phosphate

Constructing vacancy-rich metal phosphates by the spatial effect of ionic oligomers for enhanced OER activity

J. Mater. Chem. A, 2024, Advance Article
DOI: 10.1039/D4TA01706D, Paper
Yida Zhao, Xinyu He, Xiaoming Ma, Zhengxi Guo, Menghui Qi, Zhaoming Liu, Ruikang Tang
By rationally selecting ionic oligomers as building blocks, sub-nano-sized gaps can be constructed in the solid structure of catalysts. This can overcome the inherent limitations associated with vacancy formation of the traditional nucleation pathway.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




phosphate

Prayon: Phosphate Boost

Prayon, a world leader in phosphate chemistry, will build a new factory and boost the company’s production of food grade sodium hexametaphosphate (SHMP). This project is part of Prayon's growth strategy in several sectors (food additives, water treatment, industrial applications), and it will support the group's development worldwide. 




phosphate

Florida Food Products: Phosphate Free

Florida Food Products, LLC (“FFP”), a leading innovator, formulator, and producer of natural, clean label ingredient solutions, announced the issuance of a new patent granted by the United States Patent and Trademark Office (USPTO) for its rice bran extract marketed under the VegStable® Plus brand.




phosphate

Tris(4-chloro­phen­yl) phosphate

In the title compound, the symmetric phosphate derived from para-chloro­phenol and phospho­ric acid, two of the three aromatic moieties adopt syn-orientation towards the P&z-dbnd;O bond while the last chloro­phenol ring is pointing away from this bond. In the extended structure, C—H⋯O bonds connect the individual mol­ecules into sheets lying perpendicular to the crystallographic b axis.




phosphate

Glucose-6-phosphate dehydrogenase and its 3D structures from crystallography and electron cryo-microscopy

Glucose-6-phosphate dehydrogenase (G6PD) is the first enzyme in the pentose phosphate pathway. It has been extensively studied by biochemical and structural techniques. 13 X-ray crystal structures and five electron cryo-microscopy structures in the PDB are focused on in this topical review. Two F420-dependent glucose-6-phosphate dehydrogenase (FGD) structures are also reported. The significant differences between human and parasite G6PDs can be exploited to find selective drugs against infections such as malaria and leishmaniasis. Furthermore, G6PD is a prognostic marker in several cancer types and is also considered to be a tumour target. On the other hand, FGD is considered to be a target against Mycobacterium tuberculosis and possesses a high biotechnological potential in biocatalysis and bioremediation.




phosphate

Crystal structure of guanosine 5'-monophosphate synthetase from the thermophilic bacterium Thermus thermophilus HB8

Guanosine 5'-monophosphate (GMP) synthetase (GuaA) catalyzes the last step of GMP synthesis in the purine nucleotide biosynthetic pathway. This enzyme catalyzes a reaction in which xanthine 5'-monophosphate (XMP) is converted to GMP in the presence of Gln and ATP through an adenyl-XMP intermediate. A structure of an XMP-bound form of GuaA from the domain Bacteria has not yet been determined. In this study, the crystal structure of an XMP-bound form of GuaA from the thermophilic bacterium Thermus thermophilus HB8 (TtGuaA) was determined at a resolution of 2.20 Å and that of an apo form of TtGuaA was determined at 2.10 Å resolution. TtGuaA forms a homodimer, and the monomer is composed of three domains, which is a typical structure for GuaA. Disordered regions in the crystal structure were obtained from the AlphaFold2-predicted model structure, and a model with substrates (Gln, XMP and ATP) was constructed for molecular-dynamics (MD) simulations. The structural fluctuations of the TtGuaA dimer as well as the interactions between the active-site residues were analyzed by MD simulations.




phosphate

Variable temperature studies of tetra­pyridine­silver(I) hexa­fluoro­phosphate and tetra­pyridine­silver(I) hexa­fluoro­anti­monate

Structures of tetra­pyridine­silver(I) hexa­fluoro­phosphate and tetra­pyridine silver(I) hexa­fluoro­anti­monate are reported from data collected at 300 K and 100 K.




phosphate

Bis[2,6-bis­(1H-benzimidazol-2-yl)pyridine]ruthenium(II) bis(hexa­fluorido­phosphate) diethyl ether tris­olvate

