microbiology Clinical Microbiology Market worth $6.9 billion by 2029 By www.emailwire.com Published On :: Fri, 25 Oct 2024 00:00:00 -0700 (EMAILWIRE.COM, October 25, 2024 ) The global Clinical Microbiology Market growth in terms of revenue was estimated to be worth $5.0 billion in 2024 and is poised to reach $6.9 billion by 2029, growing at a CAGR of 6.5% from 2024 to 2029. The clinical microbiology market is driven by several key... Full Article
microbiology Hannah Romeo Recognized for Excellence in Microbiology By www.24-7pressrelease.com Published On :: Thu, 10 Oct 2024 08:00:00 GMT Hannah Romeo serves as a microbiologist for the Celsis Applications Lab at Charles River Laboratories Full Article
microbiology Arpita Bose, PhD, Honored by Marquis Who's Who for Advancements in Microbiology By www.24-7pressrelease.com Published On :: Wed, 17 Apr 2024 08:00:00 GMT Arpita Bose is an award-winning scientist and a distinguished educator Full Article
microbiology Dr. Osama O. Ibrahim Celebrated for Dedication to the Field of Microbiology By www.24-7pressrelease.com Published On :: Fri, 05 Apr 2024 08:00:00 GMT Osama Ibrahim, PhD lends years of expertise to his work with Bio Innovation Full Article
microbiology Labroots 2024 Microbiology Virtual Event Poster Winner: Laura Alguacil Cuéllar By www.labroots.com Published On :: Mon, 23 Sep 2024 16:05:00 -0700 Labroots’ virtual events are excellent ways to connect with great people and collaborate on research within your field. These events have attendees f Full Article Technology
microbiology Hydrocarbon and Lipid Microbiology Protocols Single-Cell and Single-Molecule Methods By search.lib.uiowa.edu Published On :: Location: Electronic Resource- Full Article
microbiology Hydrocarbon and Lipid Microbiology Protocols Ultrastructure and Imaging By search.lib.uiowa.edu Published On :: Location: Electronic Resource- Full Article
microbiology Development and validation of a high-throughput whole cell assay to investigate Staphylococcus aureus adhesion to host ligands [Microbiology] By www.jbc.org Published On :: 2020-12-04T00:06:05-08:00 Staphylococcus aureus adhesion to the host's skin and mucosae enables asymptomatic colonization and the establishment of infection. This process is facilitated by cell wall-anchored adhesins that bind to host ligands. Therapeutics targeting this process could provide significant clinical benefits; however, the development of anti-adhesives requires an in-depth knowledge of adhesion-associated factors and an assay amenable to high-throughput applications. Here, we describe the development of a sensitive and robust whole cell assay to enable the large-scale profiling of S. aureus adhesion to host ligands. To validate the assay, and to gain insight into cellular factors contributing to adhesion, we profiled a sequence-defined S. aureus transposon mutant library, identifying mutants with attenuated adhesion to human-derived fibronectin, keratin, and fibrinogen. Our screening approach was validated by the identification of known adhesion-related proteins, such as the housekeeping sortase responsible for covalently linking adhesins to the cell wall. In addition, we also identified genetic loci that could represent undescribed anti-adhesive targets. To compare and contrast the genetic requirements of adhesion to each host ligand, we generated a S. aureus Genetic Adhesion Network, which identified a core gene set involved in adhesion to all three host ligands, and unique genetic signatures. In summary, this assay will enable high-throughput chemical screens to identify anti-adhesives and our findings provide insight into the target space of such an approach. Full Article
microbiology Biosynthesis of the sactipeptide Ruminococcin C by the human microbiome: Mechanistic insights into thioether bond formation by radical SAM enzymes [Microbiology] By www.jbc.org Published On :: 2020-12-04T00:06:05-08:00 Despite its major importance in human health, the metabolic potential of the human gut microbiota is still poorly understood. We have recently shown that biosynthesis of Ruminococcin C (RumC), a novel ribosomally synthesized and posttranslationally modified peptide (RiPP) produced by the commensal bacterium Ruminococcus gnavus, requires two radical SAM enzymes (RumMC1 and RumMC2) catalyzing the formation of four Cα-thioether bridges. These bridges, which are essential for RumC's antibiotic properties against human pathogens such as Clostridium perfringens, define two hairpin domains giving this sactipeptide (sulfur-to-α-carbon thioether–containing peptide) an unusual architecture among natural products. We report here the biochemical and spectroscopic characterizations of RumMC2. EPR spectroscopy and mutagenesis data support that RumMC2 is a member of the large family of SPASM domain radical SAM enzymes characterized by the presence of three [4Fe-4S] clusters. We also demonstrate that this enzyme initiates its reaction by Cα H-atom abstraction and is able to catalyze the formation of nonnatural thioether bonds in engineered peptide substrates. Unexpectedly, our data support the formation of a ketoimine rather than an α,β-dehydro-amino acid intermediate during Cα-thioether bridge LC–MS/MS fragmentation. Finally, we explored the roles of the leader peptide and of the RiPP precursor peptide recognition element, present in myriad RiPP-modifying enzymes. Collectively, our data support a more complex role for the peptide recognition element and the core peptide for the installation of posttranslational modifications in RiPPs than previously anticipated and suggest a possible reaction intermediate for thioether bond formation. Full Article
microbiology Enhanced enzyme kinetics of reverse transcriptase variants cloned from animals infected with SIVmac239 lacking viral protein X [Microbiology] By www.jbc.org Published On :: 2020-12-11T00:06:20-08:00 HIV Type 1 (HIV-1) and simian immunodeficiency virus (SIV) display differential replication kinetics in macrophages. This is because high expression levels of the active host deoxynucleotide triphosphohydrolase sterile α motif domain and histidine-aspartate domain–containing protein 1 (SAMHD1) deplete intracellular dNTPs, which restrict HIV-1 reverse transcription, and result in a restrictive infection in this myeloid cell type. Some SIVs overcome SAMHD1 restriction using viral protein X (Vpx), a viral accessory protein that induces proteasomal degradation of SAMHD1, increasing cellular dNTP concentrations and enabling efficient proviral DNA synthesis. We previously reported that SAMHD1-noncounteracting lentiviruses may have evolved to harbor RT proteins that efficiently polymerize DNA, even at low dNTP concentrations, to circumvent SAMHD1 restriction. Here we investigated whether RTs from SIVmac239 virus lacking a Vpx protein evolve during in vivo infection to more efficiently synthesize DNA at the low dNTP concentrations found in macrophages. Sequence analysis of RTs cloned from Vpx (+) and Vpx (−) SIVmac239–infected animals revealed that Vpx (−) RTs contained more extensive mutations than Vpx (+) RTs. Although the amino acid substitutions were dispersed indiscriminately across the protein, steady-state and pre-steady-state analysis demonstrated that selected SIVmac239 Vpx (−) RTs are characterized by higher catalytic efficiency and incorporation efficiency values than RTs cloned from SIVmac239 Vpx (+) infections. Overall, this study supports the possibility that the loss of Vpx may generate in vivo SIVmac239 RT variants that can counteract the limited availability of dNTP substrate in macrophages. Full Article
