naphtha

Synthesis of 10B-enriched 2,1-borazaronaphthalenes from o-aminostyrenes and 10BF3

Org. Chem. Front., 2024, Advance Article
DOI: 10.1039/D4QO00176A, Research Article
Weihua Qiu, Jide Zhu, Rencai Tao, Kai Yang, Qiuling Song
Herein we present a practical approach for preparing 10B-enriched 2,1-borazaronaphthalenes from o-aminostyrenes and 10BF3 (the primary source of boron-10) in the presence of chlorosilane.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




naphtha

2-{1-[(6R,S)-3,5,5,6,8,8-Hexamethyl-5,6,7,8-tetra­hydro­naphthalen-2-yl]ethyl­idene}-N-methyl­hydrazinecarbo­thioamide

The reaction between a racemic mixture of (R,S)-fixolide and 4-methyl­thio­semicarbazide in ethanol with a 1:1 stoichiometric ratio and catalysed with HCl, yielded the title compound, C20H31N3S [common name: (R,S)-fixolide 4-methyl­thio­semicarbazone]. There is one crystallographically independent mol­ecule in the asymmetric unit, which is disordered over the aliphatic ring [site-occupancy ratio = 0.667 (13):0.333 (13)]. The disorder includes the chiral C atom, the neighbouring methyl­ene group and the methyl H atoms of the methyl group bonded to the chiral C atom. The maximum deviations from the mean plane through the disordered aliphatic ring amount to 0.328 (6) and −0.334 (6) Å [r.m.s.d. = 0.2061 Å], and −0.3677 (12) and 0.3380 (12) Å [r.m.s.d. = 0.2198 Å] for the two different sites. Both fragments show a half-chair conformation. Additionally, the N—N—C(=S)—N entity is approximately planar, with the maximum deviation from the mean plane through the selected atoms being 0.0135 (18) Å [r.m.s.d. = 0.0100 Å]. The mol­ecule is not planar due to the dihedral angle between the thio­semicarbazone entity and the aromatic ring, which amounts to 51.8 (1)°, and due to the sp3-hybridized carbon atoms of the fixolide fragment. In the crystal, the mol­ecules are connected by H⋯S inter­actions with graph-set motif C(4), forming a mono-periodic hydrogen-bonded ribbon along [100]. The Hirshfeld surface analysis suggests that the major contributions for the crystal cohesion are [(R,S)-isomers considered separately] H⋯H (75.7%), H⋯S/S⋯H (11.6%), H⋯C/C⋯H (8.3% and H⋯N/N⋯H (4.4% for both of them).




naphtha

Tetra­aqua­(ethane-1,2-di­amine-κ2N,N')nickel(II) naphthalene-1,5-di­sulfonate dihydrate

The reaction of ethane-1,2-di­amine (en, C2H8N2), the sodium salt of naphthalene-1,5-di­sulfonic acid (H2NDS, C10H8O6S2), and nickel sulfate in an aqueous solution resulted in the formation of the title salt, [Ni(C2H8N2)(H2O)4](C10H6O6S2)·2H2O or [Ni(en)(H2O)4](NDS)·2H2O. In the asymmetric unit, one half of an [Ni(en)(H2O)4]2+ cation and one half of an NDS2− anion, and one water mol­ecule of crystallization are present. The Ni2+ cation in the complex is positioned on a twofold rotation axis and exhibits a slight tetra­gonal distortion of the cis-NiO4N2 octa­hedron, with an Ni—N bond length of 2.0782 (16) Å, and Ni—O bond lengths of 2.1170 (13) Å and 2.0648 (14) Å. The anion is completed by inversion symmetry. In the extended structure, the cations, anions, and non-coordinating water mol­ecules are connected by inter­molecular N—H⋯O and O—H⋯O hydrogen bonding, as well as C—H⋯π inter­actions, forming a three-dimensional network.