The title compound, [Ru(C19H13N5)2](PF6)2·3C4H10O, was obtained from the reaction of Ru(bimpy)Cl3 [bimpy is 2,6-bis­(1H-benzimidazol-2-yl)pyridine] and bimpy in refluxing ethanol followed by recrystallization from diethyl ether/aceto­nitrile. At 125 K the complex has ortho­rhom­bic (Pca21) symmetry. It is remarkable that the structure is almost centrosymmetric. However, refinement in space group Pbcn leads to disorder and definitely worse results. It is of inter­est with respect to potential catalytic reduction of CO2. The structure displays N—H⋯O, N—H⋯F hydrogen bonding and significant π–π stacking and C—H⋯π stacking inter­actions.




phosphate

Bis[2-(isoquinolin-1-yl)phenyl-κ2N,C1](2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline-κ2N,N')iridium(III) hexa­fluorido­phosphate methanol monosolvate

The title compound, [Ir(C15H10N)2(C19H12N4)]PF6·CH3OH, crystallizes in the C2/c space group with one monocationic iridium complex, one hexa­fluorido­phosphate anion, and one methanol solvent mol­ecule of crystallization in the asymmetric unit, all in general positions. The anion and solvent are linked to the iridium complex cation via hydrogen bonding. All bond lengths and angles fall into expected ranges compared to similar compounds.




phosphate

Δ-Bis[(S)-2-(4-isopropyl-4,5-di­hydro­oxazol-2-yl)phenolato-κ2N,O1](1,10-phenanthroline-κ2N,N')ruthenium(III) hexa­fluorido­phosphate

The title compound, [Ru(C12H14NO2)2(C12H8N2)]PF6 crystallizes in the tetra­gonal Sohnke space group P41212. The two bidentate chiral salicyloxazoline ligands and the phenanthroline co-ligand coordinate to the central RuIII atom through N,O and N,N atom pairs to form bite angles of 89.76 (15) and 79.0 (2)°, respectively. The octa­hedral coordination of the bidentate ligands leads to a propeller-like shape, which induces metal-centered chirality onto the complex, with a right-handed (Δ) absolute configuration [the Flack parameter value is −0.003 (14)]. Both the complex cation and the disordered PF6− counter-anion are located on twofold rotation axes. Apart from Coulombic forces, the crystal cohesion is ensured by non-classical C—H⋯O and C—H⋯F inter­actions.




phosphate

Tris(4-chloro­phen­yl) phosphate

The title compound, C18H12Cl3O4P, is the symmetric phosphate derived from para-chloro­phenol and phospho­ric acid. Two of the three aromatic moieties adopt syn-orientation towards the P=O bond while the last chloro­phenol ring is pointing away from this bond. In the extended structure, C—H⋯O bonds connect the individual mol­ecules into sheets lying perpendicular to the crystallographic b axis.




phosphate

Crystal structure reinvestigation and spectroscopic analysis of tricadmium orthophosphate

Single crystals of tricadmium orthophosphate, Cd3(PO4)2, have been synthesized successfully by the hydro­thermal route, while its powder form was obtained by a solid-solid process. The corresponding crystal structure was determined using X-ray diffraction data in the monoclinic space group P21/n. The crystal structure consists of Cd2O8 or Cd2O10 dimers linked together by PO4 tetra­hedra through sharing vertices or edges. Scanning electron microscopy (SEM) was used to investigate the morphology and to confirm the chemical composition of the synthesized powder. Infrared analysis corroborates the presence of isolated phosphate tetra­hedrons in the structure. UV–Visible studies showed an absorbance peak at 289 nm and a band gap energy of 3.85 eV, as determined by the Kubelka–Munk model.




phosphate

Synthesis, crystal structure and Hirshfeld surface analysis of the tetra­kis complex NaNdPyr4(i-PrOH)2·i-PrOH with a carbacyl­amido­phosphate of the amide type

The tetra­kis complex of neodymium(III), tetra­kis­{μ-N-[bis­(pyrrolidin-1-yl)phos­phor­yl]acet­am­id­ato}bis(pro­pan-2-ol)neodymiumsodium pro­pan-2-ol monosol­vate, [NaNd(C10H16Cl3N3O2)4(C3H8O)2]·C3H8O or NaNdPyr4(i-PrOH)2·i-PrOH, with the amide type CAPh ligand bis(N,N-tetra­methylene)(tri­chloro­acetyl)phos­phoric acid tri­amide (HPyr), has been synthesized, crystallized and characterized by X-ray diffraction. The complex does not have the tetra­kis­(CAPh)lanthanide anion, which is typical for ester-type CAPh-based coordin­ation compounds. Instead, the NdO8 polyhedron is formed by one oxygen atom of a 2-propanol mol­ecule and seven oxygen atoms of CAPh ligands in the title compound. Three CAPh ligands are coordinated in a bidentate chelating manner to the NdIII ion and simultaneously binding the sodium cation by μ2-bridging PO and CO groups while the fourth CAPh ligand is coordinated to the sodium cation in a bidentate chelating manner and, due to the μ2-bridging function of the PO group, also binds the neodymium ion.