microbiology ZBP1 promotes fungi-induced inflammasome activation and pyroptosis, apoptosis, and necroptosis (PANoptosis) [Microbiology] By www.jbc.org Published On :: 2020-12-25T00:06:31-08:00 Candida albicans and Aspergillus fumigatus are dangerous fungal pathogens with high morbidity and mortality, particularly in immunocompromised patients. Innate immune-mediated programmed cell death (pyroptosis, apoptosis, necroptosis) is an integral part of host defense against pathogens. Inflammasomes, which are canonically formed upstream of pyroptosis, have been characterized as key mediators of fungal sensing and drivers of proinflammatory responses. However, the specific cell death pathways and key upstream sensors activated in the context of Candida and Aspergillus infections are unknown. Here, we report that C. albicans and A. fumigatus infection induced inflammatory programmed cell death in the form of pyroptosis, apoptosis, and necroptosis (PANoptosis). Further, we identified the innate immune sensor Z-DNA binding protein 1 (ZBP1) as the apical sensor of fungal infection responsible for activating the inflammasome/pyroptosis, apoptosis, and necroptosis. The Zα2 domain of ZBP1 was required to promote this inflammasome activation and PANoptosis. Overall, our results demonstrate that C. albicans and A. fumigatus induce PANoptosis and that ZBP1 plays a vital role in inflammasome activation and PANoptosis in response to fungal pathogens. Full Article
microbiology A drug-resistant {beta}-lactamase variant changes the conformation of its active-site proton shuttle to alter substrate specificity and inhibitor potency [Microbiology] By www.jbc.org Published On :: 2020-12-25T00:06:31-08:00 Lys234 is one of the residues present in class A β-lactamases that is under selective pressure due to antibiotic use. Located adjacent to proton shuttle residue Ser130, it is suggested to play a role in proton transfer during catalysis of the antibiotics. The mechanism underpinning how substitutions in this position modulate inhibitor efficiency and substrate specificity leading to drug resistance is unclear. The K234R substitution identified in several inhibitor-resistant β-lactamase variants is associated with decreased potency of the inhibitor clavulanic acid, which is used in combination with amoxicillin to overcome β-lactamase–mediated antibiotic resistance. Here we show that for CTX-M-14 β-lactamase, whereas Lys234 is required for hydrolysis of cephalosporins such as cefotaxime, either lysine or arginine is sufficient for hydrolysis of ampicillin. Further, by determining the acylation and deacylation rates for cefotaxime hydrolysis, we show that both rates are fast, and neither is rate-limiting. The K234R substitution causes a 1500-fold decrease in the cefotaxime acylation rate but a 5-fold increase in kcat for ampicillin, suggesting that the K234R enzyme is a good penicillinase but a poor cephalosporinase due to slow acylation. Structural results suggest that the slow acylation by the K234R enzyme is due to a conformational change in Ser130, and this change also leads to decreased inhibition potency of clavulanic acid. Because other inhibitor resistance mutations also act through changes at Ser130 and such changes drastically reduce cephalosporin but not penicillin hydrolysis, we suggest that clavulanic acid paired with an oxyimino-cephalosporin rather than penicillin would impede the evolution of resistance. Full Article
microbiology A novel stress-inducible CmtR-ESX3-Zn2+ regulatory pathway essential for survival of Mycobacterium bovis under oxidative stress [Microbiology] By www.jbc.org Published On :: 2020-12-11T00:06:20-08:00 Reactive oxygen species (ROS) are an unavoidable host environmental cue for intracellular pathogens such as Mycobacterium tuberculosis and Mycobacterium bovis; however, the signaling pathway in mycobacteria for sensing and responding to environmental stress remains largely unclear. Here, we characterize a novel CmtR-Zur-ESX3-Zn2+ regulatory pathway in M. bovis that aids mycobacterial survival under oxidative stress. We demonstrate that CmtR functions as a novel redox sensor and that its expression can be significantly induced under H2O2 stress. CmtR can physically interact with the negative regulator Zur and de-represses the expression of the esx-3 operon, which leads to Zn2+ accumulation and promotion of reactive oxygen species detoxication in mycobacterial cells. Zn2+ can also act as an effector molecule of the CmtR regulator, using which the latter can de-repress its own expression for further inducing bacterial antioxidant adaptation. Consistently, CmtR can induce the expression of EsxH, a component of esx-3 operon involved in Zn2+ transportation that has been reported earlier, and inhibit phagosome maturation in macrophages. Lastly, CmtR significantly contributes to bacterial survival in macrophages and in the lungs of infected mice. Our findings reveal the existence of an antioxidant regulatory pathway in mycobacteria and provide novel information on stress-triggered gene regulation and its association with host–pathogen interaction. Full Article
microbiology A trade-off switch of two immunological memories in Caenorhabditis elegans reinfected by bacterial pathogens [Microbiology] By www.jbc.org Published On :: 2020-12-11T00:06:21-08:00 Recent studies have suggested that innate immune responses exhibit characteristics associated with memory linked to modulations in both vertebrates and invertebrates. However, the diverse evolutionary paths taken, particularly within the invertebrate taxa, should lead to similarly diverse innate immunity memory processes. Our understanding of innate immune memory in invertebrates primarily comes from studies of the fruit fly Drosophila melanogaster, the generality of which is unclear. Caenorhabditis elegans typically inhabits soil harboring a variety of fatal microbial pathogens; for this invertebrate, the innate immune system and aversive behavior are the major defensive strategies against microbial infection. However, their characteristics of immunological memory remains infantile. Here we discovered an immunological memory that promoted avoidance and suppressed innate immunity during reinfection with bacteria, which we revealed to be specific to the previously exposed pathogens. During this trade-off switch of avoidance and innate immunity, the chemosensory neurons AWB and ADF modulated production of serotonin and dopamine, which in turn decreased expression of the innate immunity-associated genes and led to enhanced avoidance via the downstream insulin-like pathway. Therefore, our current study profiles the immune memories during C. elegans reinfected by pathogenic bacteria and further reveals that the chemosensory neurons, the neurotransmitter(s), and their associated molecular signaling pathways are responsible for a trade-off switch between the two immunological memories. Full Article
microbiology Role of phospholipid synthesis in the development and differentiation of malaria parasites in the blood [Microbiology] By www.jbc.org Published On :: 2018-11-09T03:40:54-08:00 The life cycle of malaria parasites in both their mammalian host and mosquito vector consists of multiple developmental stages that ensure proper replication and progeny survival. The transition between these stages is fueled by nutrients scavenged from the host and fed into specialized metabolic pathways of the parasite. One such pathway is used by Plasmodium falciparum, which causes the most severe form of human malaria, to synthesize its major phospholipids, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. Much is known about the enzymes involved in the synthesis of these phospholipids, and recent advances in genetic engineering, single-cell RNA-Seq analyses, and drug screening have provided new perspectives on the importance of some of these enzymes in parasite development and sexual differentiation and have identified targets for the development of new antimalarial drugs. This Minireview focuses on two phospholipid biosynthesis enzymes of P. falciparum that catalyze phosphoethanolamine transmethylation (PfPMT) and phosphatidylserine decarboxylation (PfPSD) during the blood stages of the parasite. We also discuss our current understanding of the biochemical, structural, and biological functions of these enzymes and highlight efforts to use them as antimalarial drug targets. Full Article
