silicon carbide

The diamond–silicon carbide composite Skeleton® as a promising material for substrates of intense X-ray beam optics

The paper considers the possibility of using the diamond-silicon carbide composite Skeleton® with a technological coating of polycrystalline silicon as a substrate for X-ray mirrors used with powerful synchrotron radiation sources (third+ and fourth generation). Samples were studied after polishing to provide the following surface parameters: root-mean-square flatness ≃ 50 nm, micro-roughness on the frame 2 µm × 2 µm σ ≃ 0.15 nm. The heat capacity, thermal conductivity and coefficient of linear thermal expansion were investigated. For comparison, a monocrystalline silicon sample was studied under the same conditions using the same methods. The value of the coefficient of linear thermal expansion turned out to be higher than that of monocrystalline silicon and amounted to 4.3 × 10−6 K−1, and the values of thermal conductivity (5.0 W cm−1 K−1) and heat capacity (1.2 J K−1 g−1) also exceeded the values for Si. Thermally induced deformations of both Skeleton® and monocrystalline silicon samples under irradiation with a CO2 laser beam have also been experimentally studied. Taking into account the obtained thermophysical constants, the calculation of thermally induced deformation under irradiation with hard (20 keV) X-rays showed almost three times less deformation of the Skeleton® sample than of the monocrystalline silicon sample.




silicon carbide

Low temperature silicon carbide deposition process

Methods for formation of silicon carbide on substrate are provided. Atomic layer deposition methods of forming silicon carbide are described in which a first reactant gas of the formula SinHaXb wherein n=1-5, a+b=2n+2, a>0, and X=F, Cl, Br, I; and a second reactant gas of the formula MR3-bYb, wherein R is a hydrocarbon containing substituent, Y is a halide, hydride or other ligand and b=1-3 are sequentially deposited on a substrate and then exposed to a plasma. The process can be repeated multiple times to deposit a plurality of silicon carbide layers.




silicon carbide

Method of manufacturing silicon carbide semiconductor device

A first impurity region is formed by ion implantation through a first opening formed in a mask layer. By depositing a spacer layer on an etching stop layer on which the mask layer has been provided, a mask portion having the mask layer and the spacer layer is formed. By anisotropically etching the spacer layer, a second opening surrounded by a second sidewall is formed in the mask portion. A second impurity region is formed by ion implantation through the second opening. An angle of the second sidewall with respect to a surface is 90°±10° across a height as great as a second depth. Thus, accuracy in extension of an impurity region can be enhanced.




silicon carbide

ULTRA HIGH PERFORMANCE SILICON CARBIDE GATE DRIVERS

A system includes a SiC semiconductor power device; a power supply board that is configured to provide power to a first gate driver board via a connector; the first gate driver board that is coupled and configured to provide current to the SiC semiconductor power device, wherein the first gate driver board is coupled to the power supply board via the connector, and wherein the first gate driver board is separated from the power supply board; and an interconnect board that is coupled to the first gate driver board, wherein the interconnect board is configured to couple the first gate driver board a second gate driver board.




silicon carbide

Microchip Expands Silicon Carbide (SiC) Family of Power Electronics to Provide System Level Improvements in Efficiency, Size and Reliability

Microchip Expands Silicon Carbide (SiC) Family of Power Electronics to Provide System Level Improvements in Efficiency, Size and Reliability




silicon carbide

Catalytic oxidation of methane using single crystal silicon carbide




silicon carbide

Design and development of a silicon carbide chemical vapor deposition reactor




silicon carbide

Synthesis of nanostructures in single crystal silicon carbide by electron beam lithography




silicon carbide

Implant annealing of al dopants in silicon carbide using silane overpressure




silicon carbide

Growth of oxide thin films on 4H- silicon carbide in an afterglow reactor




silicon carbide

Silicon carbide biocompatibility, surface control, and electronic cellular interaction for biosensing applications




silicon carbide

Mechanical properties of Silicon Carbide (SiC) thin films




silicon carbide

The neuron-silicon carbide interface




silicon carbide

Stress-strain management of heteroepitaxial polycrystalline silicon carbide films