motor control

Mastering schematic drawings: Analyzing seal-in contacts in motor control circuits

In the domain of electrical engineering, seal-in contacts stand as pivotal components in control circuits, ensuring the sustained operation of electrical devices beyond the initial activation. These mechanisms play a critical role in maintaining the energized state of circuit elements,... Read more

The post Mastering schematic drawings: Analyzing seal-in contacts in motor control circuits appeared first on EEP - Electrical Engineering Portal.




motor control

to wire a motor control circuit

to wire a motor control circuit




motor control

Motor controlling apparatus

A motor controlling apparatus includes a first target torque value calculator, a frequency detector, a second target torque value calculator, a torque command value calculator, a torque limiter, and a controller. The first target torque value calculator calculates a first target torque value, which is a target value of an output torque of a motor. The frequency detector detects a motor rotational frequency. The second target torque value calculator calculates a second target torque value based on the rotational frequency. The torque command value calculator mathematically combines (e.g., adds) the first and target torque values to calculate a torque command value. The torque limiter sets the signs of the first target torque value and the torque command value to be equal to limit the torque command value according to the first target torque value. The controller controls the motor based on the limited torque command value.




motor control

Pulse width modulation DC motor controller

A controller for a DC motor comprises an output switching element configured to couple to the DC motor; an input switching element coupled to the output switching element; a pulse width modulated (PWM) signal coupled to a control terminal of the input switching element and a supply voltage applied to the output switching element. A resistive-capacitive (RC) network may be coupled to a control terminal of the output switching element, with the RC network being configured to integrate the PWM signal into a DC voltage. A first resistive network may be configured to set a bias for the output switching element when the input switching element is turned off, and a second resistive network may be configured to set the bias for the output switching element when the input switching element is turned on, such that the controller is effective to provide zero-to-full supply voltage control to the DC motor.




motor control

Motor control device

A motor control device comprises: an acceleration upper limit estimating unit; a target acceleration setting unit; a motor control unit; and a deficit calculating unit, wherein the target acceleration setting unit corrects the target acceleration based on the acceleration profile by an amount corresponding to the acceleration deficit within a range in which the target acceleration does not exceed the acceleration upper limit on the basis of the acceleration deficit calculated by the deficit calculating unit to set the target acceleration at each time.




motor control

Motor control apparatus and image forming apparatus

A motor control apparatus for controlling a DC motor includes a first detection unit configured to detect an angular velocity of the DC motor, a driven member configured to be driven by the DC motor, a control unit configured to perform, during start-up of the DC motor, feed forward control for changing a control value used for controlling drive of the DC motor from a first control value corresponding to an angular velocity smaller than a target angular velocity to a second control value corresponding to the target angular velocity, and to change the feed forward control to feedback control for controlling the control value based on a detection result by the first detection unit to keep the DC motor at the target angular velocity, and a second detection unit configured to detect whether the driven member has been replaced.




motor control

Methods and apparatus for electric motor controller protection

A method for monitoring input power to an electronically commutated motor (ECM) is described. The method includes determining, with a processing device, an average input current to the motor, the average input current based on a voltage drop across a shunt resistor in series with the motor, measuring an average input voltage applied to the motor utilizing the processing device, multiplying the average input current by the average voltage to determine an approximate input power, and communicating the average input power to an external interface.




motor control

Electric motor assembly, method for operating an electric motor, and motor control device

The invention relates to an electric motor assembly, particularly for driving a fan for an engine cooling system and/or an air conditioner of a motor vehicle, comprising an electric motor and a motor control device for activating the electric motor. According to the invention, the motor control device can be adjusted according to a characteristic curve (1,2,3,4) of the electric motor and/or of the fan, and thereby the power and/or rotational speed of the electric motor can be adjusted.




