microscopy

In situ analysis of the oxygen evolution reaction on the CuO film in alkaline solution by surface interrogation scanning electrochemical microscopy: investigating active sites (CuIII) and kinetics

J. Mater. Chem. A, 2024, Advance Article
DOI: 10.1039/D4TA00628C, Paper
Seokjun Han, Jinoh Yoo, Won Tae Choi
Surface interrogation scanning electrochemical microscopy was employed to assess the electrocatalytic activity of CuO films for the oxygen evolution reaction in an alkaline solution.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




microscopy

Glucose-6-phosphate dehydrogenase and its 3D structures from crystallography and electron cryo-microscopy

Glucose-6-phosphate dehydrogenase (G6PD) is the first enzyme in the pentose phosphate pathway. It has been extensively studied by biochemical and structural techniques. 13 X-ray crystal structures and five electron cryo-microscopy structures in the PDB are focused on in this topical review. Two F420-dependent glucose-6-phosphate dehydrogenase (FGD) structures are also reported. The significant differences between human and parasite G6PDs can be exploited to find selective drugs against infections such as malaria and leishmaniasis. Furthermore, G6PD is a prognostic marker in several cancer types and is also considered to be a tumour target. On the other hand, FGD is considered to be a target against Mycobacterium tuberculosis and possesses a high biotechnological potential in biocatalysis and bioremediation.




microscopy

An alternative method to the Takagi–Taupin equations for studying dark-field X-ray microscopy of deformed crystals

This study introduces an alternative method to the Takagi–Taupin equations for investigating the dark-field X-ray microscopy (DFXM) of deformed crystals. In scenarios where dynamical diffraction cannot be disregarded, it is essential to assess the potential inaccuracies of data interpretation based on the kinematic diffraction theory. Unlike the Takagi–Taupin equations, this new method utilizes an exact dispersion relation, and a previously developed finite difference scheme with minor modifications is used for the numerical implementation. The numerical implementation has been validated by calculating the diffraction of a diamond crystal with three components, wherein dynamical diffraction is applicable to the first component and kinematic diffraction pertains to the remaining two. The numerical convergence is tested using diffraction intensities. In addition, the DFXM image of a diamond crystal containing a stacking fault is calculated using the new method and compared with the experimental result. The new method is also applied to calculate the DFXM image of a twisted diamond crystal, which clearly shows a result different from those obtained using the Takagi–Taupin equations.




microscopy

In situ characterization of stresses, deformation and fracture of thin films using transmission X-ray nanodiffraction microscopy

The use of hard X-ray transmission nano- and microdiffraction to perform in situ stress and strain measurements during deformation has recently been demonstrated and used to investigate many thin film systems. Here a newly commissioned sample environment based on a commercially available nanoindenter is presented, which is available at the NanoMAX beamline at the MAX IV synchrotron. Using X-ray nanoprobes of around 60–70 nm at 14–16 keV and a scanning step size of 100 nm, we map the strains, stresses, plastic deformation and fracture during nanoindentation of industrial coatings with thicknesses in the range of several micrometres, relatively strong texture and large grains. The successful measurements of such challenging samples illustrate broad applicability. The sample environment is openly accessible for NanoMAX beamline users through the MAX IV sample environment pool, and its capability can be further extended for specific purposes through additional available modules.




microscopy

Development of dual-beamline photoelectron momentum microscopy for valence orbital analysis

The soft X-ray photoelectron momentum microscopy (PMM) experimental station at the UVSOR Synchrotron Facility has been recently upgraded by additionally guiding vacuum ultraviolet (VUV) light in a normal-incidence configuration. PMM offers a very powerful tool for comprehensive electronic structure analyses in real and momentum spaces. In this work, a VUV beam with variable polarization in the normal-incidence geometry was obtained at the same sample position as the soft X-ray beam from BL6U by branching the VUV beamline BL7U. The valence electronic structure of the Au(111) surface was measured using horizontal and vertical linearly polarized (s-polarized) light excitations from BL7U in addition to horizontal linearly polarized (p-polarized) light excitations from BL6U. Such highly symmetric photoemission geometry with normal incidence offers direct access to atomic orbital information via photon polarization-dependent transition-matrix-element analysis.




microscopy

Asymmetric electrostatic dodecapole: compact bandpass filter with low aberrations for momentum microscopy

Imaging energy filters in photoelectron microscopes and momentum microscopes use spherical fields with deflection angles of 90°, 180° and even 2 × 180°. These instruments are optimized for high energy resolution, and exhibit image aberrations when operated in high transmission mode at medium energy resolution. Here, a new approach is presented for bandpass-filtered imaging in real or reciprocal space using an electrostatic dodecapole with an asymmetric electrode array. In addition to energy-dispersive beam deflection, this multipole allows aberration correction up to the third order. Here, its use is described as a bandpass prefilter in a time-of-flight momentum microscope at the hard X-ray beamline P22 of PETRA III. The entire instrument is housed in a straight vacuum tube because the deflection angle is only 4° and the beam displacement in the filter is only ∼8 mm. The multipole is framed by transfer lenses in the entrance and exit branches. Two sets of 16 different-sized entrance and exit apertures on piezomotor-driven mounts allow selection of the desired bandpass. For pass energies between 100 and 1400 eV and slit widths between 0.5 and 4 mm, the transmitted kinetic energy intervals are between 10 eV and a few hundred electronvolts (full width at half-maximum). The filter eliminates all higher or lower energy signals outside the selected bandpass, significantly improving the signal-to-background ratio in the time-of-flight analyzer.