microbiology Nonspecific DNA binding by P1 ParA determines the distribution of plasmid partition and repressor activities [Microbiology] By www.jbc.org Published On :: 2020-12-11T00:06:21-08:00 The faithful segregation, or “partition,” of many low-copy number bacterial plasmids is driven by plasmid-encoded ATPases that are represented by the P1 plasmid ParA protein. ParA binds to the bacterial nucleoid via an ATP-dependent nonspecific DNA (nsDNA)-binding activity, which is essential for partition. ParA also has a site-specific DNA-binding activity to the par operator (parOP), which requires either ATP or ADP, and which is essential for it to act as a transcriptional repressor but is dispensable for partition. Here we examine how DNA binding by ParA contributes to the relative distribution of its plasmid partition and repressor activities, using a ParA with an alanine substitution at Arg351, a residue previously predicted to participate in site-specific DNA binding. In vivo, the parAR351A allele is compromised for partition, but its repressor activity is dramatically improved so that it behaves as a “super-repressor.” In vitro, ParAR351A binds and hydrolyzes ATP, and undergoes a specific conformational change required for nsDNA binding, but its nsDNA-binding activity is significantly damaged. This defect in turn significantly reduces the assembly and stability of partition complexes formed by the interaction of ParA with ParB, the centromere-binding protein, and DNA. In contrast, the R351A change shows only a mild defect in site-specific DNA binding. We conclude that the partition defect is due to altered nsDNA binding kinetics and affinity for the bacterial chromosome. Furthermore, the super-repressor phenotype is explained by an increased pool of non-nucleoid bound ParA that is competent to bind parOP and repress transcription. Full Article
microbiology Medical microbiology and infection at a glance [Electronic book] / Stephen H. Gillespie, Kathleen Bamford. By encore.st-andrews.ac.uk Published On :: Hoboken, NJ : Wiley-Blackwell, 2022. Full Article
microbiology Tech Support - Microbiologist Answers Microbiology Questions From Twitter By www.wired.com Published On :: Tue, 17 Sep 2024 16:00:00 +0000 Microbiologist Dan Buckley joins WIRED to answer the internet's burning questions about microbiology. What's the fastest known bacteria? Is the zombie fungi from "The Last Of Us" realistic? Why is cat poop is dangerous for pregnant people? How did metal-eating bacteria come about? How does horizontal gene transfer work? What microbes should we be most concerned about? Dan Buckley answers these questions and many more await on WIRED Microbiology Support. Director: Lisandro Perez-Rey Director of Photography: Kevin Dynia Editor: Richard Trammell Expert: Dan Buckley Line Producer: Joseph Buscemi Associate Producer: Paul Gulyas; Brandon White Production Manager: Peter Brunette Production Coordinator: Rhyan Lark Casting Producer: Nicholas Sawyer Camera Operator: Christopher Eusteche Sound Mixer: Gabe Quiroga Production Assistant: Cerina Shippey Post Production Supervisor: Christian Olguin Post Production Coordinator: Ian Bryant Supervising Editor: Doug Larsen Additional Editor: Jason Malizia Assistant Editor: Billy Ward Full Article
microbiology Annals of Clinical Microbiology [electronic journal]. By encore.st-andrews.ac.uk Published On :: 대한임상미생물학회 Full Article
microbiology Three distinct glycosylation pathways are involved in the decoration of Lactococcus lactis cell wall glycopolymers [Microbiology] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 Extracytoplasmic sugar decoration of glycopolymer components of the bacterial cell wall contributes to their structural diversity. Typically, the molecular mechanism that underpins such a decoration process involves a three-component glycosylation system (TGS) represented by an undecaprenyl-phosphate (Und-P) sugar-activating glycosyltransferase (Und-P GT), a flippase, and a polytopic glycosyltransferase (PolM GT) dedicated to attaching sugar residues to a specific glycopolymer. Here, using bioinformatic analyses, CRISPR-assisted recombineering, structural analysis of cell wall–associated polysaccharides (CWPS) through MALDI-TOF MS and methylation analysis, we report on three such systems in the bacterium Lactococcus lactis. On the basis of sequence similarities, we first identified three gene pairs, csdAB, csdCD, and csdEF, each encoding an Und-P GT and a PolM GT, as potential TGS component candidates. Our experimental results show that csdAB and csdCD are involved in Glc side-chain addition on the CWPS components rhamnan and polysaccharide pellicle (PSP), respectively, whereas csdEF plays a role in galactosylation of lipoteichoic acid (LTA). We also identified a potential flippase encoded in the L. lactis genome (llnz_02975, cflA) and confirmed that it participates in the glycosylation of the three cell wall glycopolymers rhamnan, PSP, and LTA, thus indicating that its function is shared by the three TGSs. Finally, we observed that glucosylation of both rhamnan and PSP can increase resistance to bacteriophage predation and that LTA galactosylation alters L. lactis resistance to bacteriocin. Full Article
microbiology Pro-515 of the dynamin-like GTPase MxB contributes to HIV-1 inhibition by regulating MxB oligomerization and binding to HIV-1 capsid [Microbiology] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Interferon-regulated myxovirus resistance protein B (MxB) is an interferon-induced GTPase belonging to the dynamin superfamily. It inhibits infection with a wide range of different viruses, including HIV-1, by impairing viral DNA entry into the nucleus. Unlike the related antiviral GTPase MxA, MxB possesses an N-terminal region that contains a nuclear localization signal and is crucial for inhibiting HIV-1. Because MxB previously has been shown to reside in both the nuclear envelope and the cytoplasm, here we used bioinformatics and biochemical approaches to identify a nuclear export signal (NES) responsible for MxB's cytoplasmic location. Using the online computational tool LocNES (Locating Nuclear Export Signals or NESs), we identified five putative NES candidates in MxB and investigated whether their deletion caused nuclear localization of MxB. Our results revealed that none of the five deletion variants relocates to the nucleus, suggesting that these five predicted NES sequences do not confer NES activity. Interestingly, deletion of one sequence, encompassing amino acids 505–527, abrogated the anti-HIV-1 activity of MxB. Further mutation experiments disclosed that amino acids 515–519, and Pro-515 in particular, regulate MxB oligomerization and its binding to HIV-1 capsid, thereby playing an important role in MxB-mediated restriction of HIV-1 infection. In summary, our results indicate that none of the five predicted NES sequences in MxB appears to be required for its nuclear export. Our findings also reveal several residues in MxB, including Pro-515, critical for its oligomerization and anti-HIV-1 function. Full Article
