gradient descent

XGANDALF – extended gradient descent algorithm for lattice finding

Serial crystallography records still diffraction patterns from single, randomly oriented crystals, then merges data from hundreds or thousands of them to form a complete data set. To process the data, the diffraction patterns must first be indexed, equivalent to determining the orientation of each crystal. A novel automatic indexing algorithm is presented, which in tests usually gives significantly higher indexing rates than alternative programs currently available for this task. The algorithm does not require prior knowledge of the lattice parameters but can make use of that information if provided, and also allows indexing of diffraction patterns generated by several crystals in the beam. Cases with a small number of Bragg spots per pattern appear to particularly benefit from the new approach. The algorithm has been implemented and optimized for fast execution, making it suitable for real-time feedback during serial crystallography experiments. It is implemented in an open-source C++ library and distributed under the LGPLv3 licence. An interface to it has been added to the CrystFEL software suite.





gradient descent

Graph-Dependent Implicit Regularisation for Distributed Stochastic Subgradient Descent

We propose graph-dependent implicit regularisation strategies for synchronised distributed stochastic subgradient descent (Distributed SGD) for convex problems in multi-agent learning. Under the standard assumptions of convexity, Lipschitz continuity, and smoothness, we establish statistical learning rates that retain, up to logarithmic terms, single-machine serial statistical guarantees through implicit regularisation (step size tuning and early stopping) with appropriate dependence on the graph topology. Our approach avoids the need for explicit regularisation in decentralised learning problems, such as adding constraints to the empirical risk minimisation rule. Particularly for distributed methods, the use of implicit regularisation allows the algorithm to remain simple, without projections or dual methods. To prove our results, we establish graph-independent generalisation bounds for Distributed SGD that match the single-machine serial SGD setting (using algorithmic stability), and we establish graph-dependent optimisation bounds that are of independent interest. We present numerical experiments to show that the qualitative nature of the upper bounds we derive can be representative of real behaviours.




gradient descent

Statistical inference for model parameters in stochastic gradient descent

Xi Chen, Jason D. Lee, Xin T. Tong, Yichen Zhang.

Source: The Annals of Statistics, Volume 48, Number 1, 251--273.

Abstract:
The stochastic gradient descent (SGD) algorithm has been widely used in statistical estimation for large-scale data due to its computational and memory efficiency. While most existing works focus on the convergence of the objective function or the error of the obtained solution, we investigate the problem of statistical inference of true model parameters based on SGD when the population loss function is strongly convex and satisfies certain smoothness conditions. Our main contributions are twofold. First, in the fixed dimension setup, we propose two consistent estimators of the asymptotic covariance of the average iterate from SGD: (1) a plug-in estimator, and (2) a batch-means estimator, which is computationally more efficient and only uses the iterates from SGD. Both proposed estimators allow us to construct asymptotically exact confidence intervals and hypothesis tests. Second, for high-dimensional linear regression, using a variant of the SGD algorithm, we construct a debiased estimator of each regression coefficient that is asymptotically normal. This gives a one-pass algorithm for computing both the sparse regression coefficients and confidence intervals, which is computationally attractive and applicable to online data.