microscopy

In situ characterization of stresses, deformation and fracture of thin films using transmission X-ray nanodiffraction microscopy. Corrigendum

Errors in variable subscripts, equations and Fig. 8 in Section 3.2 of the article by Lotze et al. [(2024). J. Synchrotron Rad. 31, 42–52] are corrected.




microscopy

The soft X-ray spectromicroscopy beamline BL08U1A upgrade at SSRF

Beamline BL08U1A is a soft X-ray spectromicroscopy beamline at Shanghai Synchrotron Radiation Facility (SSRF) that exhibits the capabilities of high spatial resolution (30 nm) and high energy resolving power (over 104). As a first-generation beamline of SSRF, owing to its continuous operation over the last ten years, an urgent upgrade of the equipment including the monochromator was deemed necessary. The upgrade work included the overall construction of the monochromator and replacement of the mirrors upstream and downstream of the monochromator. Based on its original skeleton, two elliptically cylinder mirrors were designed to focus the beam horizontally, which can increase the flux density by about three times on the exit slits. Meanwhile, the application of variable-line-space gratings in the monochromator demonstrates the dual functions of dispersing and focusing on the exit slits which can decrease abberations dramatically. After the upgrade of the main components of the beamline, the energy range is 180–2000 eV, the energy resolving power reaches 16333 @ 244 eV and 12730 @ 401 eV, and the photon flux measured in the experimental station is over 2.45 × 109 photons s−1 (E/ΔE = 6440 @ 244 eV).




microscopy

Validation of electron-microscopy maps using solution small-angle X-ray scattering

The determination of the atomic resolution structure of biomacromolecules is essential for understanding details of their function. Traditionally, such a structure determination has been performed with crystallographic or nuclear resonance methods, but during the last decade, cryogenic transmission electron microscopy (cryo-TEM) has become an equally important tool. As the blotting and flash-freezing of the samples can induce conformational changes, external validation tools are required to ensure that the vitrified samples are representative of the solution. Although many validation tools have already been developed, most of them rely on fully resolved atomic models, which prevents early screening of the cryo-TEM maps. Here, a novel and automated method for performing such a validation utilizing small-angle X-ray scattering measurements, publicly available through the new software package AUSAXS, is introduced and implemented. The method has been tested on both simulated and experimental data, where it was shown to work remarkably well as a validation tool. The method provides a dummy atomic model derived from the EM map which best represents the solution structure.




microscopy

Scanning WAXS microscopy of regenerated cellulose fibers at mesoscopic resolution

In this work, regenerated cellulose textile fibers, Ioncell-F, dry-wet spun with different draw ratios, have been investigated by scanning wide-angle X-ray scattering (WAXS) using a mesoscopic X-ray beam. The fibers were found to be homogeneous on the 500 nm length scale. Analysis of the azimuthal angular dependence of a crystalline Bragg spot intensity revealed a radial dependence of the degree of orientation of crystallites that was found to increase with the distance from the center of the fiber. We attribute this to radial velocity gradients during the extrusion of the spin dope and the early stage of drawing. On the other hand, the fiber crystallinity was found to be essentially homogeneous over the fiber cross section.




microscopy

Structure of Aquifex aeolicus lumazine synthase by cryo-electron microscopy to 1.42 Å resolution

Single-particle cryo-electron microscopy (cryo-EM) has become an essential structural determination technique with recent hardware developments making it possible to reach atomic resolution, at which individual atoms, including hydrogen atoms, can be resolved. In this study, we used the enzyme involved in the penultimate step of riboflavin biosynthesis as a test specimen to benchmark a recently installed microscope and determine if other protein complexes could reach a resolution of 1.5 Å or better, which so far has only been achieved for the iron carrier ferritin. Using state-of-the-art microscope and detector hardware as well as the latest software techniques to overcome microscope and sample limitations, a 1.42 Å map of Aquifex aeolicus lumazine synthase (AaLS) was obtained from a 48 h microscope session. In addition to water molecules and ligands involved in the function of AaLS, we can observe positive density for ∼50% of the hydrogen atoms. A small improvement in the resolution was achieved by Ewald sphere correction which was expected to limit the resolution to ∼1.5 Å for a molecule of this diameter. Our study confirms that other protein complexes can be solved to near-atomic resolution. Future improvements in specimen preparation and protein complex stabilization may allow more flexible macromolecules to reach this level of resolution and should become a priority of study in the field.