phosphate

Crystal structures of two formamidinium hexa­fluorido­phosphate salts, one with batch-dependent disorder

Syntheses of the acyclic amidinium salts, morpholino­formamidinium hexa­fluorido­phosphate [OC4H8N—CH=NH2]PF6 or C5H11N2O+·PF6−, 1, and pyrrolidinoformamidinium hexa­fluorido­phosphate [C4H8N—CH= NH2]PF6 or C5H11N2+·PF6−, 2, were carried out by heating either morpholine or pyrrolidine with triethyl orthoformate and ammonium hexa­fluorido­phosphate. Crystals of 1 obtained directly from the reaction mixture contain one cation and one anion in the asymmetric unit. The structure involves cations linked in chains parallel to the b axis by N—H⋯O hydrogen bonds in space group Pbca, with glide-related chains pointing in opposite directions. Crystals of 1 obtained by recrystallization from ethanol, however, showed a similar unit cell and the same basic structure, but unexpectedly, there was positional disorder [occupancy ratio 0.639 (4):0.361 (4)] in one of the cation chains, which lowered the crystal symmetry to the non-centrosymmetric space group Pca21, with two cations and anions in the asymmetric unit. In the pyrrolidino compound, 2, cations and anions are ordered and are stacked separately, with zigzag N—H⋯F hydrogen-bonding between stacks, forming ribbons parallel to (101), extended along the b-axis direction. Slight differences in the delocalized C=N distances between the two cations may reflect the inductive effect of the oxygen atom in the morpholino compound.




phosphate

Crystal structure of a layered phosphate molybdate K2Gd(PO4)(MoO4)

The title compound dipotassium gadolinium(III) phosphate(V) molybdate(VI), K2Gd(PO4)(MoO4), was synthesized from a high-temperature melt starting from GdF3 as a source of gadolinium. Its structure is isotypic with other MI2MIII(MVIO4)(PO4) compounds, where MI = Na, K or Cs, and MIII = rare-earth cation, MVI = Mo or W. The three-dimensional framework is built up from [Gd(PO4)(MoO4)] anionic sheets, which are organized by adhesion of [GdPO4] layers and [MoO4] tetra­hedra stacked above and below these layers. The inter­stitial space is occupied by K cations having eightfold oxygen coordination. The polyhedron of GdO8 was estimated to be a triangular dodeca­hedron by the continuous shape measurement method.




phosphate

Cadmium phosphates Cd2(PO4)OH and Cd5(PO4)2(OH)4 crystallizing in mineral structures

Single crystals of two basic cadmium phosphates, dicadmium orthophosphate hydroxide, Cd2(PO4)OH, and penta­cadmium bis­(orthophosphate) tetra­kis­(hydroxide), Cd5(PO4)2(OH)4, were obtained under hydro­thermal conditions. Cd2(PO4)OH adopts the triplite [(Mn,Fe)2(PO4)F] structure type. Its asymmetric unit comprises two Cd, one P and five O sites, all situated at the general Wyckoff position 8 f of space group I2/a; two of the O atoms are positionally disordered over two sites, and the H atom could not be localized. Disregarding the disorder, distorted [CdO6] polyhedra form a tri-periodic network by edge-sharing with neighbouring [CdO6] units and by vertex-sharing with [PO4] units. The site associated with the OH group is coordinated by four Cd atoms in a distorted tetra­hedral manner forming 1∞[(OH)Cd4/2] chains parallel to [001]. The oxygen environment around the OH site suggests multiple acceptor atoms for possible O—H⋯O hydrogen-bonding inter­actions and is the putative reason for the disorder. Cd5(PO4)2(OH)4 adopts the arsenoclasite [Mn5(AsO4)2(OH)4] structure type. Its asymmetric unit comprises five Cd, two P, and twelve O sites all located at the general Wyckoff position 4 a of space group P212121; the H atoms could not be localized. The crystal structure of Cd5(PO4)2(OH)4 can be subdivided into two main sub-units. One consists of three edge-sharing [CdO6] octa­hedra, and the other of two edge- and vertex-sharing [CdO6] octa­hedra. Each sub-unit forms corrugated ribbons extending parallel to [100]. The two types of ribbons are linked into the tri-periodic arrangement through vertex-sharing and through common [PO4] tetra­hedra. Qu­anti­tative structure comparisons are made with isotypic M5(XO4)2(OH)4 crystal structures (M = Cd, Mn, Co; X = P, As, V).




