polypharmacy Involving Medications With Anticholinergic Properties [Original Research]

PURPOSE

Anticholinergic burden (ACB), the cumulative effect of anticholinergic medications, is associated with adverse outcomes in older people but is less studied in middle-aged populations. Numerous scales exist to quantify ACB. The aims of this study were to quantify ACB in a large cohort using the 10 most common anticholinergic scales, to assess the association of each scale with adverse outcomes, and to assess overlap in populations identified by each scale.

METHODS

We performed a longitudinal analysis of the UK Biobank community cohort (502,538 participants, baseline age: 37-73 years, median years of follow-up: 6.2). The ACB was calculated at baseline using 10 scales. Baseline data were linked to national mortality register records and hospital episode statistics. The primary outcome was a composite of all-cause mortality and major adverse cardiovascular event (MACE). Secondary outcomes were all-cause mortality, MACE, hospital admission for fall/fracture, and hospital admission with dementia/delirium. Cox proportional hazards models (hazard ratio [HR], 95% CI) quantified associations between ACB scales and outcomes adjusted for age, sex, socioeconomic status, body mass index, smoking status, alcohol use, physical activity, and morbidity count.

RESULTS

Anticholinergic medication use varied from 8% to 17.6% depending on the scale used. For the primary outcome, ACB was significantly associated with all-cause mortality/MACE for each scale. The Anticholinergic Drug Scale was most strongly associated with mortality/MACE (HR = 1.12; 95% CI, 1.11-1.14 per 1-point increase in score). The ACB was significantly associated with all secondary outcomes. The Anticholinergic Effect on Cognition scale was most strongly associated with dementia/delirium (HR = 1.45; 95% CI, 1.3-1.61 per 1-point increase).

CONCLUSIONS

The ACB was associated with adverse outcomes in a middle- to older-aged population. Populations identified and effect size differed between scales. Scale choice influenced the population identified as potentially requiring reduction in ACB in clinical practice or intervention trials.




arm

A Pharmacologic "Stress Test" for Assessing Select Antioxidant Defenses in Patients with CKD

Background and objectives

Oxidative stress is a hallmark and mediator of CKD. Diminished antioxidant defenses are thought to be partly responsible. However, there is currently no way to prospectively assess antioxidant defenses in humans. Tin protoporphyrin (SnPP) induces mild, transient oxidant stress in mice, triggering increased expression of select antioxidant proteins (e.g., heme oxygenase 1 [HO-1], NAD[P]H dehydrogenase [quinone] 1 [NQO1], ferritin, p21). Hence, we tested the hypothesis that SnPP can also variably increase these proteins in humans and can thus serve as a pharmacologic "stress test" for gauging gene responsiveness and antioxidant reserves.

Design, setting, participants, & measurements

A total of 18 healthy volunteers and 24 participants with stage 3 CKD (n=12; eGFR 30–59 ml/min per 1.73 m2) or stage 4 CKD (n=12; eGFR 15–29 ml/min per 1.73 m2) were injected once with SnPP (9, 27, or 90 mg). Plasma and/or urinary antioxidant proteins were measured at baseline and for up to 4 days post-SnPP dosing. Kidney safety was gauged by serial measurements of BUN, creatinine, eGFR, albuminuria, and four urinary AKI biomarkers (kidney injury molecule 1, neutrophil gelatinase-associated lipocalin, cystatin C, and N-acetyl glucosaminidase).

Results

Plasma HO-1, ferritin, p21, and NQO1 were all elevated at baseline in CKD participants. Plasma HO-1 and urine NQO1 levels each inversely correlated with eGFR (r=–0.85 to –0.95). All four proteins manifested statistically significant dose- and time-dependent elevations after SnPP injection. However, marked intersubject differences were observed. p21 responses to high-dose SnPP and HO-1 responses to low-dose SnPP were significantly suppressed in participants with CKD versus healthy volunteers. SnPP was well tolerated by all participants, and no evidence of nephrotoxicity was observed.

Conclusions

SnPP can be safely administered and, after its injection, the resulting changes in plasma HO-1, NQO1, ferritin, and p21 concentrations can provide information as to antioxidant gene responsiveness/reserves in subjects with and without kidney disease.