microbiology Three distinct glycosylation pathways are involved in the decoration of Lactococcus lactis cell wall glycopolymers [Microbiology] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 Extracytoplasmic sugar decoration of glycopolymer components of the bacterial cell wall contributes to their structural diversity. Typically, the molecular mechanism that underpins such a decoration process involves a three-component glycosylation system (TGS) represented by an undecaprenyl-phosphate (Und-P) sugar-activating glycosyltransferase (Und-P GT), a flippase, and a polytopic glycosyltransferase (PolM GT) dedicated to attaching sugar residues to a specific glycopolymer. Here, using bioinformatic analyses, CRISPR-assisted recombineering, structural analysis of cell wall–associated polysaccharides (CWPS) through MALDI-TOF MS and methylation analysis, we report on three such systems in the bacterium Lactococcus lactis. On the basis of sequence similarities, we first identified three gene pairs, csdAB, csdCD, and csdEF, each encoding an Und-P GT and a PolM GT, as potential TGS component candidates. Our experimental results show that csdAB and csdCD are involved in Glc side-chain addition on the CWPS components rhamnan and polysaccharide pellicle (PSP), respectively, whereas csdEF plays a role in galactosylation of lipoteichoic acid (LTA). We also identified a potential flippase encoded in the L. lactis genome (llnz_02975, cflA) and confirmed that it participates in the glycosylation of the three cell wall glycopolymers rhamnan, PSP, and LTA, thus indicating that its function is shared by the three TGSs. Finally, we observed that glucosylation of both rhamnan and PSP can increase resistance to bacteriophage predation and that LTA galactosylation alters L. lactis resistance to bacteriocin. Full Article
microbiology Substrate recognition and ATPase activity of the E. coli cysteine/cystine ABC transporter YecSC-FliY [Microbiology] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 Sulfur is essential for biological processes such as amino acid biogenesis, iron–sulfur cluster formation, and redox homeostasis. To acquire sulfur-containing compounds from the environment, bacteria have evolved high-affinity uptake systems, predominant among which is the ABC transporter family. Theses membrane-embedded enzymes use the energy of ATP hydrolysis for transmembrane transport of a wide range of biomolecules against concentration gradients. Three distinct bacterial ABC import systems of sulfur-containing compounds have been identified, but the molecular details of their transport mechanism remain poorly characterized. Here we provide results from a biochemical analysis of the purified Escherichia coli YecSC-FliY cysteine/cystine import system. We found that the substrate-binding protein FliY binds l-cystine, l-cysteine, and d-cysteine with micromolar affinities. However, binding of the l- and d-enantiomers induced different conformational changes of FliY, where the l- enantiomer–substrate-binding protein complex interacted more efficiently with the YecSC transporter. YecSC had low basal ATPase activity that was moderately stimulated by apo FliY, more strongly by d-cysteine–bound FliY, and maximally by l-cysteine– or l-cystine–bound FliY. However, at high FliY concentrations, YecSC reached maximal ATPase rates independent of the presence or nature of the substrate. These results suggest that FliY exists in a conformational equilibrium between an open, unliganded form that does not bind to the YecSC transporter and closed, unliganded and closed, liganded forms that bind this transporter with variable affinities but equally stimulate its ATPase activity. These findings differ from previous observations for similar ABC transporters, highlighting the extent of mechanistic diversity in this large protein family. Full Article
microbiology NAD+ biosynthesis in bacteria is controlled by global carbon/nitrogen levels via PII signaling [Microbiology] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 NAD+ is a central metabolite participating in core metabolic redox reactions. The prokaryotic NAD synthetase enzyme NadE catalyzes the last step of NAD+ biosynthesis, converting nicotinic acid adenine dinucleotide (NaAD) to NAD+. Some members of the NadE family use l-glutamine as a nitrogen donor and are named NadEGln. Previous gene neighborhood analysis has indicated that the bacterial nadE gene is frequently clustered with the gene encoding the regulatory signal transduction protein PII, suggesting a functional relationship between these proteins in response to the nutritional status and the carbon/nitrogen ratio of the bacterial cell. Here, using affinity chromatography, bioinformatics analyses, NAD synthetase activity, and biolayer interferometry assays, we show that PII and NadEGln physically interact in vitro, that this complex relieves NadEGln negative feedback inhibition by NAD+. This mechanism is conserved in distantly related bacteria. Of note, the PII protein allosteric effector and cellular nitrogen level indicator 2-oxoglutarate (2-OG) inhibited the formation of the PII-NadEGln complex within a physiological range. These results indicate an interplay between the levels of ATP, ADP, 2-OG, PII-sensed glutamine, and NAD+, representing a metabolic hub that may balance the levels of core nitrogen and carbon metabolites. Our findings support the notion that PII proteins act as a dissociable regulatory subunit of NadEGln, thereby enabling the control of NAD+ biosynthesis according to the nutritional status of the bacterial cell. Full Article
microbiology 5-Ethynyl-2'-deoxycytidine and 5-ethynyl-2'-deoxyuridine are differentially incorporated in cells infected with HSV-1, HCMV, and KSHV viruses [Microbiology] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Nucleoside analogues are a valuable experimental tool. Incorporation of these molecules into newly synthesized DNA (i.e. pulse-labeling) is used to monitor cell proliferation or to isolate nascent DNA. Some of the most common nucleoside analogues used for pulse-labeling of DNA in cells are the deoxypyrimidine analogues 5-ethynyl-2'-deoxyuridine (EdU) and 5-ethynyl-2'-deoxycytidine (EdC). Click chemistry enables conjugation of an azide molecule tagged with a fluorescent dye or biotin to the alkyne of the analog, which can then be used to detect incorporation of EdU and EdC into DNA. The use of EdC is often recommended because of the potential cytotoxicity associated with EdU during longer incubations. Here, by comparing the relative incorporation efficiencies of EdU and EdC during short 30-min pulses, we demonstrate significantly lower incorporation of EdC than of EdU in noninfected human fibroblast cells or in cells infected with either human cytomegalovirus or Kaposi's sarcoma-associated herpesvirus. Interestingly, cells infected with herpes simplex virus type-1 (HSV-1) incorporated EdC and EdU at similar levels during short pulses. Of note, exogenous expression of HSV-1 thymidine kinase increased the incorporation efficiency of EdC. These results highlight the limitations when using substituted pyrimidine analogues in pulse-labeling and suggest that EdU is the preferable nucleoside analogue for short pulse-labeling experiments, resulting in increased recovery and sensitivity for downstream applications. This is an important discovery that may help to better characterize the biochemical properties of different nucleoside analogues with a given kinase, ultimately leading to significant differences in labeling efficiency of nascent DNA. Full Article