phosphate

Crystal structure of tetra­phenyl phosphate tetra­kis­[dimethyl (2,2,2-tri­chloro­acet­yl)phos­pho­ramidato]lutetium(III), PPh4[LuL4]

A lutetium(III) complex based on the anion of the ligand dimethyl (2,2,2-tri­chloro­acet­yl)phospho­ramidate (HL) and tetra­phenylphosphonium, of composition PPh4[LuL4] (L = CAPh = carbacyl­amido­phosphate), or (C24H20)[Lu(C4H6Cl3NO4P)4], has been synthesized and structurally characterized. The X-ray diffraction study of the compound revealed that the lutetium ion is surrounded by four bis-chelating CAPh ligands, forming the complex anion [LuL4]− with a coordination number of 8[O] for LuIII, while PPh4+ serves as a counter-ion. The coordination geometry around the Lu3+ ion was determined to be a nearly perfect triangular dodeca­hedron. The complex crystallizes in the monoclinic crystal system, space group P21/c, with four mol­ecules in the unit cell. Weak hydrogen bonds O⋯HC(Ph), Cl⋯HC(Ph) and N⋯HC(Ph) are formed between the cations and anions. For a comparative study, HL-based structures were retrieved from the Cambridge Structural Database (CSD) and their geometries and conformations are discussed. A Hirshfeld surface analysis was also performed.




phosphate

Synthesis and structure of trans-2,5-di­methyl­piperazine-1,4-diium di­hydrogen diphosphate

In the title salt, C6H16N22+ ·H2P2O72−, the complete dication is generated by a crystallographic centre of symmetry with the methyl groups in equatorial orientations. The complete dianion is generated by a crystallographic twofold axis with the central O atom lying on the axis: the P—O—P bond angle is 135.50 (12)°. In the crystal, the di­hydrogen diphosphate anions are linked by O—H⋯O hydrogen bonds, generating (001) layers. The organic cations bond to the inorganic layers by way of N—H⋯O and C—H⋯O hydrogen bonds. A Hirshfeld surface analysis shows that the most important contributions for the crystal packing are from O⋯H/H⋯O (60.5%) and H⋯H (39.4%) contacts.




phosphate

Powerwin BT100 Revolutionize Your Lithium Iron Phosphate Battery

Save Big on LiFePO4 Batteries from Powerwin During spring sale (MAR.5TH-26TH)




phosphate

RADPHARM PYP kit for the preparation of Technetium (99mTc) tin pyrophosphate powder for injection multidose vial (sodium pyrophosphate)

Manufacturing




phosphate

DALACIN V clindamycin 2% (20mg/g) (as phosphate) cream tube (clindamycin phosphate)

Transport / Logistic issues / Storage capacity issues




phosphate

Disease-associated mutations in inositol 1,4,5-trisphosphate receptor subunits impair channel function [Molecular Bases of Disease]

The inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs), which form tetrameric channels, play pivotal roles in regulating the spatiotemporal patterns of intracellular calcium signals. Mutations in IP3Rs have been increasingly associated with many debilitating human diseases such as ataxia, Gillespie syndrome, and generalized anhidrosis. However, how these mutations affect IP3R function, and how the perturbation of as-sociated calcium signals contribute to the pathogenesis and severity of these diseases remains largely uncharacterized. Moreover, many of these diseases occur as the result of autosomal dominant inheritance, suggesting that WT and mutant subunits associate in heterotetrameric channels. How the in-corporation of different numbers of mutant subunits within the tetrameric channels affects its activities and results in different disease phenotypes is also unclear. In this report, we investigated representative disease-associated missense mutations to determine their effects on IP3R channel activity. Additionally, we designed concatenated IP3R constructs to create tetrameric channels with a predefined subunit composition to explore the functionality of heteromeric channels. Using calcium imaging techniques to assess IP3R channel function, we observed that all the mutations studied resulted in severely attenuated Ca2+ release when expressed as homotetramers. However, some heterotetramers retained varied degrees of function dependent on the composition of the tetramer. Our findings suggest that the effect of mutations depends on the location of the mutation in the IP3R structure, as well as on the stoichiometry of mutant subunits assembled within the tetrameric channel. These studies provide insight into the pathogenesis and penetrance of these devastating human diseases.