microscopy

Roodmus: a toolkit for benchmarking heterogeneous electron cryo-microscopy reconstructions

Conformational heterogeneity of biological macromolecules is a challenge in single-particle averaging (SPA). Current standard practice is to employ classification and filtering methods that may allow a discrete number of conformational states to be reconstructed. However, the conformation space accessible to these molecules is continuous and, therefore, explored incompletely by a small number of discrete classes. Recently developed heterogeneous reconstruction algorithms (HRAs) to analyse continuous heterogeneity rely on machine-learning methods that employ low-dimensional latent space representations. The non-linear nature of many of these methods poses a challenge to their validation and interpretation and to identifying functionally relevant conformational trajectories. These methods would benefit from in-depth benchmarking using high-quality synthetic data and concomitant ground truth information. We present a framework for the simulation and subsequent analysis with respect to the ground truth of cryo-EM micrographs containing particles whose conformational heterogeneity is sourced from molecular dynamics simulations. These synthetic data can be processed as if they were experimental data, allowing aspects of standard SPA workflows as well as heterogeneous reconstruction methods to be compared with known ground truth using available utilities. The simulation and analysis of several such datasets are demonstrated and an initial investigation into HRAs is presented.




microscopy

Simulations of dislocation contrast in dark-field X-ray microscopy

Dark-field X-ray microscopy (DFXM) is a full-field imaging technique that non-destructively maps the structure and local strain inside deeply embedded crystalline elements in three dimensions. In DFXM, an objective lens is placed along the diffracted beam to generate a magnified projection image of the local diffracted volume. This work explores contrast methods and optimizes the DFXM setup specifically for the case of mapping dislocations. Forward projections of detector images are generated using two complementary simulation tools based on geometrical optics and wavefront propagation, respectively. Weak and strong beam contrast and the mapping of strain components are studied. The feasibility of observing dislocations in a wall is elucidated as a function of the distance between neighbouring dislocations and the spatial resolution. Dislocation studies should be feasible with energy band widths of 10−2, of relevance for fourth-generation synchrotron and X-ray free-electron laser sources.




microscopy

Low-dose electron microscopy imaging for beam-sensitive metal–organic frameworks

Metal–organic frameworks (MOFs) have garnered significant attention in recent years owing to their exceptional properties. Understanding the intricate relationship between the structure of a material and its properties is crucial for guiding the synthesis and application of these materials. (Scanning) Transmission electron microscopy (S)TEM imaging stands out as a powerful tool for structural characterization at the nanoscale, capable of detailing both periodic and aperiodic local structures. However, the high electron-beam sensitivity of MOFs presents substantial challenges in their structural characterization using (S)TEM. This paper summarizes the latest advancements in low-dose high-resolution (S)TEM imaging technology and its application in MOF material characterization. It covers aspects such as framework structure, defects, and surface and interface analysis, along with the distribution of guest molecules within MOFs. This review also discusses emerging technologies like electron ptychography and outlines several prospective research directions in this field.




microscopy

Deconstructing 3D growth rates from transmission microscopy images of facetted crystals as captured in situ within supersaturated aqueous solutions

Here, a morphologically based approach is used for the in situ characterization of 3D growth rates of facetted crystals from the solution phase. Crystal images of single crystals of the β-form of l-glutamic acid are captured in situ during their growth at a relative supersaturation of 1.05 using transmission optical microscopy. The crystal growth rates estimated for both the {101} capping and {021} prismatic faces through image processing are consistent with those determined using reflection light mode [Jiang, Ma, Hazlehurst, Ilett, Jackson, Hogg & Roberts (2024). Cryst. Growth Des. 24, 3277–3288]. The growth rate in the {010} face is, for the first time, estimated from the shadow widths of the {021} prismatic faces and found to be typically about half that of the {021} prismatic faces. Analysis of the 3D shape during growth reveals that the initial needle-like crystal morphology develops during the growth process to become more tabular, associated with the Zingg factor evolving from 2.9 to 1.7 (>1). The change in relative solution supersaturation during the growth process is estimated from calculations of the crystal volume, offering an alternative approach to determine this dynamically from visual observations.




microscopy

Correlative X-ray micro-nanotomography with scanning electron microscopy at the Advanced Light Source