Clinical Trial registry name and registration number

A Study with RBT-1, in Healthy Volunteers and Subjects with Stage 3–4 Chronic Kidney Disease, NCT0363002 and NCT03893799




arm

Burkholderia cepacia Complex Bacteria: a Feared Contamination Risk in Water-Based Pharmaceutical Products [Reviews]

Burkholderia cepacia (formerly Pseudomonas cepacia) was once thought to be a single bacterial species but has expanded to the Burkholderia cepacia complex (Bcc), comprising 24 closely related opportunistic pathogenic species. These bacteria have a widespread environmental distribution, an extraordinary metabolic versatility, a complex genome with three chromosomes, and a high capacity for rapid mutation and adaptation. Additionally, they present an inherent resistance to antibiotics and antiseptics, as well as the abilities to survive under nutrient-limited conditions and to metabolize the organic matter present in oligotrophic aquatic environments, even using certain antimicrobials as carbon sources. These traits constitute the reason that Bcc bacteria are considered feared contaminants of aqueous pharmaceutical and personal care products and the frequent reason behind nonsterile product recalls. Contamination with Bcc has caused numerous nosocomial outbreaks in health care facilities, presenting a health threat, particularly for patients with cystic fibrosis and chronic granulomatous disease and for immunocompromised individuals. This review addresses the role of Bcc bacteria as a potential public health problem, the mechanisms behind their success as contaminants of pharmaceutical products, particularly in the presence of biocides, the difficulties encountered in their detection, and the preventive measures applied during manufacturing processes to control contamination with these objectionable microorganisms. A summary of Bcc-related outbreaks in different clinical settings, due to contamination of diverse types of pharmaceutical products, is provided.




arm

Tissue Distribution of Doxycycline in Animal Models of Tuberculosis [Pharmacology]

Doxycycline, an FDA-approved tetracycline, is used in tuberculosis in vivo models for the temporal control of mycobacterial gene expression. In these models, animals are infected with recombinant Mycobacterium tuberculosis carrying genes of interest under transcriptional control of the doxycycline-responsive TetR-tetO unit. To minimize fluctuations of plasma levels, doxycycline is usually administered in the diet. However, tissue penetration studies to identify the minimum doxycycline content in food achieving complete repression of TetR-controlled genes in tuberculosis (TB)-infected organs and lesions have not been conducted. Here, we first determined the tetracycline concentrations required to achieve silencing of M. tuberculosis target genes in vitro. Next, we measured doxycycline concentrations in plasma, major organs, and lung lesions in TB-infected mice and rabbits and compared these values to silencing concentrations measured in vitro. We found that 2,000 ppm doxycycline supplemented in mouse and rabbit feed is sufficient to reach target concentrations in TB lesions. In rabbit chow, the calcium content had to be reduced 5-fold to minimize chelation of doxycycline and deliver adequate oral bioavailability. Clearance kinetics from major organs and lung lesions revealed that doxycycline levels fall below concentrations that repress tet promoters within 7 to 14 days after doxycycline is removed from the diet. In summary, we have shown that 2,000 ppm doxycycline supplemented in standard mouse diet and in low-calcium rabbit diet delivers concentrations adequate to achieve full repression of tet promoters in infected tissues of mice and rabbits.




arm

An Individual Participant Data Population Pharmacokinetic Meta-analysis of Drug-Drug Interactions between Lumefantrine and Commonly Used Antiretroviral Treatment [Clinical Therapeutics]

Treating malaria in HIV-coinfected individuals should consider potential drug-drug interactions. Artemether-lumefantrine is the most widely recommended treatment for uncomplicated malaria globally. Lumefantrine is metabolized by CYP3A4, an enzyme that commonly used antiretrovirals often induce or inhibit. A population pharmacokinetic meta-analysis was conducted using individual participant data from 10 studies with 6,100 lumefantrine concentrations from 793 nonpregnant adult participants (41% HIV-malaria-coinfected, 36% malaria-infected, 20% HIV-infected, and 3% healthy volunteers). Lumefantrine exposure increased 3.4-fold with coadministration of lopinavir-ritonavir-based antiretroviral therapy (ART), while it decreased by 47% with efavirenz-based ART and by 59% in the patients with rifampin-based antituberculosis treatment. Nevirapine- or dolutegravir-based ART and malaria or HIV infection were not associated with significant effects. Monte Carlo simulations showed that those on concomitant efavirenz or rifampin have 49% and 80% probability of day 7 concentrations <200 ng/ml, respectively, a threshold associated with an increased risk of treatment failure. The risk of achieving subtherapeutic concentrations increases with larger body weight. An extended 5-day and 6-day artemether-lumefantrine regimen is predicted to overcome these drug-drug interactions with efavirenz and rifampin, respectively.