microbiology The streptococcal multidomain fibrillar adhesin CshA has an elongated polymeric architecture [Microbiology] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 The cell surfaces of many bacteria carry filamentous polypeptides termed adhesins that enable binding to both biotic and abiotic surfaces. Surface adherence is facilitated by the exquisite selectivity of the adhesins for their cognate ligands or receptors and is a key step in niche or host colonization and pathogenicity. Streptococcus gordonii is a primary colonizer of the human oral cavity and an opportunistic pathogen, as well as a leading cause of infective endocarditis in humans. The fibrillar adhesin CshA is an important determinant of S. gordonii adherence, forming peritrichous fibrils on its surface that bind host cells and other microorganisms. CshA possesses a distinctive multidomain architecture comprising an N-terminal target-binding region fused to 17 repeat domains (RDs) that are each ∼100 amino acids long. Here, using structural and biophysical methods, we demonstrate that the intact CshA repeat region (CshA_RD1–17, domains 1–17) forms an extended polymeric monomer in solution. We recombinantly produced a subset of CshA RDs and found that they differ in stability and unfolding behavior. The NMR structure of CshA_RD13 revealed a hitherto unreported all β-fold, flanked by disordered interdomain linkers. These findings, in tandem with complementary hydrodynamic studies of CshA_RD1–17, indicate that this polypeptide possesses a highly unusual dynamic transitory structure characterized by alternating regions of order and disorder. This architecture provides flexibility for the adhesive tip of the CshA fibril to maintain bacterial attachment that withstands shear forces within the human host. It may also help mitigate deleterious folding events between neighboring RDs that share significant structural identity without compromising mechanical stability. Full Article
microbiology Pro-515 of the dynamin-like GTPase MxB contributes to HIV-1 inhibition by regulating MxB oligomerization and binding to HIV-1 capsid [Microbiology] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Interferon-regulated myxovirus resistance protein B (MxB) is an interferon-induced GTPase belonging to the dynamin superfamily. It inhibits infection with a wide range of different viruses, including HIV-1, by impairing viral DNA entry into the nucleus. Unlike the related antiviral GTPase MxA, MxB possesses an N-terminal region that contains a nuclear localization signal and is crucial for inhibiting HIV-1. Because MxB previously has been shown to reside in both the nuclear envelope and the cytoplasm, here we used bioinformatics and biochemical approaches to identify a nuclear export signal (NES) responsible for MxB's cytoplasmic location. Using the online computational tool LocNES (Locating Nuclear Export Signals or NESs), we identified five putative NES candidates in MxB and investigated whether their deletion caused nuclear localization of MxB. Our results revealed that none of the five deletion variants relocates to the nucleus, suggesting that these five predicted NES sequences do not confer NES activity. Interestingly, deletion of one sequence, encompassing amino acids 505–527, abrogated the anti-HIV-1 activity of MxB. Further mutation experiments disclosed that amino acids 515–519, and Pro-515 in particular, regulate MxB oligomerization and its binding to HIV-1 capsid, thereby playing an important role in MxB-mediated restriction of HIV-1 infection. In summary, our results indicate that none of the five predicted NES sequences in MxB appears to be required for its nuclear export. Our findings also reveal several residues in MxB, including Pro-515, critical for its oligomerization and anti-HIV-1 function. Full Article
microbiology NAD+ biosynthesis in bacteria is controlled by global carbon/nitrogen levels via PII signaling [Microbiology] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 NAD+ is a central metabolite participating in core metabolic redox reactions. The prokaryotic NAD synthetase enzyme NadE catalyzes the last step of NAD+ biosynthesis, converting nicotinic acid adenine dinucleotide (NaAD) to NAD+. Some members of the NadE family use l-glutamine as a nitrogen donor and are named NadEGln. Previous gene neighborhood analysis has indicated that the bacterial nadE gene is frequently clustered with the gene encoding the regulatory signal transduction protein PII, suggesting a functional relationship between these proteins in response to the nutritional status and the carbon/nitrogen ratio of the bacterial cell. Here, using affinity chromatography, bioinformatics analyses, NAD synthetase activity, and biolayer interferometry assays, we show that PII and NadEGln physically interact in vitro, that this complex relieves NadEGln negative feedback inhibition by NAD+. This mechanism is conserved in distantly related bacteria. Of note, the PII protein allosteric effector and cellular nitrogen level indicator 2-oxoglutarate (2-OG) inhibited the formation of the PII-NadEGln complex within a physiological range. These results indicate an interplay between the levels of ATP, ADP, 2-OG, PII-sensed glutamine, and NAD+, representing a metabolic hub that may balance the levels of core nitrogen and carbon metabolites. Our findings support the notion that PII proteins act as a dissociable regulatory subunit of NadEGln, thereby enabling the control of NAD+ biosynthesis according to the nutritional status of the bacterial cell. Full Article
microbiology Three distinct glycosylation pathways are involved in the decoration of Lactococcus lactis cell wall glycopolymers [Microbiology] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 Extracytoplasmic sugar decoration of glycopolymer components of the bacterial cell wall contributes to their structural diversity. Typically, the molecular mechanism that underpins such a decoration process involves a three-component glycosylation system (TGS) represented by an undecaprenyl-phosphate (Und-P) sugar-activating glycosyltransferase (Und-P GT), a flippase, and a polytopic glycosyltransferase (PolM GT) dedicated to attaching sugar residues to a specific glycopolymer. Here, using bioinformatic analyses, CRISPR-assisted recombineering, structural analysis of cell wall–associated polysaccharides (CWPS) through MALDI-TOF MS and methylation analysis, we report on three such systems in the bacterium Lactococcus lactis. On the basis of sequence similarities, we first identified three gene pairs, csdAB, csdCD, and csdEF, each encoding an Und-P GT and a PolM GT, as potential TGS component candidates. Our experimental results show that csdAB and csdCD are involved in Glc side-chain addition on the CWPS components rhamnan and polysaccharide pellicle (PSP), respectively, whereas csdEF plays a role in galactosylation of lipoteichoic acid (LTA). We also identified a potential flippase encoded in the L. lactis genome (llnz_02975, cflA) and confirmed that it participates in the glycosylation of the three cell wall glycopolymers rhamnan, PSP, and LTA, thus indicating that its function is shared by the three TGSs. Finally, we observed that glucosylation of both rhamnan and PSP can increase resistance to bacteriophage predation and that LTA galactosylation alters L. lactis resistance to bacteriocin. Full Article