Geological samples are inherently multi-scale. Understanding their bulk physical and chemical properties requires characterization down to the nano-scale. A powerful technique to study the three-dimensional microstructure is X-ray tomography, but it lacks information about the chemistry of samples. To develop a methodology for measuring the multi-scale 3D microstructure of geological samples, correlative X-ray micro- and nanotomography were performed on two rocks followed by scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS) analysis. The study was performed in five steps: (i) micro X-ray tomography was performed on rock sample cores, (ii) samples for nanotomography were prepared using laser milling, (iii) nanotomography was performed on the milled sub-samples, (iv) samples were mounted and polished for SEM analysis and (v) SEM imaging and compositional mapping was performed on micro and nanotomography samples for complimentary information. Correlative study performed on samples of serpentine and basalt revealed multiscale 3D structures involving both solid mineral phases and pore networks. Significant differences in the volume fraction of pores and mineral phases were also observed dependent on the imaging spatial resolution employed. This highlights the necessity for the application of such a multiscale approach for the characterization of complex aggregates such as rocks. Information acquired from the chemical mapping of different phases was also helpful in segmentation of phases that did not exhibit significant contrast in X-ray imaging. Adoption of the protocol used in this study can be broadly applied to 3D imaging studies being performed at the Advanced Light Source and other user facilities.




microscopy

Seeing Further with Digital Microscopy in U.S. Manufacturing

In manufacturing, microscopes and magnified viewing systems are crucial for inspecting products. Digital microscopes offer enhanced capabilities and AI-assisted inspections, revolutionizing the way manufacturers view and interact with macro and microscopic details.





microscopy

Taking Industrial Metrology to the Next Level: Dimensional Measurements with 3D X-ray Microscopy

The push for smaller, more complex device components has spiked the need for precise, non-damaging metrology, with 3D X-ray microscopy (XRM) leading the way. This technology offers high-resolution measurements critical for quality control in the electronics and manufacturing industries.




microscopy

Polydisperse molecular architecture of connexin 26/30 heteromeric hemichannels revealed by atomic force microscopy imaging [Protein Structure and Folding]

Connexin (Cx) protein forms hemichannels and gap junctional channels, which play diverse and profound roles in human physiology and diseases. Gap junctions are arrays of intercellular channels formed by the docking of two hemichannels from adjacent cells. Each hexameric hemichannel contains the same or different Cx isoform. Although homomeric Cxs forms have been largely described functionally and structurally, the stoichiometry and arrangement of heteromeric Cx channels remain unknown. The latter, however, are widely expressed in human tissues and variation might have important implications on channel function. Investigating properties of heteromeric Cx channels is challenging considering the high number of potential subunit arrangements and stoichiometries, even when only combining two Cx isoforms. To tackle this problem, we engineered an HA tag onto Cx26 or Cx30 subunits and imaged hemichannels that were liganded by Fab-epitope antibody fragments via atomic force microscopy. For Cx26-HA/Cx30 or Cx30-HA/Cx26 heteromeric channels, the Fab-HA binding distribution was binomial with a maximum of three Fab-HA bound. Furthermore, imaged Cx26/Cx30-HA triple liganded by Fab-HA showed multiple arrangements that can be derived from the law of total probabilities. Atomic force microscopy imaging of ringlike structures of Cx26/Cx30-HA hemichannels confirmed these findings and also detected a polydisperse distribution of stoichiometries. Our results indicate a dominant subunit stoichiometry of 3Cx26:3Cx30 with the most abundant subunit arrangement of Cx26-Cx26-Cx30-Cx26-Cx30-Cx30. To our knowledge, this is the first time that the molecular architecture of heteromeric Cx channels has been revealed, thus providing the basis to explore the functional effect of these channels in biology.




microscopy

Ventral Nerve Cord Dissection and Microscopy of Drosophila Embryos

The technique of visualizing axon pathways in the embryonic ventral nerve cord using antibody labeling has been fundamental to our understanding of the genetic and developmental mechanisms underlying nervous system wiring in Drosophila. High-resolution microscopic examination of the ventral nerve cord remains an essential component of many experiments in Drosophila developmental neuroscience. Although it is possible to examine the ventral nerve cord in intact whole-mount embryos, to collect the highest-quality images it is often useful to isolate the nervous system away from the other embryonic tissues through embryo dissection. This protocol describes methods for dissecting ventral nerve cords from Drosophila embryos that have been fixed and stained via immunofluorescence or horseradish peroxidase (HRP) immunohistochemistry. The process of making fine dissection needles for this purpose from electrolytically sharpened tungsten wire is also described. Dissected and mounted ventral nerve cords can be examined and imaged using a variety of microscopy techniques including differential interference contrast (DIC) optics, epifluorescence, or confocal microscopy.




microscopy

Integrated scanning electrochemical cell microscopy platform with local electrochemical impedance spectroscopy using a preamplifier

Faraday Discuss., 2024, Advance Article
DOI: 10.1039/D4FD00122B, Paper
Ancheng Wang, Rong Jin, Dechen Jiang
An integrated SECCM with LEIS is established by combining the preamplifier based EIS measurement with scanning electrochemical cell microscopy.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




microscopy

Electrochemiluminescence microscopy for the investigation of peptide interactions within planar lipid membranes

Faraday Discuss., 2024, Advance Article
DOI: 10.1039/D4FD00137K, Paper
Kaoru Hiramoto, Kosuke Ino, Ibuki Takahashi, Ayumi Hirano-Iwata, Hitoshi Shiku
We propose the use of electrochemiluminescence microscopy in a solution of [Ru(bpy)3]2+ and tri-n-propylamine to monitor alterations in lipid membranes due to peptide action.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




microscopy

Revealing the diverse electrochemistry of nanoparticles with scanning electrochemical cell microscopy