motor control

Motor current detection apparatus, motor controller, and electric power tool

A motor current detection apparatus in the present invention includes: a current detection unit, a first filter, and a second filter. The detection unit detects a conduction current flowing from a battery to a brushless motor and outputs a conduction current signal corresponding to the detected conduction current. The first filter extracts a first current signal which is included in the conduction current signal outputted from the detection unit and is a signal component in a frequency band equal to or lower than a predetermined first cutoff frequency. The second filter extracts a second current signal which is included in the conduction current signal outputted from the detection unit and is a signal component in a predetermined frequency band within a frequency band equal to or lower than a predetermined second cutoff frequency higher than the first cutoff frequency and having the second cutoff frequency as a maximum value.




motor control

Fan Motor Controller for Use in an Air Conditioning System

One aspect provides an air conditioning system that includes a compressor housing, a motor having fan blades rotatably coupled thereto and located within the compressor housing. The motor has a rotation sensor associated with it that is configured to sense a rotation of the fan blades. This embodiment further comprises a controller coupled to the motor and is configured to increase a torque of the motor when the rotation sensor indicates that the fan blades are not rotating after an on command signal is received by the motor.




motor control

Reward-Based Improvements in Motor Control Are Driven by Multiple Error-Reducing Mechanisms

Reward has a remarkable ability to invigorate motor behavior, enabling individuals to select and execute actions with greater precision and speed. However, if reward is to be exploited in applied settings, such as rehabilitation, a thorough understanding of its underlying mechanisms is required. In a series of experiments, we first demonstrate that reward simultaneously improves the selection and execution components of a reaching movement. Specifically, reward promoted the selection of the correct action in the presence of distractors, while also improving execution through increased speed and maintenance of accuracy. These results led to a shift in the speed-accuracy functions for both selection and execution. In addition, punishment had a similar impact on action selection and execution, although it enhanced execution performance across all trials within a block, that is, its impact was noncontingent to trial value. Although the reward-driven enhancement of movement execution has been proposed to occur through enhanced feedback control, an untested possibility is that it is also driven by increased arm stiffness, an energy-consuming process that enhances limb stability. Computational analysis revealed that reward led to both an increase in feedback correction in the middle of the movement and a reduction in motor noise near the target. In line with our hypothesis, we provide novel evidence that this noise reduction is driven by a reward-dependent increase in arm stiffness. Therefore, reward drives multiple error-reduction mechanisms which enable individuals to invigorate motor performance without compromising accuracy.

SIGNIFICANCE STATEMENT While reward is well-known for enhancing motor performance, how the nervous system generates these improvements is unclear. Despite recent work indicating that reward leads to enhanced feedback control, an untested possibility is that it also increases arm stiffness. We demonstrate that reward simultaneously improves the selection and execution components of a reaching movement. Furthermore, we show that punishment has a similar positive impact on performance. Importantly, by combining computational and biomechanical approaches, we show that reward leads to both improved feedback correction and an increase in stiffness. Therefore, reward drives multiple error-reduction mechanisms which enable individuals to invigorate performance without compromising accuracy. This work suggests that stiffness control plays a vital, and underappreciated, role in the reward-based imporvemenets in motor control.




motor control

dsPIC33CK64MC105 Motor Control Plug-In Module (PIM) Information Sheet for External Op Amp Configuration

dsPIC33CK64MC105 Motor Control Plug-In Module (PIM) Information Sheet for External Op Amp Configuration




motor control

dsPIC33CK64MC105 Motor Control Plug-In Module (PIM) Information Sheet for Internal Op Amp Configuration

dsPIC33CK64MC105 Motor Control Plug-In Module (PIM) Information Sheet for Internal Op Amp Configuration




motor control

AN3453 - Sensored 3-Phase BLDC Motor Control Using Sinusoidal Drive

AN3453 - Sensored 3-Phase BLDC Motor Control Using Sinusoidal Drive




motor control

Dual Motor Control with the dsPIC33CK - White Paper

Dual Motor Control with the dsPIC33CK - White Paper