arm

Evaluation of Dose-Fractionated Polymyxin B on Acute Kidney Injury Using a Translational In Vivo Rat Model [Pharmacology]

We investigated dose-fractionated polymyxin B (PB) on acute kidney injury (AKI). PB at 12 mg of drug/kg of body weight per day (once, twice, and thrice daily) was administered in rats over 72 h. The thrice-daily group demonstrated the highest KIM-1 increase (P = 0.018) versus that of the controls (P = 0.99) and histopathological damage (P = 0.013). A three-compartment model best described the data (bias, 0.129 mg/liter; imprecision, 0.729 mg2/liter2; R2, 0.652,). Area under the concentration-time curve at 24 h (AUC24) values were similar (P = 0.87). The thrice-daily dosing scheme resulted in the most PB-associated AKI in a rat model.




arm

Safety and Pharmacokinetic Characterization of Nacubactam, a Novel {beta}-Lactamase Inhibitor, Alone and in Combination with Meropenem, in Healthy Volunteers [Clinical Therapeutics]

Nacubactam is a novel β-lactamase inhibitor with dual mechanisms of action as an inhibitor of serine β-lactamases (classes A and C and some class D) and an inhibitor of penicillin binding protein 2 in Enterobacteriaceae. The safety, tolerability, and pharmacokinetics of intravenous nacubactam were evaluated in single- and multiple-ascending-dose, placebo-controlled studies. Healthy participants received single ascending doses of nacubactam of 50 to 8,000 mg, multiple ascending doses of nacubactam of 1,000 to 4,000 mg every 8 h (q8h) for up to 7 days, or nacubactam of 2,000 mg plus meropenem of 2,000 mg q8h for 6 days after a 3-day lead-in period. Nacubactam was generally well tolerated, with the most frequently reported adverse events (AEs) being mild to moderate complications associated with intravenous access and headache. There was no apparent relationship between drug dose and the pattern, incidence, or severity of AEs. No clinically relevant dose-related trends were observed in laboratory safety test results. No serious AEs, dose-limiting AEs, or deaths were reported. After single or multiple doses, nacubactam pharmacokinetics appeared linear, and exposure increased in an approximately dose-proportional manner across the dose range investigated. Nacubactam was excreted largely unchanged into urine. Coadministration of nacubactam with meropenem did not significantly alter the pharmacokinetics of either drug. These findings support the continued clinical development of nacubactam and demonstrate the suitability of meropenem as a potential β-lactam partner for nacubactam. (The studies described in this paper have been registered at ClinicalTrials.gov under NCT02134834 [single ascending dose study] and NCT02972255 [multiple ascending dose study].)




arm

Population Pharmacokinetics of Amikacin Administered Once Daily in Patients with Different Renal Functions [Clinical Therapeutics]

The aim of this work was to evaluate the pharmacokinetics of amikacin in Mexican patients with different renal functions receiving once-daily dosing regimens and the influence of clinical and demographical covariates that may influence the optimization of this antibiotic. A prospective study was performed in a total of 63 patients with at least one determination of amikacin plasma concentration. Population pharmacokinetic (PK) parameters were estimated by nonlinear mixed-effects modeling; validations were performed for dosing recommendation purposes based on PK/pharmacodynamic simulations. The concentration-versus-time data were best described by a one-compartment open model with proportional interindividual variability associated with amikacin clearance (CL) and volume of distribution (V); residual error followed a homoscedastic trend. Creatinine clearance (CLCR) and ideal body weight (IBW) demonstrated significant influence on amikacin CL and V, respectively. The final model [CL (liters/h) = 7.1 x (CLCR/130)0.84 and V (liters) = 20.3 x (IBW/68)2.9] showed a mean prediction error of 0.11 mg/liter (95% confidence interval, –3.34, 3.55) in the validation performed in a different group of patients with similar characteristics. There is a wide variability in amikacin PK parameters in Mexican patients. This leads to inadequate dosing regimens, especially in patients with augmented renal clearance (CLCR of >130 ml/min). Optimization based on the final population PK model in Mexican patients may be useful, since reliability and clinical applicability have been demonstrated in this study.