Faraday Discuss., 2024, Advance Article
DOI: 10.1039/D4FD00115J, Paper
Lachlan F. Gaudin, Cameron L. Bentley
Through presenting and discussing these findings, this article seeks to highlight complications in single-NP SECCM experiments, particularly those arising from issues with sample preparation.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




microscopy

Scanning electrochemical probe microscopy: towards the characterization of micro- and nanostructured photocatalytic materials

Faraday Discuss., 2024, Advance Article
DOI: 10.1039/D4FD00136B, Paper
Open Access
  This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
Giada Caniglia, Sarah Horn, Christine Kranz
The feasibility of fabricating micro- and sub-micro-sized AFM probes based on Pt-B electrodeposition for the electrochemical detection of H2 evolution is demonstrated.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




microscopy

Controlling the droplet cell environment in scanning electrochemical cell microscopy (SECCM) via migration and electroosmotic flow

Faraday Discuss., 2024, Advance Article
DOI: 10.1039/D4FD00080C, Paper
Open Access
Samuel F. Wenzel, Heekwon Lee, Hang Ren
The contributions of migration and electroosmotic flow induced by electrochemical redox molecules in dual-barrel SECCM were characterised.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




microscopy

Operando scanning electron microscopy platform for in situ imaging of fluid evolution in nanoporous shale

Lab Chip, 2024, Accepted Manuscript
DOI: 10.1039/D3LC01066J, Paper
Open Access
Artur Davletshin, Wen Song
Fluid-solid interactions in nanoporous materials underlie processes fundamental to nature and the engineered environment, including the thermochemical transformation of argillaceous materials during high-level nuclear waste disposal. Operando fluid-solid resolution at...
The content of this RSS Feed (c) The Royal Society of Chemistry




microscopy

Correction: Sizing multimodal suspensions with differential dynamic microscopy

Soft Matter, 2024, 20,3376-3376
DOI: 10.1039/D4SM90050B, Correction
Open Access
  This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
Joe J. Bradley, Vincent A. Martinez, Jochen Arlt, John R. Royer, Wilson C. K. Poon
The content of this RSS Feed (c) The Royal Society of Chemistry




microscopy

Effects of media composition and light exposure on the electrochemical current response during scanning electrochemical microscopy live cell imaging

Analyst, 2024, 149,5555-5562
DOI: 10.1039/D4AN01075B, Paper
Nikita Thomas, Mengzhen Lyu, Jadon Khouv, Dhésmon Lima, Sabine Kuss
The cellular electrochemical current response is impacted by media composition and light exposure during scanning electrochemical microscopy (SECM).
The content of this RSS Feed (c) The Royal Society of Chemistry




microscopy

Synergetic effect of mild hypothermia and antioxidant treatment on ROS-mediated neuron injury under oxygen-glucose deprivation investigated by scanning electrochemical microscopy

Chem. Sci., 2024, Accepted Manuscript
DOI: 10.1039/D4SC05977H, Edge Article
Open Access
  This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
Junjie Zhang, Yulin Liu, Yuxiang Zhao, Siyu Zhang, Feng Xu, Fei Li
Ischemic stroke and reperfusion injury result in neuronal damage and dysfunction associated with oxidative stress, leading to overproduction of cellular reactive oxygen species (ROS) and reactive nitrogen species (RNS). In...
The content of this RSS Feed (c) The Royal Society of Chemistry




microscopy

Mechanical properties soft hydrogels: assessment by scanning ion-conductance microscopy and atomic force microscopy

Soft Matter, 2024, Accepted Manuscript
DOI: 10.1039/D4SM00966E, Paper
Tatiana Tikhonova, Yuri M. Efremov, Vasilii Kolmogorov, Aleksei Iakovlev, Nikolay Sysoev, Peter S. Timashev, Victor Fadeev, Alexander Tivtikyan, Sergey Salikhov, Petr Gorelkin, Yuri Korchev, Alexandr Erofeev, Evgeny Shirshin
The growing interest in biomimetic hydrogels is due to their successful applications in tissue engineering, 3D cell culturing and drug delivery. Major characteristics of hydrogels include swelling, porosity, degradation rate,...
The content of this RSS Feed (c) The Royal Society of Chemistry




microscopy

NanoRaman: correlated tip-enhanced optical spectroscopy and scanning-probe microscopy

Register now: 8 March 2018
A webinar sponsored by HORIBA Scientific




microscopy

Photoemission spectroscopy and microscopy for Ta@Si16 superatoms and their assembled layers

