sentiment analysis

Unveiling Learner Emotions: Sentiment Analysis of Moodle-Based Online Assessments Using Machine Learning

Aim/Purpose: The study focused on learner sentiments and experiences after using the Moodle assessment module and trained a machine learning classifier for future sentiment predictions. Background: Learner assessment is one of the standard methods instructors use to measure students’ performance and ascertain successful teaching objectives. In pedagogical design, assessment planning is vital in lesson content planning to the extent that curriculum designers and instructors primarily think like assessors. Assessment aids students in redefining their understanding of a subject and serves as the basis for more profound research in that particular subject. Positive results from an evaluation also motivate learners and provide employment directions to the students. Assessment results guide not just the students but also the instructor. Methodology: A modified methodology was used for carrying out the study. The revised methodology is divided into two major parts: the text-processing phase and the classification model phase. The text-processing phase consists of stages including cleaning, tokenization, and stop words removal, while the classification model phase consists of dataset training using a sentiment analyser, a polarity classification model and a prediction validation model. The text-processing phase of the referenced methodology did not utilise tokenization and stop words. In addition, the classification model did not include a sentiment analyser. Contribution: The reviewed literature reveals two major omissions: sentiment responses on using the Moodle for online assessment, particularly in developing countries with unstable internet connectivity, have not been investigated, and variations of the k-fold cross-validation technique in detecting overfitting and developing a reliable classifier have been largely neglected. In this study we built a Sentiment Analyser for Learner Emotion Management using the Moodle for assessment with data collected from a Ghanaian tertiary institution and developed a classification model for future sentiment predictions by evaluating the 10-fold and the 5-fold techniques on prediction accuracy. Findings: After training and testing, the RF algorithm emerged as the best classifier using the 5-fold cross-validation technique with an accuracy of 64.9%. Recommendations for Practitioners: Instead of a closed-ended questionnaire for learner feedback assessment, the open-ended mechanism should be utilised since learners can freely express their emotions devoid of restrictions. Recommendation for Researchers: Feature selection for sentiment analysis does not always improve the overall accuracy for the classification model. The traditional machine learning algorithms should always be compared to either the ensemble or the deep learning algorithms Impact on Society: Understanding learners’ emotions without restriction is important in the educational process. The pedagogical implementation of lessons and assessment should focus on machine learning integration Future Research: To compare ensemble and deep learning algorithms




sentiment analysis

Content-Rating Consistency of Online Product Review and Its Impact on Helpfulness: A Fine-Grained Level Sentiment Analysis

Aim/Purpose: The objective of this research is to investigate the effect of review consistency between textual content and rating on review helpfulness. A measure of review consistency is introduced to determine the degree to which the review sentiment of textual content conforms with the review rating score. A theoretical model grounded in signaling theory is adopted to explore how different variables (review sentiment, review rating, review length, and review rating variance) affect review consistency and the relationship between review consistency and review helpfulness. Background: Online reviews vary in their characteristics and hence their different quality features and degrees of helpfulness. High-quality online reviews offer consumers the ability to make informed purchase decisions and improve trust in e-commerce websites. The helpfulness of online reviews continues to be a focal research issue regardless of the independent or joint effects of different factors. This research posits that the consistency between review content and review rating is an important quality indicator affecting the helpfulness of online reviews. The review consistency of online reviews is another important requirement for maintaining the significance and perceived value of online reviews. Incidentally, this parameter is inadequately discussed in the literature. A possible reason is that review consistency is not a review feature that can be readily monitored on e-commerce websites. Methodology: More than 100,000 product reviews were collected from Amazon.com and preprocessed using natural language processing tools. Then, the quality reviews were identified, and relevant features were extracted for model training. Machine learning and sentiment analysis techniques were implemented, and each review was assigned a consistency score between 0 (not consistent) and 1 (fully consistent). Finally, signaling theory was employed, and the derived data were analyzed to determine the effect of review consistency on review helpfulness, the effect of several factors on review consistency, and their relationship with review helpfulness. Contribution: This research contributes to the literature by introducing a mathematical measure to determine the consistency between the textual content of online reviews and their associated ratings. Furthermore, a theoretical model grounded in signaling theory was developed to investigate the effect on review helpfulness. This work can considerably extend the body of knowledge on the helpfulness of online reviews, with notable implications for research and practice. Findings: Empirical results have shown that review consistency significantly affects the perceived helpfulness of online reviews. The study similarly finds that review rating is an important factor affecting review consistency; it also confirms a moderating effect of review sentiment, review rating, review length, and review rating variance on the relationship between review consistency and review helpfulness. Overall, the findings reveal the following: (1) online reviews with textual content that correctly explains the associated rating tend to be more helpful; (2) reviews with extreme ratings are more likely to be consistent with their textual content; and (3) comparatively, review consistency more strongly affects the helpfulness of reviews with short textual content, positive polarity textual content, and lower rating scores and variance. Recommendations for Practitioners: E-commerce systems should incorporate a review consistency measure to rank consumer reviews and provide customers with quick and accurate access to the most helpful reviews. Impact on Society: Incorporating a score of review consistency for online reviews can help consumers access the best reviews and make better purchase decisions, and e-commerce systems improve their business, ultimately leading to more effective e-commerce. Future Research: Additional research should be conducted to test the impact of review consistency on helpfulness in different datasets, product types, and different moderating variables.




sentiment analysis

Integrating Sentiment Analysis with AI Trading Bots: A New Frontier

Have you been on the lookout for ways to improve your trading game? You will come across a number of suggestions and tips, one of which is using sentiment analysis. It has become quite a hot topic in the trading space these days and for a good reason. In today’s fast-paced trading environment, staying ahead […]

The post Integrating Sentiment Analysis with AI Trading Bots: A New Frontier appeared first on Chart Attack.




sentiment analysis

NuWave Solutions to Co-host Sentiment Analysis Workshop on Deep Learning, Machine Learning, and Lexicon Based

Would you like to know what your customers, users, contacts, or relatives really think? NuWave Solutions' Executive Vice President, Brian Frutchey, leads participants as they build their own sentiment analysis application with KNIME Analytics.




sentiment analysis

MISA: Modality-Invariant and -Specific Representations for Multimodal Sentiment Analysis. (arXiv:2005.03545v1 [cs.CL])

Multimodal Sentiment Analysis is an active area of research that leverages multimodal signals for affective understanding of user-generated videos. The predominant approach, addressing this task, has been to develop sophisticated fusion techniques. However, the heterogeneous nature of the signals creates distributional modality gaps that pose significant challenges. In this paper, we aim to learn effective modality representations to aid the process of fusion. We propose a novel framework, MISA, which projects each modality to two distinct subspaces. The first subspace is modality invariant, where the representations across modalities learn their commonalities and reduce the modality gap. The second subspace is modality-specific, which is private to each modality and captures their characteristic features. These representations provide a holistic view of the multimodal data, which is used for fusion that leads to task predictions. Our experiments on popular sentiment analysis benchmarks, MOSI and MOSEI, demonstrate significant gains over state-of-the-art models. We also consider the task of Multimodal Humor Detection and experiment on the recently proposed UR_FUNNY dataset. Here too, our model fares better than strong baselines, establishing MISA as a useful multimodal framework.