naphtha

Bis(8-hy­droxy­quinolinium) naphthalene-1,5-di­sulfonate tetra­hydrate

The inter­action between 8-hy­droxy­quinoline (8HQ, C9H7NO) and naphthalene-1,5-di­sulfonic acid (H2NDS, C10H8O6S2) in aqueous media results in the formation of the salt hydrate bis­(8-hy­droxy­quinolinium) naphthalene-1,5-di­sulfonate tetra­hydrate, 2C9H8NO+·C10H6O6S22−·4H2O. The asymmetric unit comprises one protonated 8HQ+ cation, half of an NDS2– dianion symmetrically disposed around a center of inversion, and two water mol­ecules. Within the crystal structure, these components are organized into chains along the [010] and [10overline{1}] directions through O—H⋯O and N—H⋯O hydrogen-bonding inter­actions, forming a di-periodic network parallel to (101). Additional stabilizing inter­actions such as C—H⋯O, C—H⋯π, and π–π inter­actions extend this arrangement into a tri-periodic network structure




naphtha

(1R,2S,4aR,6S,8R,8aS)-1-(3-Hy­droxy­propano­yl)-1,3,6,8-tetra­methyl-1,2,4a,5,6,7,8,8a-octa­hydronaphthalene-2-carb­oxy­lic acid

The mol­ecular structure of C18H28O4, (+)-diplodiatoxin, is described, whereby the absolute configuration of the structure of diplodiatoxin has been confirmed by single-crystal X-ray diffraction. Diplodiatoxin crystallizes in the chiral P43212 space group with one mol­ecule in the asymmetric unit.




naphtha

Synthesis, crystal structure and Hirshfeld analysis of trans-bis­(2-{1-[(6R,S)-3,5,5,6,8,8-hexa­methyl-5,6,7,8-tetra­hydronaphthalen-2-yl]ethyl­idene}-N-methyl­hydrazinecarbo­thio­amidato-κ2N2,S)palladium(II) ethanol mon

The reaction between the (R,S)-fixolide 4-methyl­thio­semicarbazone and PdII chloride yielded the title compound, [Pd(C20H30N3S)2]·C2H6O {common name: trans-bis­[(R,S)-fixolide 4-methyl­thio­semicarbazonato-κ2N2S]palladium(II) ethanol monosolvate}. The asymmetric unit of the title compound consists of one bis-thio­semicarbazonato PdII complex and one ethanol solvent mol­ecule. The thio­semicarbazononato ligands act as metal chelators with a trans configuration in a distorted square-planar geometry. A C—H⋯S intra­molecular inter­action, with graph-set motif S(6), is observed and the coordination sphere resembles a hydrogen-bonded macrocyclic environment. Additionally, one C—H⋯Pd anagostic inter­action can be suggested. Each ligand is disordered over the aliphatic ring, which adopts a half-chair conformation, and two methyl groups [s.o.f. = 0.624 (2):0.376 (2)]. The disorder includes the chiral carbon atoms and, remarkably, one ligand has the (R)-isomer with the highest s.o.f. value atoms, while the other one shows the opposite, the atoms with the highest s.o.f. value are associated with the (S)-isomer. The N—N—C(=S)—N fragments of the ligands are approximately planar, with the maximum deviations from the mean plane through the selected atoms being 0.0567 (1) and −0.0307 (8) Å (r.m.s.d. = 0.0403 and 0.0269 Å) and the dihedral angle with the respective aromatic rings amount to 46.68 (5) and 50.66 (4)°. In the crystal, the complexes are linked via pairs of N—H⋯S inter­actions, with graph-set motif R22(8), into centrosymmetric dimers. The dimers are further connected by centrosymmetric pairs of ethanol mol­ecules, building mono-periodic hydrogen-bonded ribbons along [011]. The Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are [atoms with highest/lowest s.o.f.s considered separately]: H⋯H (81.6/82.0%), H⋯C/C⋯H (6.5/6.4%), H⋯N/N⋯H (5.2/5.0%) and H⋯S/S⋯H (5.0/4.9%).




naphtha

Synthesis, crystal structure and Hirshfeld surface analysis of a cadmium complex of naphthalene-1,5-di­sulfonate and o-phenyl­enedi­amine

A novel o-phenyl­enedi­amine (opda)-based cadmium complex, bis­(benzene-1,2-di­amine-κ2N,N')bis­(benzene-1,2-di­amine-κN)cadmium(II) naphthalene-1,5-di­sulfonate, [Cd(C6H8N2)4](C10H6O6S2), was synthesized. The complex salt crystallizes in the monoclinic space group C2/c. The Cd atom occupies a special position and coordinates six nitro­gen atoms from four o-phenyl­enedi­amine mol­ecules, two as chelating ligands and two as monodentate ligands. The amino H atoms of opda inter­act with two O atoms of the naphthalene-1,5-di­sulfonate anions. The anions act as bridges between [Cd(opda)4]2+ cations, forming a two-dimensional network in the [010] and [001] directions. The Hirshfeld surface analysis shows that the primary factors contributing to the supramolecular inter­actions are short contacts, particularly van der Waals forces of the type H⋯H, O⋯H and C⋯H.