phosphate

Phosphate-binding Tag, a New Tool to Visualize Phosphorylated Proteins

Eiji Kinoshita
Apr 1, 2006; 5:749-757
Technology




phosphate

FRET and optical trapping reveal mechanisms of actin activation of the power stroke and phosphate release in myosin V [Enzymology]

Myosins generate force and motion by precisely coordinating their mechanical and chemical cycles, but the nature and timing of this coordination remains controversial. We utilized a FRET approach to examine the kinetics of structural changes in the force-generating lever arm in myosin V. We directly compared the FRET results with single-molecule mechanical events examined by optical trapping. We introduced a mutation (S217A) in the conserved switch I region of the active site to examine how myosin couples structural changes in the actin- and nucleotide-binding regions with force generation. Specifically, S217A enhanced the maximum rate of lever arm priming (recovery stroke) while slowing ATP hydrolysis, demonstrating that it uncouples these two steps. We determined that the mutation dramatically slows both actin-induced rotation of the lever arm (power stroke) and phosphate release (≥10-fold), whereas our simulations suggest that the maximum rate of both steps is unchanged by the mutation. Time-resolved FRET revealed that the structure of the pre– and post–power stroke conformations and mole fractions of these conformations were not altered by the mutation. Optical trapping results demonstrated that S217A does not dramatically alter unitary displacements or slow the working stroke rate constant, consistent with the mutation disrupting an actin-induced conformational change prior to the power stroke. We propose that communication between the actin- and nucleotide-binding regions of myosin assures a proper actin-binding interface and active site have formed before producing a power stroke. Variability in this coupling is likely crucial for mediating motor-based functions such as muscle contraction and intracellular transport.




phosphate

Kinetic Analysis and Metabolism of Poly(Adenosine Diphosphate-Ribose) Polymerase-1-Targeted 18F-Fluorthanatrace PET in Breast Cancer

Visual Abstract




phosphate

{alpha}-Synuclein facilitates endocytosis by elevating the steady-state levels of phosphatidylinositol 4,5-bisphosphate [Membrane Biology]

α-Synuclein (α-Syn) is a protein implicated in the pathogenesis of Parkinson's disease (PD). It is an intrinsically disordered protein that binds acidic phospholipids. Growing evidence supports a role for α-Syn in membrane trafficking, including, mechanisms of endocytosis and exocytosis, although the exact role of α-Syn in these mechanisms is currently unclear. Here we investigate the associations of α-Syn with the acidic phosphoinositides (PIPs), phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2). Our results show that α-Syn colocalizes with PIP2 and the phosphorylated active form of the clathrin adaptor protein 2 (AP2) at clathrin-coated pits. Using endocytosis of transferrin as an indicator for clathrin-mediated endocytosis (CME), we find that α-Syn involvement in endocytosis is specifically mediated through PI(4,5)P2 levels on the plasma membrane. In accord with their effects on PI(4,5)P2 levels, the PD associated A30P, E46K, and A53T mutations in α-Syn further enhance CME in neuronal and nonneuronal cells. However, lysine to glutamic acid substitutions at the KTKEGV repeat domain of α-Syn, which interfere with phospholipid binding, are ineffective in enhancing CME. We further show that the rate of synaptic vesicle (SV) endocytosis is differentially affected by the α-Syn mutations and associates with their effects on PI(4,5)P2 levels, however, with the exception of the A30P mutation. This study provides evidence for a critical involvement of PIPs in α-Syn–mediated membrane trafficking.




phosphate

Phosphate-Buffered Saline (PBS), pH 7.4




phosphate

Phosphate-Buffered Saline with Tween and BSA (PBSTB)




phosphate

Phosphate-Buffered Saline with Tween (0.1%) (PBST)




phosphate

Phosphate-Buffered Saline with 1% BSA (PBSB)




phosphate

Keryx Biopharmaceuticals Initiates Phase 3 Registration Program of Zerenex (ferric citrate) for the Treatment of Patients with Hyperphosphatemia

Keryx Biopharmaceuticals Initiates Phase 3 Registration Program of Zerenex (ferric citrate) for the Treatment of Patient




phosphate

Revisiting the driving force inducing phase separation in PEG–phosphate aqueous biphasic systems

Faraday Discuss., 2024, 253,181-192
DOI: 10.1039/D4FD00058G, Paper
Open Access
Sophie Bonnassieux, Raj Pandya, Dhyllan Adan Skiba, Damien Degoulange, Dorothée Petit, Peter Seem, Russel P. Cowburn, Betar M. Gallant, Alexis Grimaud
We reinvestigated the PEG/K2HPO4/H2O systems using a combination of liquid-phase nuclear magnetic resonance and high-resolution Raman spectroscopies, coupled with injection microcalorimetry.
The content of this RSS Feed (c) The Royal Society of Chemistry




phosphate

Storms mobilize organophosphate esters, bisphenols, PFASs, and vehicle-derived contaminants to San Francisco Bay watersheds