microbiology Substrate recognition and ATPase activity of the E. coli cysteine/cystine ABC transporter YecSC-FliY [Microbiology] By www.jbc.org Published On :: 2020-04-17T00:06:05-07:00 Sulfur is essential for biological processes such as amino acid biogenesis, iron–sulfur cluster formation, and redox homeostasis. To acquire sulfur-containing compounds from the environment, bacteria have evolved high-affinity uptake systems, predominant among which is the ABC transporter family. Theses membrane-embedded enzymes use the energy of ATP hydrolysis for transmembrane transport of a wide range of biomolecules against concentration gradients. Three distinct bacterial ABC import systems of sulfur-containing compounds have been identified, but the molecular details of their transport mechanism remain poorly characterized. Here we provide results from a biochemical analysis of the purified Escherichia coli YecSC-FliY cysteine/cystine import system. We found that the substrate-binding protein FliY binds l-cystine, l-cysteine, and d-cysteine with micromolar affinities. However, binding of the l- and d-enantiomers induced different conformational changes of FliY, where the l- enantiomer–substrate-binding protein complex interacted more efficiently with the YecSC transporter. YecSC had low basal ATPase activity that was moderately stimulated by apo FliY, more strongly by d-cysteine–bound FliY, and maximally by l-cysteine– or l-cystine–bound FliY. However, at high FliY concentrations, YecSC reached maximal ATPase rates independent of the presence or nature of the substrate. These results suggest that FliY exists in a conformational equilibrium between an open, unliganded form that does not bind to the YecSC transporter and closed, unliganded and closed, liganded forms that bind this transporter with variable affinities but equally stimulate its ATPase activity. These findings differ from previous observations for similar ABC transporters, highlighting the extent of mechanistic diversity in this large protein family. Full Article
microbiology NAD+ biosynthesis in bacteria is controlled by global carbon/nitrogen levels via PII signaling [Microbiology] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 NAD+ is a central metabolite participating in core metabolic redox reactions. The prokaryotic NAD synthetase enzyme NadE catalyzes the last step of NAD+ biosynthesis, converting nicotinic acid adenine dinucleotide (NaAD) to NAD+. Some members of the NadE family use l-glutamine as a nitrogen donor and are named NadEGln. Previous gene neighborhood analysis has indicated that the bacterial nadE gene is frequently clustered with the gene encoding the regulatory signal transduction protein PII, suggesting a functional relationship between these proteins in response to the nutritional status and the carbon/nitrogen ratio of the bacterial cell. Here, using affinity chromatography, bioinformatics analyses, NAD synthetase activity, and biolayer interferometry assays, we show that PII and NadEGln physically interact in vitro, that this complex relieves NadEGln negative feedback inhibition by NAD+. This mechanism is conserved in distantly related bacteria. Of note, the PII protein allosteric effector and cellular nitrogen level indicator 2-oxoglutarate (2-OG) inhibited the formation of the PII-NadEGln complex within a physiological range. These results indicate an interplay between the levels of ATP, ADP, 2-OG, PII-sensed glutamine, and NAD+, representing a metabolic hub that may balance the levels of core nitrogen and carbon metabolites. Our findings support the notion that PII proteins act as a dissociable regulatory subunit of NadEGln, thereby enabling the control of NAD+ biosynthesis according to the nutritional status of the bacterial cell. Full Article
microbiology 5-Ethynyl-2'-deoxycytidine and 5-ethynyl-2'-deoxyuridine are differentially incorporated in cells infected with HSV-1, HCMV, and KSHV viruses [Microbiology] By www.jbc.org Published On :: 2020-05-01T00:06:09-07:00 Nucleoside analogues are a valuable experimental tool. Incorporation of these molecules into newly synthesized DNA (i.e. pulse-labeling) is used to monitor cell proliferation or to isolate nascent DNA. Some of the most common nucleoside analogues used for pulse-labeling of DNA in cells are the deoxypyrimidine analogues 5-ethynyl-2'-deoxyuridine (EdU) and 5-ethynyl-2'-deoxycytidine (EdC). Click chemistry enables conjugation of an azide molecule tagged with a fluorescent dye or biotin to the alkyne of the analog, which can then be used to detect incorporation of EdU and EdC into DNA. The use of EdC is often recommended because of the potential cytotoxicity associated with EdU during longer incubations. Here, by comparing the relative incorporation efficiencies of EdU and EdC during short 30-min pulses, we demonstrate significantly lower incorporation of EdC than of EdU in noninfected human fibroblast cells or in cells infected with either human cytomegalovirus or Kaposi's sarcoma-associated herpesvirus. Interestingly, cells infected with herpes simplex virus type-1 (HSV-1) incorporated EdC and EdU at similar levels during short pulses. Of note, exogenous expression of HSV-1 thymidine kinase increased the incorporation efficiency of EdC. These results highlight the limitations when using substituted pyrimidine analogues in pulse-labeling and suggest that EdU is the preferable nucleoside analogue for short pulse-labeling experiments, resulting in increased recovery and sensitivity for downstream applications. This is an important discovery that may help to better characterize the biochemical properties of different nucleoside analogues with a given kinase, ultimately leading to significant differences in labeling efficiency of nascent DNA. Full Article
microbiology Substrate recognition and ATPase activity of the E. coli cysteine/cystine ABC transporter YecSC-FliY [Microbiology] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 Sulfur is essential for biological processes such as amino acid biogenesis, iron–sulfur cluster formation, and redox homeostasis. To acquire sulfur-containing compounds from the environment, bacteria have evolved high-affinity uptake systems, predominant among which is the ABC transporter family. Theses membrane-embedded enzymes use the energy of ATP hydrolysis for transmembrane transport of a wide range of biomolecules against concentration gradients. Three distinct bacterial ABC import systems of sulfur-containing compounds have been identified, but the molecular details of their transport mechanism remain poorly characterized. Here we provide results from a biochemical analysis of the purified Escherichia coli YecSC-FliY cysteine/cystine import system. We found that the substrate-binding protein FliY binds l-cystine, l-cysteine, and d-cysteine with micromolar affinities. However, binding of the l- and d-enantiomers induced different conformational changes of FliY, where the l- enantiomer–substrate-binding protein complex interacted more efficiently with the YecSC transporter. YecSC had low basal ATPase activity that was moderately stimulated by apo FliY, more strongly by d-cysteine–bound FliY, and maximally by l-cysteine– or l-cystine–bound FliY. However, at high FliY concentrations, YecSC reached maximal ATPase rates independent of the presence or nature of the substrate. These results suggest that FliY exists in a conformational equilibrium between an open, unliganded form that does not bind to the YecSC transporter and closed, unliganded and closed, liganded forms that bind this transporter with variable affinities but equally stimulate its ATPase activity. These findings differ from previous observations for similar ABC transporters, highlighting the extent of mechanistic diversity in this large protein family. Full Article