naphtha

Crystal structure, Hirshfeld surface analysis and energy frameworks of 1-[(E)-2-(2-fluoro­phen­yl)diazan-1-yl­idene]naphthalen-2(1H)-one

The title compound, C16H11N2OF, is a member of the azo dye family. The dihedral angle subtended by the benzene ring and the naphthalene ring system measures 18.75 (7)°, indicating that the compound is not perfectly planar. An intra­molecular N—H⋯O hydrogen bond occurs between the imino and carbonyl groups. In the crystal, the mol­ecules are linked into inversion dimers by C—H⋯O inter­actions. Aromatic π–π stacking between the naphthalene ring systems lead to the formation of chains along [001]. A Hirshfeld surface analysis was undertaken to investigate and qu­antify the inter­molecular inter­actions. In addition, energy frameworks were used to examine the cooperative effect of these inter­molecular inter­actions across the crystal, showing dispersion energy to be the most influential factor in the crystal organization of the compound.




naphtha

Synthesis, crystal structure and Hirshfeld surface analysis of 2-({5-[(naphthalen-1-yl)meth­yl]-4-phenyl-4H-1,2,4-triazol-3-yl}sulfan­yl)-1-(4-nitro­phen­yl)ethanone

The title compound, C27H20N4O3S, crystallizes in the monoclinic system, space group P21/n, with Z = 4. The global shape of the mol­ecule is determined by the orientation of the substituents on the central 4H-1,2,4-triazole ring. The nitro­phenyl ring, phenyl ring, and naphthalene ring system are oriented at dihedral angles of 82.95 (17), 77.14 (18) and 89.46 (15)°, respectively, with respect to the triazole ring. The crystal packing features chain formation in the b-axis direction by S⋯O inter­actions. A Hirshfeld surface analysis indicates that the highest contributions to surface contacts arise from contacts in which H atoms are involved.




naphtha

Synthesis, crystal structure and Hirshfeld surface analysis of N-(6-acetyl-1-nitro­naphthalen-2-yl)acetamide

The title compound, C14H12N2O4, was obtained from 2-acetyl-6-amino­naphthalene through two-step reactions of acetyl­ation and nitration. The mol­ecule comprises the naphthalene ring system consisting of functional systems bearing a acetyl group (C-2), a nitro group (C-5), and an acetyl­amino group (C-6). In the crystal, the mol­ecules are assembled into two-dimensional sheet-like structures by inter­molecular N—H⋯O and C—H⋯O hydrogen-bonding inter­actions. Hirshfeld surface analysis illustrates that the most important contributions to the crystal packing are from O⋯H/H⋯O (43.7%), H⋯H (31.0%), and C⋯H/H⋯C (8.5%) contacts.




naphtha

Crystal structure characterization, Hirshfeld surface analysis, and DFT calculation studies of 1-(6-amino-5-nitro­naphthalen-2-yl)ethanone

The title compound, C12H10N2O3, was obtained by the de­acetyl­ation reaction of 1-(6-amino-5-nitro­naphthalen-2-yl)ethanone in a concentrated sulfuric acid methanol solution. The mol­ecule comprises a naphthalene ring system bearing an acetyl group (C-3), an amino group (C-7), and a nitro group (C-8). In the crystal, the mol­ecules are assembled into a two-dimensional network by N⋯H/H⋯N and O⋯H/H⋯O hydrogen-bonding inter­actions. n–π and π–π stacking inter­actions are the dominant inter­actions in the three-dimensional crystal packing. Hirshfeld surface analysis indicates that the most important contributions are from O⋯H/H⋯O (34.9%), H⋯H (33.7%), and C⋯H/H⋯C (11.0%) contacts. The energies of the frontier mol­ecular orbitals were computed using density functional theory (DFT) calculations at the B3LYP-D3BJ/def2-TZVP level of theory and the LUMO–HOMO energy gap of the mol­ecule is 3.765 eV.