Environ. Sci.: Processes Impacts, 2024, 26,1760-1779
DOI: 10.1039/D4EM00117F, Paper
Open Access
Katherine T. Peter, Alicia Gilbreath, Melissa Gonzalez, Zhenyu Tian, Adam Wong, Don Yee, Ezra L. Miller, Pedro M. Avellaneda, Da Chen, Andrew Patterson, Nicole Fitzgerald, Christopher P. Higgins, Edward P. Kolodziej, Rebecca Sutton
We evaluated the occurrence of 154 organic contaminants from multiple chemical/use classes in San Francisco Bay watersheds during storm events, revealing complex mixtures and high concentrations transported to receiving waters.
The content of this RSS Feed (c) The Royal Society of Chemistry




phosphate

Large optical anisotropy in noncentrosymmetric phosphate with pseudo 2D intercalated layer

Inorg. Chem. Front., 2024, Advance Article
DOI: 10.1039/D4QI02245A, Research Article
Qiao Xia, Xingxing Jiang, Lu Qi, Chao Wu, Zheshuai Lin, Zhipeng Huang, Mark G. Humphrey, Kazuyuki Tatsumi, Chi Zhang
A noncentrosymmetric phosphate (C3H5N2)(H2PO4) with pseudo 2D intercalated layers, which exhibits large birefringence and wide band gap, was successfully synthesized by simultaneously introducing the planar and tetrahedral motifs.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




phosphate

Detection and Identification of Single Ribonucleotide Monophosphates using a Dual In-Plane Nanopore Sensor Made from a Thermoplastic via Replication

Lab Chip, 2024, Accepted Manuscript
DOI: 10.1039/D3LC01062G, Paper
Open Access
  This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
Steven A. Soper, Chathurika Rathnayaka, Indu Chandrasoma, Junseo Choi, Katie Childers, Maximillian Chibuike, Khurshed Akabirov, Farhad Shiri, Adam R Hall, Collin J McKinney, Matthew David Verber, Sunggook Park
We report the generation of ~8 nm dual in-plane pores fabricated in a thermoplastic via nanoimprint lithography (NIL). These pores were connected in series with nanochannels, one of which served...
The content of this RSS Feed (c) The Royal Society of Chemistry




phosphate

Adsorption isotherms of enantiomers on a chiral open-framework copper borophosphate LiCu2[BP2O8(OH)2]

New J. Chem., 2024, 48,7189-7196
DOI: 10.1039/D4NJ00314D, Paper
Zhanna D. Uteeva, Raul U. Sadykov, Diana O. Bagdanova, Marat R. Agliullin, Vladimir Yu. Guskov
The chiral recognition during adsorption in pores with only supramolecular (not molecular) chirality was shown for the first time on zeotype material copper borophosphate LiCu2[BP2O8(OH)2].
The content of this RSS Feed (c) The Royal Society of Chemistry




phosphate

Adsorption of nucleotides and nucleic acids on goethite nanoparticle: mode, sites and relationship with phosphate and non-phosphate structure

Environ. Sci.: Nano, 2024, Accepted Manuscript
DOI: 10.1039/D3EN00891F, Paper
Huajun Feng, Shanshan Ma, Zaiming Chen, Yungui Li, Meizhen Wang, Yangcheng Ding
The impact of iron (hydr)oxide adsorption on nucleotides and nucleic acids (NNA) in the environment varies. However, there is a lack of quantitative reports on how iron (hydr)oxide adsorption changes...
The content of this RSS Feed (c) The Royal Society of Chemistry




phosphate

Kinetic resolution of 1,1'-binaphthyl-2,2'-diamine derivatives by chiral calcium phosphate-catalyzed acylation

Org. Biomol. Chem., 2024, Advance Article
DOI: 10.1039/D4OB00355A, Paper
Tatsuhiro Uchikura, Yuki Kanno, Yukino Fukuda, Mikoto Sato, Takahiko Akiyama
Chiral calcium phosphate-catalyzed kinetic resolution of BINAM derivatives.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




phosphate

(C2H10N2)[Zn2(HPO4)2Cl2]: substitution-activated new short-wave ultraviolet phosphate with pivotal dual-property enhancement