Nanoscale, 2024, Advance Article
DOI: 10.1039/D4NR02778G, Paper
Open Access
Masahiro Shibuta, Tsutomu Ohta, Toshiaki Kamoshida, Kana Yamagiwa, Hironori Tsunoyama, Tomoya Inoue, Tsugunosuke Masubuchi, Atsushi Nakajima
An alkaline-like Ta-encapsulating Si16 superatom film was fabricated on a C60 substrate. Charge transfer between Ta@Si16 and C60 lowers the work function. In the multilayer film, the central Ta atom's positive charge is compensated by the Si16 cage.
To cite this article before page numbers are assigned, use the DOI form of citation above.
The content of this RSS Feed (c) The Royal Society of Chemistry




microscopy

Bone nanostructure revealed by electron microscopy

Crystalline needles of bone mineral form helical patterns around collagen fibrils




microscopy

Hybrid method boosts microscopy resolution

Combining expansion microscopy and STED improves resolution 30-fold relative to the diffraction limit




microscopy

Thermo Fisher to buy electron microscopy supplies maker Gatan

Acquisition builds on recent purchases of electron microscope makers FEI and Phenom-World




microscopy

Thermo Fisher to buy electron microscopy supplies maker Gatan

Acquisition builds on recent purchases of electron microscope makers FEI and Phenom-World




microscopy

Insect sodium channels visualized with cryo-electron microscopy

Structures of voltage-gated channel with toxins suggest strategies for drug development




microscopy

A versatile nanoreactor for complementary in situ X-ray and electron microscopy studies in catalysis and materials science

Two in situ `nanoreactors' for high-resolution imaging of catalysts have been designed and applied at the hard X-ray nanoprobe endstation at beamline P06 of the PETRA III synchrotron radiation source. The reactors house samples supported on commercial MEMS chips, and were applied for complementary hard X-ray ptychography (23 nm spatial resolution) and transmission electron microscopy, with additional X-ray fluorescence measurements. The reactors allow pressures of 100 kPa and temperatures of up to 1573 K, offering a wide range of conditions relevant for catalysis. Ptychographic tomography was demonstrated at limited tilting angles of at least ±35° within the reactors and ±65° on the naked sample holders. Two case studies were selected to demonstrate the functionality of the reactors: (i) annealing of hierarchical nanoporous gold up to 923 K under inert He environment and (ii) acquisition of a ptychographic projection series at ±35° of a hierarchically structured macroporous zeolite sample under ambient conditions. The reactors are shown to be a flexible and modular platform for in situ studies in catalysis and materials science which may be adapted for a range of sample and experiment types, opening new characterization pathways in correlative multimodal in situ analysis of functional materials at work. The cells will presently be made available for all interested users of beamline P06 at PETRA III.




microscopy

Limited angle tomography for transmission X-ray microscopy using deep learning

In transmission X-ray microscopy (TXM) systems, the rotation of a scanned sample might be restricted to a limited angular range to avoid collision with other system parts or high attenuation at certain tilting angles. Image reconstruction from such limited angle data suffers from artifacts because of missing data. In this work, deep learning is applied to limited angle reconstruction in TXMs for the first time. With the challenge to obtain sufficient real data for training, training a deep neural network from synthetic data is investigated. In particular, U-Net, the state-of-the-art neural network in biomedical imaging, is trained from synthetic ellipsoid data and multi-category data to reduce artifacts in filtered back-projection (FBP) reconstruction images. The proposed method is evaluated on synthetic data and real scanned chlorella data in 100° limited angle tomography. For synthetic test data, U-Net significantly reduces the root-mean-square error (RMSE) from 2.55 × 10−3 µm−1 in the FBP reconstruction to 1.21 × 10−3 µm−1 in the U-Net reconstruction and also improves the structural similarity (SSIM) index from 0.625 to 0.920. With penalized weighted least-square denoising of measured projections, the RMSE and SSIM are further improved to 1.16 × 10−3 µm−1 and 0.932, respectively. For real test data, the proposed method remarkably improves the 3D visualization of the subcellular structures in the chlorella cell, which indicates its important value for nanoscale imaging in biology, nanoscience and materials science.




microscopy

DeepRes: a new deep-learning- and aspect-based local resolution method for electron-microscopy maps

In this article, a method is presented to estimate a new local quality measure for 3D cryoEM maps that adopts the form of a `local resolution' type of information. The algorithm (DeepRes) is based on deep-learning 3D feature detection. DeepRes is fully automatic and parameter-free, and avoids the issues of most current methods, such as their insensitivity to enhancements owing to B-factor sharpening (unless the 3D mask is changed), among others, which is an issue that has been virtually neglected in the cryoEM field until now. In this way, DeepRes can be applied to any map, detecting subtle changes in local quality after applying enhancement processes such as isotropic filters or substantially more complex procedures, such as model-based local sharpening, non-model-based methods or denoising, that may be very difficult to follow using current methods. It performs as a human observer expects. The comparison with traditional local resolution indicators is also addressed.