microbiology The streptococcal multidomain fibrillar adhesin CshA has an elongated polymeric architecture [Microbiology] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 The cell surfaces of many bacteria carry filamentous polypeptides termed adhesins that enable binding to both biotic and abiotic surfaces. Surface adherence is facilitated by the exquisite selectivity of the adhesins for their cognate ligands or receptors and is a key step in niche or host colonization and pathogenicity. Streptococcus gordonii is a primary colonizer of the human oral cavity and an opportunistic pathogen, as well as a leading cause of infective endocarditis in humans. The fibrillar adhesin CshA is an important determinant of S. gordonii adherence, forming peritrichous fibrils on its surface that bind host cells and other microorganisms. CshA possesses a distinctive multidomain architecture comprising an N-terminal target-binding region fused to 17 repeat domains (RDs) that are each ∼100 amino acids long. Here, using structural and biophysical methods, we demonstrate that the intact CshA repeat region (CshA_RD1–17, domains 1–17) forms an extended polymeric monomer in solution. We recombinantly produced a subset of CshA RDs and found that they differ in stability and unfolding behavior. The NMR structure of CshA_RD13 revealed a hitherto unreported all β-fold, flanked by disordered interdomain linkers. These findings, in tandem with complementary hydrodynamic studies of CshA_RD1–17, indicate that this polypeptide possesses a highly unusual dynamic transitory structure characterized by alternating regions of order and disorder. This architecture provides flexibility for the adhesive tip of the CshA fibril to maintain bacterial attachment that withstands shear forces within the human host. It may also help mitigate deleterious folding events between neighboring RDs that share significant structural identity without compromising mechanical stability. Full Article
microbiology Role of phospholipid synthesis in the development and differentiation of malaria parasites in the blood [Microbiology] By feedproxy.google.com Published On :: 2018-11-09T03:40:54-08:00 The life cycle of malaria parasites in both their mammalian host and mosquito vector consists of multiple developmental stages that ensure proper replication and progeny survival. The transition between these stages is fueled by nutrients scavenged from the host and fed into specialized metabolic pathways of the parasite. One such pathway is used by Plasmodium falciparum, which causes the most severe form of human malaria, to synthesize its major phospholipids, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. Much is known about the enzymes involved in the synthesis of these phospholipids, and recent advances in genetic engineering, single-cell RNA-Seq analyses, and drug screening have provided new perspectives on the importance of some of these enzymes in parasite development and sexual differentiation and have identified targets for the development of new antimalarial drugs. This Minireview focuses on two phospholipid biosynthesis enzymes of P. falciparum that catalyze phosphoethanolamine transmethylation (PfPMT) and phosphatidylserine decarboxylation (PfPSD) during the blood stages of the parasite. We also discuss our current understanding of the biochemical, structural, and biological functions of these enzymes and highlight efforts to use them as antimalarial drug targets. Full Article
microbiology Gujarat university, second MBBS examination, microbiology question papers, January 2015 By resources.medipacademy.com Published On :: 11 March 2015 11:07:49 Gujarat university, second MBBS examination, microbiology question papers, January 2015 Full Article
microbiology Defrosting ancient microbes : emerging genomes in a warmer world / Scott O. Rogers, Professor of Molecular Biology and Evolution, Department of Biological Sciences, Bowling Green State University ; John D. Castello, Professor Emeritus of Microbiology and By www.catalog.slsa.sa.gov.au Published On :: Microorganisms -- History. Full Article
microbiology Wood microbiology : decay and its prevention By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Author: Zabel, R. A. (Robert A.), authorCallnumber: OnlineISBN: 9780128205730 (electronic bk.) Full Article
microbiology Mixed plantations of eucalyptus and leguminous trees : soil, microbiology and ecosystem services By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9783030323653 (electronic bk.) Full Article
microbiology Methylotrophs : microbiology, biochemistry and genetics By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9781351074513 (electronic bk.) Full Article
microbiology Advances in applied microbiology. By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 1282169459 Full Article
microbiology Advances in applied microbiology. By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 1282169416 Full Article
microbiology Report from the American Society for Microbiology COVID-19 International Summit, 23 March 2020: Value of Diagnostic Testing for SARS-CoV-2/COVID-19 By mbio.asm.org Published On :: 2020-03-26T14:58:07-07:00 Full Article
microbiology Fluorescence-Reported Allelic Exchange Mutagenesis-Mediated Gene Deletion Indicates a Requirement for Chlamydia trachomatis Tarp during In Vivo Infectivity and Reveals a Specific Role for the C Terminus during Cellular Invasion [Cellular Microbiology: Pat By iai.asm.org Published On :: 2020-04-20T08:00:39-07:00 The translocated actin recruiting phosphoprotein (Tarp) is a multidomain type III secreted effector used by Chlamydia trachomatis. In aggregate, existing data suggest a role of this effector in initiating new infections. As new genetic tools began to emerge to study chlamydial genes in vivo, we speculated as to what degree Tarp function contributes to Chlamydia’s ability to parasitize mammalian host cells. To address this question, we generated a complete tarP deletion mutant using the fluorescence-reported allelic exchange mutagenesis (FRAEM) technique and complemented the mutant in trans with wild-type tarP or mutant tarP alleles engineered to harbor in-frame domain deletions. We provide evidence for the significant role of Tarp in C. trachomatis invasion of host cells. Complementation studies indicate that the C-terminal filamentous actin (F-actin)-binding domains are responsible for Tarp-mediated invasion efficiency. Wild-type C. trachomatis entry into HeLa cells resulted in host cell shape changes, whereas the tarP mutant did not. Finally, using a novel cis complementation approach, C. trachomatis lacking tarP demonstrated significant attenuation in a murine genital tract infection model. Together, these data provide definitive genetic evidence for the critical role of the Tarp F-actin-binding domains in host cell invasion and for the Tarp effector as a bona fide C. trachomatis virulence factor. Full Article
microbiology De Novo Purine Biosynthesis Is Required for Intracellular Growth of Staphylococcus aureus and for the Hypervirulence Phenotype of a purR Mutant [Cellular Microbiology: Pathogen-Host Cell Molecular Interactions] By iai.asm.org Published On :: 2020-04-20T08:00:39-07:00 Staphylococcus aureus is a noted human and animal pathogen. Despite decades of research on this important bacterium, there are still many unanswered questions regarding the pathogenic mechanisms it uses to infect the mammalian host. This can be attributed to it possessing a plethora of virulence factors and complex virulence factor and metabolic regulation. PurR, the purine biosynthesis regulator, was recently also shown to regulate virulence factors in S. aureus, and mutations in purR result in derepression of fibronectin binding proteins (FnBPs) and extracellular toxins, required for a so-called hypervirulent phenotype. Here, we show that hypervirulent strains containing purR mutations can be attenuated with the addition of purine biosynthesis mutations, implicating the necessity for de novo purine biosynthesis in this phenotype and indicating that S. aureus in the mammalian host experiences purine limitation. Using cell culture, we showed that while purR mutants are not altered in epithelial cell binding, compared to that of wild-type (WT) S. aureus, purR mutants have enhanced invasion of these nonprofessional phagocytes, consistent with the requirement of FnBPs for invasion of these cells. This correlates with purR mutants having increased transcription of fnb genes, resulting in higher levels of surface-exposed FnBPs to promote invasion. These data provide important contributions to our understanding of how the pathogenesis of S. aureus is affected by sensing of purine levels during infection of the mammalian host. Full Article