naphtha

Synthesis, non-spherical structure refinement and Hirshfeld surface analysis of racemic 2,2'-diisobut­oxy-1,1'-bi­naphthalene

In the racemic title compound, C28H30O2, the naphthyl ring systems subtend a dihedral angle of 68.59 (1)° and the mol­ecular conformation is consolidated by a pair of intra­molecular C—H⋯π contacts. The crystal packing features a weak C—H⋯π contact and van der Waals forces. A Hirshfeld surface analysis of the crystal structure reveals that the most significant contributions are from H⋯H (73.2%) and C⋯H/H⋯C (21.2%) contacts.




naphtha

Naphthalene diimide-based crystalline hybrid photochromic materials: Structural types, photochromic mechanism, and applications

Inorg. Chem. Front., 2024, Accepted Manuscript
DOI: 10.1039/D4QI02653E, Review Article
Li Li, Jian-Ge Zeng, Ning-Ning Zhang, Yu Yang-Tao, Shu-Hao Li, Yang Hua
The multifunctional stimuli-responsive photochromic materials significantly expand their application fields, including molecular switching, information storage and encryption, detection and sensing, etc. 1,4,5,8-naphthalenediimides (NDIs) have been widely used for the construction...
The content of this RSS Feed (c) The Royal Society of Chemistry




naphtha

Correction: Recent progress of core-substituted naphthalenediimides: highlights from 2010

Org. Biomol. Chem., 2024, Advance Article
DOI: 10.1039/D4OB90045F, Correction
Open Access
  This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
Sheshanath V. Bhosale, Sidhanath V. Bhosale, Suresh K. Bhargava
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




naphtha

Entropically and enthalpically driven self-assembly of a naphthalimide-based luminescent organic π-amphiphile in water

Soft Matter, 2024, 20,8684-8691
DOI: 10.1039/D4SM00986J, Paper
Sk Mursed Ali, Sujauddin Sk, Shuvajyoti Sarkar, Sayani Das, Nayim Sepay, Mijanur Rahaman Molla
Entropically and enthalpically favourable vesicular self-assembly of a naphthalimide based water soluble luminescent organic dipolar building block is reported.
The content of this RSS Feed (c) The Royal Society of Chemistry




naphtha

Unprecedented C–F bond cleavage in perfluoronaphthalene during cobaltocene reduction

Dalton Trans., 2024, 53,17789-17793
DOI: 10.1039/D4DT02791D, Communication
Gargi Kundu, Debjit Pramanik, Soumya Ranjan Dash, Ravi Kumar, Mayur Sangole, Srinu Tothadi, Aryya Ghosh, Kumar Vanka, Kirandeep Singh, Sakya S. Sen
The reduction of octafluoronapthalene by cobaltocene in preence of NHC led to a distinct Co(I) species with the cleavage of the C–F bond and the formation of Co–C bond.
The content of this RSS Feed (c) The Royal Society of Chemistry




naphtha

Tobacco, naphthalene and land records


We cannot implement policies for land reforms without a well-functioning land records system. And If we get this platform in place, we can enable all those interested in reform policy with the tools to ensure that their policy dreams get translated into ground realities, says Ramesh Ramanathan.




naphtha

(E)-1-(2-Hy­droxy-6-meth­oxy­phen­yl)-3-(2-meth­oxy­naphthalen-1-yl)prop-2-en-1-one

In the title compound, C21H18O4, the dihedral angle between the naphthelene ring system (r.m.s. deviation = 0.014 Å) and the benzene ring is 9.68 (1)°. The C atom of the meth­oxy group of the naphthalene ring system is almost coplanar with the ring [C—O—C—C = −2.0 (3)°], whereas the C atom of the meth­oxy group of the phenol ring is slightly twisted [C—O—C—C = 6.2 (3)°]. An intra­molecular O—H⋯O hydrogen bond generates an S(6) ring motif.




naphtha

2-[(1-Benzyl-1H-1,2,3-triazol-4-yl)meth­oxy]-1-naphthaldehyde

In the title compound, C21H17N3O2, the triazole ring system is inclined at dihedral angles of 4.14 (18) and 69.24 (11)° with the naphthalene ring system and phenyl ring, respectively. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds into double columns propagating along the b-axis direction.