microscopy

Hypothesis for a mechanism of beam-induced motion in cryo-electron microscopy

Estimates of heat-transfer rates during plunge-cooling and the patterns of ice observed in cryo-EM samples indicate that the grid bars cool much more slowly than do the support foil and sample near the middle of the grid openings. The resulting transient temperature differences generate transient tensile stresses in the support foil. Most of this foil stress develops while the sample is liquid and cooling toward its glass transition Tg, and so does not generate tensile sample stress. As the grid bars continue cooling towards the cryogen temperature and contracting, the tensile stress in the foil is released, placing the sample in compressive stress. Radiation-induced creep in the presence of this compressive stress should generate a doming of the sample in the foil openings, as is observed experimentally. Crude estimates of the magnitude of the doming that may be generated by this mechanism are consistent with observation. Several approaches to reducing beam-induced motion are discussed.




microscopy

Scanning electron microscopy as a method for sample visualization in protein X-ray crystallography

Developing methods to determine high-resolution structures from micrometre- or even submicrometre-sized protein crystals has become increasingly important in recent years. This applies to both large protein complexes and membrane proteins, where protein production and the subsequent growth of large homogeneous crystals is often challenging, and to samples which yield only micro- or nanocrystals such as amyloid or viral polyhedrin proteins. The versatile macromolecular crystallography microfocus (VMXm) beamline at Diamond Light Source specializes in X-ray diffraction measurements from micro- and nanocrystals. Because of the possibility of measuring data from crystalline samples that approach the resolution limit of visible-light microscopy, the beamline design includes a scanning electron microscope (SEM) to visualize, locate and accurately centre crystals for X-ray diffraction experiments. To ensure that scanning electron microscopy is an appropriate method for sample visualization, tests were carried out to assess the effect of SEM radiation on diffraction quality. Cytoplasmic polyhedrosis virus polyhedrin protein crystals cryocooled on electron-microscopy grids were exposed to SEM radiation before X-ray diffraction data were collected. After processing the data with DIALS, no statistically significant difference in data quality was found between datasets collected from crystals exposed and not exposed to SEM radiation. This study supports the use of an SEM as a tool for the visualization of protein crystals and as an integrated visualization tool on the VMXm beamline.




microscopy

New zeolite-like RUB-5 and its related hydrous layer silicate RUB-6 structurally characterized by electron microscopy

This study made use of a recently developed combination of advanced methods to reveal the atomic structure of a disordered nanocrystalline zeolite using exit wave reconstruction, automated diffraction tomography, disorder modelling and diffraction pattern simulation. By applying these methods, it was possible to determine the so far unknown structures of the hydrous layer silicate RUB-6 and the related zeolite-like material RUB-5. The structures of RUB-5 and RUB-6 contain the same dense layer-like building units (LLBUs). In the case of RUB-5, these building units are interconnected via additional SiO4/2 tetrahedra, giving rise to a framework structure with a 2D pore system consisting of intersecting 8-ring channels. In contrast, RUB-6 contains these LLBUs as separate silicate layers terminated by silanol/sil­oxy groups. Both RUB-6 and RUB-5 show stacking disorder with intergrowths of different polymorphs. The unique structure of RUB-6, together with the possibility for an interlayer expansion reaction to form RUB-5, make it a promising candidate for interlayer expansion with various metal sources to include catalytically active reaction centres.




microscopy

CM01: a facility for cryo-electron microscopy at the European Synchrotron

Recent improvements in direct electron detectors, microscope technology and software provided the stimulus for a `quantum leap' in the application of cryo-electron microscopy in structural biology, and many national and international centres have since been created in order to exploit this. Here, a new facility for cryo-electron microscopy focused on single-particle reconstruction of biological macromolecules that has been commissioned at the European Synchrotron Radiation Facility (ESRF) is presented. The facility is operated by a consortium of institutes co-located on the European Photon and Neutron Campus and is managed in a similar fashion to a synchrotron X-ray beamline. It has been open to the ESRF structural biology user community since November 2017 and will remain open during the 2019 ESRF–EBS shutdown.




microscopy

Methods for merging data sets in electron cryo-microscopy

Recent developments have resulted in electron cryo-microscopy (cryo-EM) becoming a useful tool for the structure determination of biological macromolecules. For samples containing inherent flexibility, heterogeneity or preferred orientation, the collection of extensive cryo-EM data using several conditions and microscopes is often required. In such a scenario, merging cryo-EM data sets is advantageous because it allows improved three-dimensional reconstructions to be obtained. Since data sets are not always collected with the same pixel size, merging data can be challenging. Here, two methods to combine cryo-EM data are described. Both involve the calculation of a rescaling factor from independent data sets. The effects of errors in the scaling factor on the results of data merging are also estimated. The methods described here provide a guideline for cryo-EM users who wish to combine data sets from the same type of microscope and detector.




microscopy

Flexible workflows for on-the-fly electron-microscopy single-particle image processing using Scipion