J. Mater. Chem. C, 2024, 12,17482-17489
DOI: 10.1039/D4TC03504F, Paper
Zhi Fang, Yu-Ming Pan, Pei Han, Bing-Ping Yang, Mei-Hong Duan
A substitution-oriented rational approach to a short-wave ultraviolet phosphate, (C2H10N2)[Zn2(HPO4)2Cl2], results in significant dual-property enhancement.
The content of this RSS Feed (c) The Royal Society of Chemistry




phosphate

An electrochemiluminescence microsensor based on DNA-silver nanoclusters amplification for detecting cellular adenosine triphosphate

Anal. Methods, 2024, 16,2019-2024
DOI: 10.1039/D4AY00212A, Paper
GuanQi Wu, Jian Chen, JinXin Dou, XiangWei He, Hai-Fang Li, Jin-Ming Lin
An ECL microsensor integrating RCA magnification and in situ DNA-templated AgNC generation for sensitive detection of cellular ATP.
The content of this RSS Feed (c) The Royal Society of Chemistry




phosphate

Carboxymethyl cellulose-stabilized calcium phosphate particles for injectable hydrogel-based bone tissue engineering

Soft Matter, 2024, Advance Article
DOI: 10.1039/D4SM00670D, Paper
Piyaporn Srisura, Yuwaporn Pinyakit, Umphan Ngoensawat, Pongsakorn Yuntasiri, Khoiria Nur Atika Putri, Theerapat Chanamuangkon, Waranyoo Phoolcharoen, Varol Intasanta, Voravee P. Hoven
Carboxymethyl cellulose-stabilized calcium phosphate particles well-dispersed in aqueous solution can be integrated into an injectable hydrogel made of methacrylated hyaluronic acid which is a promising material for bone regeneration applications.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




phosphate

Preparation and practical applications of a phosphate capture material with FeO(OH)-loaded polyurethane

Environ. Sci.: Water Res. Technol., 2024, Accepted Manuscript
DOI: 10.1039/D4EW00696H, Paper
Hao Li, Ruidong Tao, Zihan Liu, Mengjie Qu, Hui Pan, Mingming Zheng, Yunjun Mei
Metal (hydro) oxide particles with efficient phosphate removal properties are widely used in the treatment of eutrophic waters (mainly phosphorus). However, the disadvantages of easy agglomeration and difficult separation limit...
The content of this RSS Feed (c) The Royal Society of Chemistry




phosphate

Surface treatment of magnetite nanoparticle thin films with potassium phosphate for calcium phosphate precipitation

React. Chem. Eng., 2024, 9,782-786
DOI: 10.1039/D4RE00048J, Communication
Reo Kimura, Kazuto Sugimoto, Iori Yamada, Motohiro Tagaya
The treatment of magnetite nanoparticle thin films with potassium phosphate and their surface reaction with simulated body fluid were in situ monitored by the QCM-D technique, which is suitable for the precipitation of calcium phosphate.
The content of this RSS Feed (c) The Royal Society of Chemistry




phosphate

N,N,N-Trimethyl-1-[4-(pyridin-2-yl)phen­yl]meth­anaminium hexa­fluorido­phosphate

In the cation of the title mol­ecular salt, C15H19N2+·PF6−, the dihedral angle between the benzene and pyridine rings is 38.21 (10)°. In the crystal, weak C—H⋯F inter­actions arising from methyl and methyl­ene groups adjacent to the quaternary N atom generate (001) sheets.




phosphate

(4-Carb­oxy­benz­yl)tri­phenyl­phospho­nium hexa­fluorido­phosphate tetra­hydro­furan monosolvate

The title compound, C26H22O2P+·PF6−·C4H7O, crystallizes as a cation-anion pair with a single solvent mol­ecule in the asymmetric unit. Hydrogen bonding occurs between the carb­oxy­lic acid group on the cation and the oxygen atom of the solvent mol­ecule. Longer hydrogen-bonding inter­actions are observed between fluorine atoms of the anion and H atoms on the phenyl rings of the cation.




phosphate

The synthesis and crystal structure of bis­[3,3-diethyl-1-(phenyl­imino-κN)thio­urea-κS]silver hexa­fluorido­phosphate