naphtha

1,4-Bis­(4-meth­oxy­phen­yl)naphthalene

The title naphthalene derivative, C24H20O2, features 4-methy­oxy-substituted benzene rings in the 1 and 4 positions of the naphthalene ring system. There are two crystallographically independent mol­ecules (A and B) in asymmetric unit. The independent mol­ecules have very similar conformations in which the naphthalene ring systems are only slightly bent, exhibiting dihedral angles between the constituent benzene rings of 3.76 (15) and 3.39 (15)° for A and B, respectively. The pendent 4-methyoxybenzene rings are splayed out of the plane through the naphthalene ring system to which they are connected [range of dihedral angles = 59.63 (13) to 67.09 (13)°]. In the crystal, the mol­ecular packing is consolidated by inter­molecular C—H⋯π inter­actions, leading to supra­molecular chains along the b axis. The chains assemble without directional inter­actions between them.




naphtha

[(1R*,3S*,4S*)-3-(2-Hy­droxy­benzo­yl)-1,2,3,4-tetra­hydro-1,4-ep­oxy­naphthalen-1-yl]methyl 4-nitro­benzoate

The relative stereo- and regiochemistry of the racemic title compound, C25H19NO7, were established from the crystal structure. The fused benzene ring forms dihedral angles of 77.3 (1) and 60.3 (1)° with the hy­droxy-substituted benzene ring and the nitro-substituted benzene ring, respectively. The dihedral angle between the hy­droxy-substituted benzene ring and the nitro-substituted benzene ring is 76.4 (1)°. An intra­molecular O—H⋯O hydrogen bond closes an S(6) ring. In the crystal, weak C—H⋯O hydrogen bonds connect the mol­ecules, forming layers parallel to (100). Within these layers, there are weak π–π stacking inter­actions with a ring centroid–ring centroid distance of 3.555 (1) Å.




naphtha

Crystal structure of N,N'-bis­[3-(methyl­sulfan­yl)prop­yl]-1,8:4,5-naphthalene­tetra­carb­oxy­lic di­imide

The title compound, C22H22N2O4S2, was synthesized by the reaction of 1,4,5,8-naphthalene­tetra­carb­oxy­lic dianhydride with 3-(methyl­sulfan­yl)propyl­amine. The whole mol­ecule is generated by an inversion operation of the asymmetric unit. This mol­ecule has an anti form with the terminal methyl­thio­propyl groups above and below the aromatic di­imide plane, where four intra­molecular C—H⋯O and C—H⋯S hydrogen bonds are present and the O⋯H⋯S angle is 100.8°. DFT calculations revealed slight differences between the solid state and gas phase structures. In the crystal, C—H⋯O and C—H⋯S hydrogen bonds link the mol­ecules into chains along the [2overline20] direction. adjacent chains are inter­connected by π–π inter­actions, forming a two-dimensional network parallel to the (001) plane. Each two-dimensional layer is further packed in an ABAB sequence along the c-axis direction. Hirshfeld surface analysis shows that van der Waals inter­actions make important contributions to the inter­molecular contacts. The most important contacts found in the Hirshfeld surface analysis are H⋯H (44.2%), H⋯O/O⋯H (18.2%), H⋯C/C⋯H (14.4%), and H⋯S/S⋯H (10.2%).




naphtha

5-Methyl-1,3-phenyl­ene bis­[5-(di­methyl­amino)­naphthalene-1-sulfonate]: crystal structure and DFT calculations

The title compound, C31H30N2S2O6, possesses crystallographically imposed twofold symmetry with the two C atoms of the central benzene ring and the C atom of its methyl substituent lying on the twofold rotation axis. The two dansyl groups are twisted away from the plane of methyl­phenyl bridging unit in opposite directions. The three-dimensional arrangement in the crystal is mainly stabilized by weak hydrogen bonds between the sulfonyl oxygen atoms and the hydrogen atoms from the N-methyl groups. Stacking of the dansyl group is not observed. From the DFT calculations, the HOMO–LUMO energy gap was found to be 2.99 eV and indicates n→π* and π→π* transitions within the mol­ecule.




naphtha

Crystal structure and Hirshfeld surface analysis of 2-hy­droxy-7-meth­oxy-1,8-bis­(2,4,6-tri­chloro­benzo­yl)naphthalene