arm

Intravenous and Intraperitoneal Pharmacokinetics of Dalbavancin in Peritoneal Dialysis Patients [Pharmacology]

Dalbavancin offers a possible treatment option for infectious peritonitis associated with peritoneal dialysis (PD) due to its coverage of Gram-positive bacteria and pharmacokinetic properties. We aimed to evaluate the clinical pharmacokinetics (PK) and pharmacodynamics of dalbavancin in a prospective, randomized, open-label, crossover PK study of adult patients with end-stage renal disease ESRD who were receiving PD. Sampling occurred prior to a single 30-min infusion of dalbavancin at 1,500 mg and at 1, 2, 3, 4, and 6 h and 7 and 14 days postadministration. Concentration-time data were analyzed via noncompartmental analysis. Pharmacodynamic parameters against common infectious peritonitis-causing pathogens were evaluated. Ten patients were enrolled. Patients were a median of 55 years old and had a median weight of 78.2 kg, 50% were female, and 70% were Caucasian. The terminal plasma half-life of dalbavancin was 181.4 ± 35.5 h. The day 0 to day 14 dalbavancin mean area under the curve (AUC) was 40,573.2 ± 9,800.3 mg·h/liter. The terminal-phase half-life of dalbavancin within the peritoneal fluid was 4.309 x 108 ± 1.140 x 109 h. The day 0 to day 14 dalbavancin mean peritoneal fluid AUC was 2,125.0 ± 1,794.3 mg·h/liter. The target plasma AUC/MIC was attained with the intravenous dose in all 10 patients for all Staphylococcus and Streptococcus species at the recommended MIC breakpoints. The intraperitoneal arm of the study was stopped early, because the first 3 patients experienced moderate to severe pain and bloating within 1 h following the administration of dalbavancin. Dalbavancin at 1,500 mg administered intravenously can be utilized without dose adjustment in peritoneal dialysis patients and will likely achieve the necessary peritoneal fluid concentrations to treat peritonitis caused by typical Gram-positive pathogens.




arm

Effects of Tenofovir on the Single-Dose Pharmacokinetics of Intravenous Morinidazole in Healthy Chinese Subjects [Pharmacology]

The effects of multiple-dose administration of tenofovir disoproxil fumarate (TDF) on the pharmacokinetics of morinidazole (MOR) were compared in healthy subjects. MOR exposure was similar, with an area under the curve from 0 h to infinity (AUC0-) treatment ratio for MOR+TDF/MOR of 1.01 (90% confidence interval, 0.97 to 1.06). No relevant differences were observed regarding plasma exposure of metabolites. Renal clearances of MOR and its metabolites were not affected by TDF. No unexpected safety or tolerability issues were observed.




arm

Abacavir Exposure in Children Cotreated for Tuberculosis with Rifampin and Superboosted Lopinavir-Ritonavir [Pharmacology]