The structure of the title complex, [Ag(C11H15N3S)2]PF6, has monoclinic (P21/c) symmetry, and the silver atom has a distorted square-planar geometry. The coordination complex crystallized from mixing silver hexa­fluorido­phosphate with a concentrated tetra­hydro­furan solution of N,N-di­ethyl­phenyl­azo­thio­formamide [ATF; systematic name: 3,3-diethyl-1-(phenyl­imino)­thio­urea] under ambient conditions. The resultant coordination complex exhibits a 2:1 ligand-to-metal ratio, with the silver(I) atom having a fourfold AgN2S2 coordination sphere, with a single PF6 counter-ion. In the crystal, however, one sulfur atom from an ATF ligand of a neighboring complex coordinates to the silver atom, with a bond distance of 2.9884 (14) Å. This creates a polymeric zigzag chain propagating along the c-axis direction. The chains are linked by C—H⋯F hydrogen bonds, forming slabs parallel to the ac plane.




phosphate

Crystal structure of the coordination polymer catena-poly[[[(acetonitrile-κN)copper(I)]-μ3-1,3-dithiolane-κ3S:S:S'] hexafluoridophosphate]

The polymeric title compound, [Cu2(C2H3N)2(C3H6S2)2](PF6)2, represents an example of a one-dimensional coordination polymer resulting from the reaction of [Cu(MeCN)4][PF6] with 1,3-di­thiol­ane. The cationic one-dimensional ribbon consists of two copper(I) centers each ligated by one aceto­nitrile mol­ecule and inter­connected through two bridging 1,3-di­thiol­ane ligands. One S-donor site of each ligand is κ1-bound to Cu, whereas the second S atom acts as a four-electron donor, bridging two Cu atoms in a κ4-bonding mode. The positive charge of each copper cation is compensated for by a hexa­fluorido­phosphate counter-ion. In the crystal, the polymer chains are linked by a series of C—H⋯F hydrogen bonds, forming a supra­molecular framework. The crystal studied was refined as a two-component twin.




phosphate

Synthesis and crystal structure of (1,8-naphth­yridine-κ2N,N')[2-(1H-pyrazol-1-yl)phenyl-κ2N2,C1]iridium(III) hexa­fluorido­phosphate di­chloro­methane monosolvate

The solvated title salt, [Ir(C9H7N2)2(C8H6N2)]PF6·CH2Cl2, was obtained from the reaction between 1,8-naphthyridine (NAP) and an orthometalated iridium(III) precursor containing a 1-phenyl­pyrazole (ppz) ligand. The asymmetric unit comprises one [Ir(ppz)2(NAP)]+ cation, one PF6− counter-ion and one CH2Cl2 solvent mol­ecule. The central IrIII atom of the [Ir(ppz)2(NAP)]+ cation is distorted-octa­hedrally coordinated by four N atoms and two C atoms, whereby two N atoms stem from the NAP ligand while the ppz ligands ligate through one N and one C atom each. In the crystal, the [Ir(ppz)2(NAP)]+ cations and PF6− counter-ions are connected with each other through weak inter­molecular C—H⋯F hydrogen bonds. Together with an additional C—H⋯F inter­action involving the solvent mol­ecule, a three-dimensional network structure is formed.




phosphate

Crystal structure of silver strontium copper orthophosphate, AgSr4Cu4.5(PO4)6

Crystals of the new compound, AgSr4Cu4.5(PO4)6, were grown successfully by the hydro­thermal process. The asymmetric unit of the crystal structure of the title compound contains 40 independent atoms (4 Sr, 4.5 Cu, 1 Ag, 6 P and 24 O), which are all in general positions except for one Cu atom, which is located on an inversion centre. The Cu atoms are arranged in CuOn (n = 4 or 5) polyhedra, linked through common oxygen corners to build a rigid three-dimensional motif. The connection of these copper units is assured by PO4 tetra­hedra. This arrangement allows the construction of layers extending parallel to the (100) plane and hosts suitable cavities in which Ag+ and Sr2+ cations are located. The crystal-structure cohesion is ensured by ionic bonds between the silver and strontium cations and the oxygen anions belonging to two adjacent sheets. Charge-distribution analysis and bond-valence-sum calculations were used to validate the structural model.




phosphate

Crystal structure of the deuterated hepta­hydrate of potassium phosphate, K3PO4·7D2O

Deuterated potassium orthophosphate hepta­hydrate, K3PO4·7D2O, crystallizes in the Sohnke space group P21, and its absolute structure was determined from 2017 Friedel pairs [Flack parameter 0.004 (16)]. Each of the three crystallographically unique K+ cations is surrounded by six water mol­ecules and one oxygen atom from the orthophosphate group, using a threshold for K—O bonds of 3.10 Å. The highly irregular coordination polyhedra are linked by corner- and edge-sharing into a three-dimensional network that is consolidated by an intricate network of O—D⋯O hydrogen bonds of medium strength.