In the title compound, C25H12Cl6O4, the two carbonyl groups are oriented in a same direction with respect to the naphthalene ring system and are situated roughly parallel to each other, while the two 2,4,6-tri­chloro­benzene rings are orientated in opposite directions with respect to the naphthalene ring system: the carbonyl C—(C=O)—C planes subtend dihedral angles of 45.54 (15) and 30.02 (15)° to the naphthalene ring system are. The dihedral angles formed by the carbonyl groups and the benzene rings show larger differences, the C=O vectors being inclined to the benzene rings by 46.39 (16) and 79.78 (16)°. An intra­molecular O—H⋯O=C hydrogen bond forms an S(6) ring motif. In the crystal, no effective inter­molecular hydrogen bonds are found; instead, O⋯Cl and C⋯Cl close contacts are observed along the 21 helical-axis direction. The Hirshfeld surface analysis reveals several weak interactions, the major contributor being Cl⋯H/H⋯Cl contacts.




naphtha

The crystal structures and Hirshfeld surface analysis of 6-(naphthalen-1-yl)-6a-nitro-6,6a,6b,7,9,11a-hexa­hydro­spiro­[chromeno[3',4':3,4]pyrrolo­[1,2-c]thia­zole-11,11'-indeno­[1,2-b]quinoxaline] and 6'-(naphthalen-1-yl)-6a

The title compounds, 6-(naphthalen-1-yl)-6a-nitro-6,6a,6 b,7,9,11a-hexa­hydro­spiro­[chromeno[3',4':3,4]pyrrolo­[1,2-c]thia­zole-11,11'-indeno­[1,2-b]quinoxaline], C37H26N4O3S, (I), and 6'-(naphthalen-1-yl)-6a'-nitro-6',6a',6b',7',8',9',10',12a'-octa­hydro-2H-spiro­[ace­naphthyl­ene-1,12'-chromeno[3,4-a]indolizin]-2-one, C36H28N2O4, (II), are new spiro derivatives, in which both the pyrrolidine rings adopt twisted conformations. In (I), the five-membered thia­zole ring adopts an envelope conformation, while the eight-membered pyrrolidine-thia­zole ring adopts a boat conformation. An intra­molecular C—H⋯N hydrogen bond occurs, involving a C atom of the pyran ring and an N atom of the pyrazine ring. In (II), the six-membered piperidine ring adopts a chair conformation. An intra­molecular C—H⋯O hydrogen bond occurs, involving a C atom of the pyrrolidine ring and the keto O atom. For both compounds, the crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonds. In (I), the C—H⋯O hydrogen bonds link adjacent mol­ecules, forming R22(16) loops propagating along the b-axis direction, while in (II) they form zigzag chains along the b-axis direction. In both compounds, C—H⋯π inter­actions help to consolidate the structure, but no significant π–π inter­actions with centroid–centroid distances of less than 4 Å are observed.




naphtha

Crystal structure of a two-dimensional coordination polymer of formula [Zn(NDC)(DEF)] (H2NDC is naphthalene-2,6-di­carb­oxy­lic acid and DEF is N,N-di­ethyl­formamide)

A zinc metal–organic framework, namely poly[bis­(N,N-di­ethyl­formamide)(μ4-naphthalene-2,6-di­carboxyl­ato)(μ2-naphthalene-2,6-di­carboxyl­ato)dizinc(II)], [Zn(C12H6O4)(C15H11NO)]n, built from windmill-type secondary building units and forming zigzag shaped two-dimensional stacked layers, has been solvothermally synthesized from naphthalene-2,6-di­carb­oxy­lic acid and zinc(II) acetate as the metal source in N,N-di­ethyl­formamide containing small amounts of formic acid.




naphtha

Crystal structure, characterization and Hirshfeld analysis of bis­{(E)-1-[(2,4,6-tri­bromo­phen­yl)diazen­yl]naphthalen-2-olato}copper(II) dimethyl sulfoxide monosolvate