Electron microscopy of macromolecular structures is an approach that is in increasing demand in the field of structural biology. The automation of image acquisition has greatly increased the potential throughput of electron microscopy. Here, the focus is on the possibilities in Scipion to implement flexible and robust image-processing workflows that allow the electron-microscope operator and the user to monitor the quality of image acquisition, assessing very simple acquisition measures or obtaining a first estimate of the initial volume, or the data resolution and heterogeneity, without any need for programming skills. These workflows can implement intelligent automatic decisions and they can warn the user of possible acquisition failures. These concepts are illustrated by analysis of the well known 2.2 Å resolution β-galactosidase data set.




microscopy

XTIP – the world's first beamline dedicated to the synchrotron X-ray scanning tunneling microscopy technique

In recent years, there have been numerous efforts worldwide to develop the synchrotron X-ray scanning tunneling microscopy (SX-STM) technique. Here, the inauguration of XTIP, the world's first beamline fully dedicated to SX-STM, is reported. The XTIP beamline is located at Sector 4 of the Advanced Photon Source at Argonne National Laboratory. It features an insertion device that can provide left- or right-circular as well as horizontal- and vertical-linear polarization. XTIP delivers monochromatic soft X-rays of between 400 and 1900 eV focused into an environmental enclosure that houses the endstation instrument. This article discusses the beamline system design and its performance.




microscopy

Versatile compact heater design for in situ nano-tomography by transmission X-ray microscopy

A versatile, compact heater designed at National Synchrotron Light Source-II for in situ X-ray nano-imaging in a full-field transmission X-ray microscope is presented. Heater design for nano-imaging is challenging, combining tight spatial constraints with stringent design requirements for the temperature range and stability. Finite-element modeling and analytical calculations were used to determine the heater design parameters. Performance tests demonstrated reliable and stable performance, including maintaining the exterior casing close to room temperature while the heater is operating at above 1100°C, a homogenous heating zone and small temperature fluctuations. Two scientific experiments are presented to demonstrate the heater capabilities: (i) in situ 3D nano-tomography including a study of metal dealloying in a liquid molten salt extreme environment, and (ii) a study of pore formation in icosahedral quasicrystals. The progression of structural changes in both studies were clearly resolved in 3D, showing that the new heater enables powerful capabilities to directly visualize and quantify 3D morphological evolution of materials under real conditions by X-ray nano-imaging at elevated temperature during synthesis, fabrication and operation processes. This heater design concept can be applied to other applications where a precise, compact heater design is required.




microscopy

LamNI – an instrument for X-ray scanning microscopy in laminography geometry

Across all branches of science, medicine and engineering, high-resolution microscopy is required to understand functionality. Although optical methods have been developed to `defeat' the diffraction limit and produce 3D images, and electrons have proven ever more useful in creating pictures of small objects or thin sections, so far there is no substitute for X-ray microscopy in providing multiscale 3D images of objects with a single instrument and minimal labeling and preparation. A powerful technique proven to continuously access length scales from 10 nm to 10 µm is ptychographic X-ray computed tomography, which, on account of the orthogonality of the tomographic rotation axis to the illuminating beam, still has the limitation of necessitating pillar-shaped samples of small (ca 10 µm) diameter. Large-area planar samples are common in science and engineering, and it is therefore highly desirable to create an X-ray microscope that can examine such samples without the extraction of pillars. Computed laminography, where the axis of rotation is not perpendicular to the illumination direction, solves this problem. This entailed the development of a new instrument, LamNI, dedicated to high-resolution 3D scanning X-ray microscopy via hard X-ray ptychographic laminography. Scanning precision is achieved by a dedicated interferometry scheme and the instrument covers a scan range of 12 mm × 12 mm with a position stability of 2 nm and positioning errors below 5 nm. A new feature of LamNI is a pair of counter-rotating stages carrying the sample and interferometric mirrors, respectively.




microscopy

Identification of Ca-rich dense granules in human platelets using scanning transmission X-ray microscopy

Whole-mount (WM) platelet preparation followed by transmission electron microscopy (TEM) observation is the standard method currently used to assess dense granule (DG) deficiency (DGD). However, due to the electron-density-based contrast mechanism in TEM, other granules such as α-granules might cause false DG detection. Here, scanning transmission X-ray microscopy (STXM) was used to identify DGs and minimize false DG detection of human platelets. STXM image stacks of human platelets were collected at the calcium (Ca) L2,3 absorption edge and then converted to optical density maps. Ca distribution maps, obtained by subtracting the optical density maps at the pre-edge region from those at the post-edge region, were used to identify DGs based on the Ca richness. DGs were successfully detected using this STXM method without false detection, based on Ca maps for four human platelets. Spectral analysis of granules in human platelets confirmed that DGs contain a richer Ca content than other granules. The Ca distribution maps facilitated more effective DG identification than TEM which might falsely detect DGs. Correct identification of DGs would be important to assess the status of platelets and DG-related diseases. Therefore, this STXM method is proposed as a promising approach for better DG identification and diagnosis, as a complementary tool to the current WM TEM approach.