In children requiring lopinavir coformulated with ritonavir in a 4:1 ratio (lopinavir-ritonavir-4:1) and rifampin, adding ritonavir to achieve a 4:4 ratio with lopinavir (LPV/r-4:4) overcomes the drug-drug interaction. Possible drug-drug interactions within this regimen may affect abacavir concentrations, but this has never been studied. Children weighing <15 kg needing rifampin and LPV/r-4:4 were enrolled in a pharmacokinetic study and underwent intensive pharmacokinetic sampling on 3 visits: (i) during the intensive and (ii) continuation phases of antituberculosis treatment with LPV/r-4:4 and (iii) 1 month after antituberculosis treatment completion on LPV/r-4:1. Pharmacometric modeling and simulation were used to compare exposures across weight bands with adult target exposures. Eighty-seven children with a median (interquartile range) age and weight of 19 (4 to 64) months and 8.7 (3.9 to 14.9) kg, respectively, were included in the abacavir analysis. Abacavir pharmacokinetics were best described by a two-compartment model with first-order elimination and transit compartment absorption. After allometric scaling adjusted for the effect of body size, maturation could be identified: clearance was predicted to be fully mature at about 2 years of age and to reach half of this mature value at about 2 months of age. Abacavir bioavailability decreased 36% during treatment with rifampin and LPV/r-4:4 but remained within the median adult recommended exposure, except for children in the 3- to 4.9-kg weight band, in which the exposures were higher. The observed predose morning trough concentrations were higher than the evening values. Though abacavir exposure significantly decreased during concomitant administration of rifampin and LPV/r-4:4, it remained within acceptable ranges. (This study is registered in ClinicalTrials.gov under identifier NCT02348177.)




arm

Drug Effect of Clofazimine on Persisters Explains an Unexpected Increase in Bacterial Load in Patients [Pharmacology]

Antituberculosis (anti-TB) drug development is dependent on informative trials to secure the development of new antibiotics and combination regimens. Clofazimine (CLO) and pyrazinamide (PZA) are important components of recommended standard multidrug treatments of TB. Paradoxically, in a phase IIa trial aiming to define the early bactericidal activity (EBA) of CLO and PZA monotherapy over the first 14 days of treatment, no significant drug effect was demonstrated for the two drugs using traditional statistical analysis. Using a model-based analysis, we characterized the statistically significant exposure-response relationships for both drugs that could explain the original findings of an increase in the numbers of CFU with CLO treatment and no effect with PZA. Sensitive analyses are crucial for exploring drug effects in early clinical trials to make the right decisions for advancement to further development. We propose that this quantitative semimechanistic approach provides a rational framework for analyzing phase IIa EBA studies and can accelerate anti-TB drug development.




arm

Whole-Genome Characterization of a Shewanella algae Strain Coharboring blaCTX-M-15 and armA Genes on a Novel IncC Plasmid [Letters]




arm

Dose Optimization of Cefpirome Based on Population Pharmacokinetics and Target Attainment during Extracorporeal Membrane Oxygenation [Clinical Therapeutics]

To obtain the optimal dosage regimen in patients receiving extracorporeal membrane oxygenation (ECMO), we developed a population pharmacokinetics model for cefpirome and performed pharmacodynamic analyses. This prospective study included 15 patients treated with cefpirome during ECMO. Blood samples were collected during ECMO (ECMO-ON) and after ECMO (ECMO-OFF) at predose and 0.5 to 1, 2 to 3, 4 to 6, 8 to 10, and 12 h after cefpirome administration. The population pharmacokinetic model was developed using nonlinear mixed effects modeling and stepwise covariate modeling. Monte Carlo simulation was used to assess the probability of target attainment (PTA) and cumulative fraction of response (CFR) according to the MIC distribution. Cefpirome pharmacokinetics were best described by a two-compartment model. Covariate analysis indicated that serum creatinine concentration (SCr) was negatively correlated with clearance, and the presence of ECMO increased clearance and the central volume of distribution. The simulations showed that patients with low SCr during ECMO-ON had lower PTA than patients with high SCr during ECMO-OFF; so, a higher dosage of cefpirome was required. Cefpirome of 2 g every 8 h for intravenous bolus injection or 2 g every 12 h for extended infusion over 4 h was recommended with normal kidney function receiving ECMO. We established a population pharmacokinetic model for cefpirome in patients with ECMO, and appropriate cefpirome dosage regimens were recommended. The impact of ECMO could be due to the change in patient status on consideration of the small population and uncertainty in covariate relationships. Dose optimization of cefpirome may improve treatment success and survival in patients receiving ECMO. (This study has been registered at ClinicalTrials.gov under identifier NCT02581280.)




arm

Levonadifloxacin, a Novel Benzoquinolizine Fluoroquinolone, Modulates Lipopolysaccharide-Induced Inflammatory Responses in Human Whole-Blood Assay and Murine Acute Lung Injury Model [Pharmacology]