In the title compound, [Cu(C16H8Br3N2O)2]·C2H6OS, the CuII atom is tetra­coordinated in a square-planar coordination, being surrounded by two N atoms and two O atoms from two N,O-bidentate (E)-1-[(2,4,6-tri­bromo­phen­yl)diazen­yl]naphthalen-2-olate ligands. The two N atoms and two O atoms around the metal center are trans to each other, with an O—Cu—O bond angle of 177.90 (16)° and a N—Cu—N bond angle of 177.8 (2)°. The average distances between the CuII atom and the coordinated O and N atoms are 1.892 (4) and 1.976 (4) Å, respectively. In the crystal, complexes are linked by C—H⋯O hydrogen bonds and by π–π inter­actions involving adjacent naphthalene ring systems [centroid–centroid distance = 3.679 (4) Å]. The disordered DMSO mol­ecules inter­act weakly with the complex mol­ecules, being positioned in the voids left by the packing arrangement of the square-planar complexes. The DMSO solvent mol­ecule is disordered over two positions with occupancies of 0.70 and 0.30.




naphtha

Dye composition using a 2-hydroxynaphthalene, (acylamino)phenol or quinoline coupler in a fatty-substance-rich medium, dyeing process and device therefor

The present invention relates to a cosmetic composition for dyeing keratin fibers, in particular human keratin fibers such as the hair, comprising: a) one or more fatty substances; b) one or more surfactants; c) one or more oxidation bases; d) one or more couplers based on 2-hydroxynaphthalene derivatives or particular phenol derivatives, acylaminophenol derivatives or quinoline derivatives; f) one or more basifying agents; e) optionally one or more chemical oxidizing agents; and the fatty substance content representing in total at least 25% by weight relative to the total weight of the formulation. The present invention also relates to a process using this composition, and to a multi-compartment device that is suitable for performing the said process.




naphtha

Naphtha

Naphtha decreased 325.51 USD/T or 60.72% since the beginning of 2020, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Historically, Naphtha reached an all time high of 1180.47 in July of 2008. Naphtha is a flammable liquid that can be used as fuel, metal cleaner, high-octane gas and as petrochemical in production of plastics. Naphtha prices are highly correlated with crude oil as it is generally produced during the refining of crude oil. Each contract represents 1,000 metric tons. The Naphtha prices displayed in Trading Economics are based on over-the-counter (OTC) and contract for difference (CFD) financial instruments. Our market prices are intended to provide you with a reference only, rather than as a basis for making trading decisions. Trading Economics does not verify any data and disclaims any obligation to do so.




naphtha

India Exports of Naphtha

Exports of Naphtha in India increased to 0.82 TONNE Million in March from 0.70 TONNE Million in February of 2020. Exports of Naphtha in India averaged 0.66 TONNE Million from 2014 until 2020, reaching an all time high of 0.97 TONNE Million in December of 2019 and a record low of 0.36 TONNE Million in October of 2015. This page includes a chart with historical data for India Exports of Naphtha.




naphtha

India Imports of Naphtha

Imports of Naphtha in India increased to 0.15 TONNE Million in March from 0.12 TONNE Million in February of 2020. Imports of Naphtha in India averaged 0.17 TONNE Million from 2014 until 2020, reaching an all time high of 0.39 TONNE Million in April of 2018 and a record low of 0 TONNE Million in October of 2014. This page includes a chart with historical data for India Imports of Naphtha.




naphtha

[ASAP] Lanthanide 5,7-Disulfonate-1,4-naphthalenedicarboxylate Frameworks Constructed from Trinuclear and Tetranuclear Lanthanide Carboxylate Clusters: Proton Conduction and Selective Fluorescent Sensing of Fe<sup>3+</sup>

Inorganic Chemistry
DOI: 10.1021/acs.inorgchem.0c00680




naphtha

[ASAP] Substituted Naphthalenediimide Compounds Bind Selectively to Two Human Quadruplex Structures with Parallel Topology

ACS Medicinal Chemistry Letters
DOI: 10.1021/acsmedchemlett.0c00041




naphtha

Novel 2-naphthyl substituted zinc naphthalocyanine: synthesis, optical, electrochemical and spectroelectrochemical properties

New J. Chem., 2020, Advance Article
DOI: 10.1039/D0NJ00987C, Paper
T. V. Dubinina, E. O. Moiseeva, D. A. Astvatsaturov, N. E. Borisova, P. A. Tarakanov, S. A. Trashin, K. De Wael, L. G. Tomilova
New zinc naphthalocyanine with bulky 2-naphthyl groups was obtained. Aggregation drastically influences its optical and electrochemical behavior. Spectroelectrochemistry helps to establish the oxidation potential and reveals unusual color change.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




naphtha

Cocrystals/salt of 1-naphthaleneacetic acid and utilizing Hirshfeld surface calculations for acid–aminopyrimidine synthons