microbiology GABARAPL2 Is Critical for Growth Restriction of Toxoplasma gondii in HeLa Cells Treated with Gamma Interferon [Cellular Microbiology: Pathogen-Host Cell Molecular Interactions] By iai.asm.org Published On :: 2020-04-20T08:00:38-07:00 Gamma interferon (IFN-)-induced innate immune responses play important roles in the inhibition of Toxoplasma gondii infection. It has been reported that IFN- stimulates non-acidification-dependent growth restriction of T. gondii in HeLa cells, but the mechanism remains unclear. Here, we found that -aminobutyric acid (GABA) receptor-associated protein-like 2 (GABARAPL2) plays a critical role in parasite restriction in IFN--treated HeLa cells. GABARAPL2 is recruited to membrane structures surrounding parasitophorous vacuoles (PV). Autophagy adaptors are required for the proper localization and function of GABARAPL2 in the IFN- -induced immune response. These findings provide further understanding of a noncanonical autophagy pathway responsible for IFN--dependent inhibition of T. gondii growth in human HeLa cells and demonstrate the critical role of GABARAPL2 in this response. Full Article
microbiology Porphyromonas gingivalis Cell Wall Components Induce Programmed Death Ligand 1 (PD-L1) Expression on Human Oral Carcinoma Cells by a Receptor-Interacting Protein Kinase 2 (RIP2)-Dependent Mechanism [Cellular Microbiology: Pathogen-Host Cell Molecular Inte By iai.asm.org Published On :: 2020-04-20T08:00:38-07:00 Programmed death-ligand 1 (PD-L1/B7-H1) serves as a cosignaling molecule in cell-mediated immune responses and contributes to chronicity of inflammation and the escape of tumor cells from immunosurveillance. Here, we investigated the molecular mechanisms leading to PD-L1 upregulation in human oral carcinoma cells and in primary human gingival keratinocytes in response to infection with Porphyromonas gingivalis (P. gingivalis), a keystone pathogen for the development of periodontitis. The bacterial cell wall component peptidoglycan uses bacterial outer membrane vesicles to be taken up by cells. Internalized peptidoglycan triggers cytosolic receptors to induce PD-L1 expression in a myeloid differentiation primary response 88 (Myd88)-independent and receptor-interacting serine/threonine-protein kinase 2 (RIP2)-dependent fashion. Interference with the kinase activity of RIP2 or mitogen-activated protein (MAP) kinases interferes with inducible PD-L1 expression. Full Article
microbiology Distinct Contributions of CD18 Integrins for Binding and Phagocytic Internalization of Pseudomonas aeruginosa [Cellular Microbiology: Pathogen-Host Cell Molecular Interactions] By iai.asm.org Published On :: 2020-04-20T08:00:38-07:00 Phagocytosis is the key mechanism for host control of Pseudomonas aeruginosa, a motile Gram-negative, opportunistic bacterial pathogen which frequently undergoes adaptation and selection for traits that are advantageous for survival. One such clinically relevant adaptation is the loss of bacterial motility, observed within chronic infections, that is associated with increased antibiotic tolerance and phagocytic resistance. Previous studies using phagocytes from a leukocyte adhesion deficiency type 1 (LAD-I) patient identified CD18 as a putative cell surface receptor for uptake of live P. aeruginosa. However, how bacterial motility alters direct engagement with CD18-containing integrins remains unknown. Here we demonstrate, with the use of motile and isogenic nonmotile deletion mutants of two independent strains of P. aeruginosa and with CRISPR-generated CD18-deficient cell lines in human monocytes and murine neutrophils, that CD18 expression facilitates the uptake of both motile and nonmotile P. aeruginosa. However, unexpectedly, mechanistic studies revealed that CD18 expression was dispensable for the initial attachment of the bacteria to the host cells, which was validated with ectopic expression of complement receptor 3 (CR3) by CHO cells. Our data support that surface N-linked glycan chains (N-glycans) likely facilitate the initial interaction of bacteria with monocytes and cooperate with CD18 integrins in trans to promote internalization of bacteria. Moreover, talin-1 and kindlin-3 proteins promote uptake, but not binding, of P. aeruginosa by murine neutrophils, which supports a role for CD18 integrin signaling in this process. These findings provide novel insights into the cellular determinants for phagocytic recognition and uptake of P. aeruginosa. Full Article
microbiology Identification and Characterization of Staphylococcus delphini Internalization Pathway in Nonprofessional Phagocytic Cells [Cellular Microbiology: Pathogen-Host Cell Molecular Interactions] By iai.asm.org Published On :: 2020-04-20T08:00:38-07:00 The intracellular lifestyle of bacteria is widely acknowledged to be an important mechanism in chronic and recurring infection. Among the Staphylococcus genus, only Staphylococcus aureus and Staphylococcus pseudintermedius have been clearly identified as intracellular in nonprofessional phagocytic cells (NPPCs), for which the mechanism is mainly fibronectin-binding dependent. Here, we used bioinformatics tools to search for possible new fibronectin-binding proteins (FnBP-like) in other Staphylococcus species. We found a protein in Staphylococcus delphini called Staphylococcus delphini surface protein Y (SdsY). This protein shares 68% identity with the Staphylococcus pseudintermedius surface protein D (SpsD), 36% identity with S. aureus FnBPA, and 39% identity with S. aureus FnBPB. The SdsY protein possesses the typical structure of FnBP-like proteins, including an N-terminal signal sequence, an A domain, a characteristic repeated pattern, and an LPXTG cell wall anchor motif. The level of adhesion to immobilized fibronectin was significantly higher in all S. delphini strains tested than in the fibronectin-binding-deficient S. aureus DU5883 strain. By using a model of human osteoblast infection, the level of internalization of all strains tested was significantly higher than with the invasive-incompetent S. aureus DU5883. These findings were confirmed by phenotype restoration after transformation of DU5883 by a plasmid expression vector encoding the SdsY repeats. Additionally, using fibronectin-depleted serum and murine osteoblast cell lines deficient for the β1 integrin, the involvement of fibronectin and β1 integrin was demonstrated in S. delphini internalization. The present study demonstrates that additional staphylococcal species are able to invade NPPCs and proposes a method to identify FnBP-like proteins. Full Article
microbiology A minor population of macrophage-tropic HIV-1 variants is identified in recrudescing viremia following analytic treatment interruption [Microbiology] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 HIV-1 persists in cellular reservoirs that can reignite viremia if antiretroviral therapy (ART) is interrupted. Therefore, insight into the nature of those reservoirs may be revealed from the composition of recrudescing viremia following treatment cessation. A minor population of macrophage-tropic (M-tropic) viruses was identified in a library of recombinant viruses... Full Article