Fluoroquinolones are reported to possess immunomodulatory activity; hence, a novel benzoquinolizine fluoroquinolone, levonadifloxacin, was evaluated in lipopolysaccharide-stimulated human whole-blood (HWB) and mouse acute lung injury (ALI) models. Levonadifloxacin significantly mitigated the inflammatory responses in an HWB assay through inhibition of proinflammatory cytokines and in the ALI model by lowering lung total white blood cell count, myeloperoxidase, and cytokine levels. The immunomodulatory effect of levonadifloxacin, along with promising antibacterial activity, is expected to provide clinical benefits in the treatment of infections.




arm

Accumulation of Major Linezolid Metabolites in Patients with Renal Impairment [Pharmacology]

In patients with renal impairment (n = 22 of 39), the median serum concentrations of linezolid, PNU-142300, and PNU-142586 were 1.6-, 3.3-, 2.8-fold higher, respectively, than in patients without renal impairment. Metabolite concentrations in paired samples were poorly correlated with linezolid concentrations (r2 = 0.26 for PNU-142300 and 0.06 for PNU-142586). Linezolid and its metabolites share potential toxicophores that deserve characterization to mitigate higher myelosuppression risk in patients with renal impairment.




arm

[Molecular Pathology] Pharmacologic Approaches for Adapting Proteostasis in the Secretory Pathway to Ameliorate Protein Conformational Diseases

Maintenance of the proteome, ensuring the proper locations, proper conformations, appropriate concentrations, etc., is essential to preserve the health of an organism in the face of environmental insults, infectious diseases, and the challenges associated with aging. Maintaining the proteome is even more difficult in the background of inherited mutations that render a given protein and others handled by the same proteostasis machinery misfolding prone and/or aggregation prone. Maintenance of the proteome or maintaining proteostasis requires the orchestration of protein synthesis, folding, trafficking, and degradation by way of highly conserved, interacting, and competitive proteostasis pathways. Each subcellular compartment has a unique proteostasis network compromising common and specialized proteostasis maintenance pathways. Stress-responsive signaling pathways detect the misfolding and/or aggregation of proteins in specific subcellular compartments using stress sensors and respond by generating an active transcription factor. Subsequent transcriptional programs up-regulate proteostasis network capacity (i.e., ability to fold and degrade proteins in that compartment). Stress-responsive signaling pathways can also be linked by way of signaling cascades to nontranscriptional means to reestablish proteostasis (e.g., by translational attenuation). Proteostasis is also strongly influenced by the inherent kinetics and thermodynamics of the folding, misfolding, and aggregation of individual proteins, and these sequence-based attributes in combination with proteostasis network capacity together influence proteostasis. In this review, we will focus on the growing body of evidence that proteostasis deficits leading to human pathology can be reversed by pharmacologic adaptation of proteostasis network capacity through stress-responsive signaling pathway activation. The power of this approach will be exemplified by focusing on the ATF6 arm of the unfolded protein response stress responsive-signaling pathway that regulates proteostasis network capacity of the secretory pathway.




arm

Charm city căn hộ Chuẩn resort sở hữu Vincom đầu tiên tại Bình Dương, Pháp Lý Hoàn Chỉnh.1.5 tỷ/căn

- Chiết khấu 1% khi khách hàng booking trước ngày mở bán. - Tặng 2 chỉ vàng khi khách sở hữu căn hộ. - Chiết khấu ưu đãi thanh toán từ 3 - 5%. Và nhiều giá trị ưu đãi vào ngày sự kiện hàng tuần và mở bán. Charm city dự án khu phức hợp căn hộ, thương mại, giải trí trung tâm TP...




arm

Sandasea Farm Stay Quảng Bình

Sandasea Farm Stay Quảng Bình là một dự án khá đặc biệt khi được phát triển theo hướng của một khu nghỉ dưỡng cao cấp theo phong cách riêng biệt của từng gia chủ.




arm

Welham Charmlake

Welham Chamrlake là dự án biệt thự nghỉ dưỡng do Công ty CP du lịch sinh thái nghỉ dưỡng Welham Hồ Dụ làm chủ đầu tư.




arm

Công ty TNHH MTV Quang Army