CrystEngComm, 2020, 22,2978-2989
DOI: 10.1039/D0CE00106F, Paper
Utsav Garg, Yasser Azim, Aranya Kar, Chullikkattil P. Pradeep
Revisit of acid–aminopyrimidine synthons to explore the robustness in presence of linear hetrotetramer and heterotrimer synthon.
The content of this RSS Feed (c) The Royal Society of Chemistry




naphtha

The impact of positional isomerism on electronic and photochromic properties of 1D zinc-based naphthalene diimide coordination polymers

CrystEngComm, 2020, Advance Article
DOI: 10.1039/D0CE00025F, Paper
Pengfei Hao, Huihui Zhu, Yue Pang, Junju Shen, Yunlong Fu
The positional isomeric DPNDI ligands can effectively modulate the interfacial contacts of electron donors/acceptors and the efficiency of electronic/photochromic properties.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




naphtha

[ASAP] Synthesis of Stable, High-SOMO Zwitterionic Radicals: Enabling Intermolecular Electron Transfer between Naphthalenediimides

Organic Letters
DOI: 10.1021/acs.orglett.0c01263




naphtha

Intersystem Crossing via Charge Recombination in a Perylene-Naphthalimide Compact Electron Donor/Acceptor Dyad

J. Mater. Chem. C, 2020, Accepted Manuscript
DOI: 10.1039/D0TC00017E, Paper
MUHAMMAD IMRAN, Ahmed Elzohry, Clemens Matt, Maria Taddei, Sandra Doria, Laura Bussotti, Paolo FOGGI, Jianzhang Zhao, Mariangela Di Donato, Omar F. Mohammed, Stefan Weber
In order to study the relationship between the molecular structures of compact electron donor/acceptor dyads and the spin orbit charge transfer intersystem crossing (SOCT-ISC) efficiency, we prepared perylene (Pery)-naphthalimide (NI)...
The content of this RSS Feed (c) The Royal Society of Chemistry




naphtha

[ASAP] Two-Photon and Multicolor Fluorogenic Bioorthogonal Probes Based on Tetrazine-Conjugated Naphthalene Fluorophores

Bioconjugate Chemistry
DOI: 10.1021/acs.bioconjchem.0c00197




naphtha

[ASAP] Application of GaInSn Liquid Metal Alloy Replacing Mercury in a Phase Equilibrium Cell: Vapor Pressures of Toluene, Hexylbenzene, and 2-Ethylnaphthalene

Journal of Chemical & Engineering Data
DOI: 10.1021/acs.jced.9b01208




naphtha

[ASAP] Research on Binary Phase Equilibrium for 1-Methylnaphthalene + CO<sub>2</sub>

Journal of Chemical & Engineering Data
DOI: 10.1021/acs.jced.0c00121




naphtha

Self-assembly of isomeric naphthalene appended glucono derivatives: nanofibers and nanotwists with circularly polarized luminescence emission

Soft Matter, 2020, 16,4115-4120
DOI: 10.1039/C9SM02542A, Paper
Zongwen Liu, Yuqian Jiang, Jian Jiang, Donghua Zhai, Decai Wang, Minghua Liu
Two isomers of naphthalene derivatives are self-assembled into nanofibers and nanotwists with CPL emission, respectively.
The content of this RSS Feed (c) The Royal Society of Chemistry




naphtha

[ASAP] Naphthacemycins from a <italic toggle="yes">Streptomyces</italic> sp. as Protein-Tyrosine Phosphatase Inhibitors

Journal of Natural Products
DOI: 10.1021/acs.jnatprod.9b00417




naphtha

One-step catalytic amination of naphthalene to naphthylamine with exceptional yield

Green Chem., 2020, Advance Article
DOI: 10.1039/D0GC00633E, Communication
Fang Hao, Xin Wang, Linfang Huang, Wei Xiong, Pingle Liu, Hean Luo
This is the first time to synthesize naphthylamine from one-step naphthalene amination by vanadium catalysts with high yield under mild condition. It could obtain ∼70% yield of naphthylamine, with major product of valuable 1,5-diaminonaphthalene.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry