gadolinium

Mononuclear binding and catalytic activity of europium(III) and gadolinium(III) at the active site of the model metalloenzyme phosphotriesterase

Lanthanide ions have ideal chemical properties for catalysis, such as hard Lewis acidity, fast ligand-exchange kinetics, high coordination-number preferences and low geometric requirements for coordination. As a result, many small-molecule lanthanide catalysts have been described in the literature. Yet, despite the ability of enzymes to catalyse highly stereoselective reactions under gentle conditions, very few lanthanoenzymes have been investigated. In this work, the mononuclear binding of europium(III) and gadolinium(III) to the active site of a mutant of the model enzyme phosphotriesterase are described using X-ray crystallography at 1.78 and 1.61 Å resolution, respectively. It is also shown that despite coordinating a single non-natural metal cation, the PTE-R18 mutant is still able to maintain esterase activity.




gadolinium

Comparative Evaluation of Lower Gadolinium Doses for MR Imaging of Meningiomas: How Low Can We Go? [CLINICAL PRACTICE]

BACKGROUND AND PURPOSE:

Gadolinium-based contrast agents are widely used for meningioma imaging; however, concerns exist regarding their side effects, cost, and environmental impact. At the standard gadolinium dose, most meningiomas show avid contrast enhancement, suggesting that administering a smaller dose may be feasible. The purpose of this study was to evaluate the impact of a lower gadolinium dose on the differentiation between meningiomas and adjacent intracranial tissues.

MATERIALS AND METHODS:

One hundred eight patients with presumed or confirmed meningiomas who underwent a brain MRI at multiple doses of gadolinium were included in the study. The patients’ MRIs were categorized into 3 groups based on the gadolinium dose administered: micro (approximately 25% of the standard dose), low (approximately 62% of the standard dose), and standard dose. Multireader qualitative visual assessment and quantitative relative signal differences calculations were performed to evaluate tumor differentiation from the cortex and from the dural venous sinus. The relative signal differences for each dose were analyzed by using ANOVA for quantitative assessment and the McNemar test for qualitative assessment. Additionally, noninferiority testing was used to compare the low and micro doses to the standard dose.

RESULTS:

Decreasing the gadolinium dose to a low dose or micro dose resulted in a statistically significant decrease in signal difference between the tumor and the adjacent brain tissue (P < .02). However, on visual assessment, the low dose was noninferior to the standard dose. The proportion of cases with suboptimal differentiation was significantly higher for the micro dose than for the standard dose, both for the differentiation between the tumor and the cortex (P = .041) and the differentiation between the tumor and the sinus (P < .001).

CONCLUSIONS:

Reducing the gadolinium dose to 62% of the standard level still allows for sufficient visual delineation of meningiomas from surrounding tissues. However, further reduction to 25% substantially compromises the ability to distinguish the tumor from adjacent structures and is, therefore, not advisable.




gadolinium

Synthesis and relaxivity of gadolinium-based DOTAGA conjugated 3-phosphoglycerate

Dalton Trans., 2024, 53,17777-17782
DOI: 10.1039/D4DT02766C, Communication
Open Access
Andrew R. Brotherton, Shifa Noor Mohamed, Thomas J. Meade
A Gd-DOTAGA based MR contrast agent conjugated to 3-phosphoglycerate for enhanced relaxivity and investigation into its metabolism.
The content of this RSS Feed (c) The Royal Society of Chemistry




gadolinium

Controlled dehydration, structural flexibility and gadolinium MRI contrast compound binding in the human plasma glycoprotein afamin

Afamin, which is a human blood plasma glycoprotein, a putative multifunctional transporter of hydrophobic molecules and a marker for metabolic syndrome, poses multiple challenges for crystallographic structure determination, both practically and in analysis of the models. Several hundred crystals were analysed, and an unusual variability in cell volume and difficulty in solving the structure despite an ∼34% sequence identity with nonglycosylated human serum albumin indicated that the molecule exhibits variable and context-sensitive packing, despite the simplified glycosylation in insect cell-expressed recombinant afamin. Controlled dehydration of the crystals was able to stabilize the orthorhombic crystal form, reducing the number of molecules in the asymmetric unit from the monoclinic form and changing the conformational state of the protein. An iterative strategy using fully automatic experiments available on MASSIF-1 was used to quickly determine the optimal protocol to achieve the phase transition, which should be readily applicable to many types of sample. The study also highlights the drawback of using a single crystallographic structure model for computational modelling purposes given that the conformational state of the binding sites and the electron density in the binding site, which is likely to result from PEGs, greatly varies between models. This also holds for the analysis of nonspecific low-affinity ligands, where often a variety of fragments with similar uncertainty can be modelled, inviting interpretative bias. As a promiscuous transporter, afamin also seems to bind gadoteridol, a magnetic resonance imaging contrast compound, in at least two sites. One pair of gadoteridol molecules is located near the human albumin Sudlow site, and a second gadoteridol molecule is located at an intermolecular site in proximity to domain IA. The data from the co-crystals support modern metrics of data quality in the context of the information that can be gleaned from data sets that would be abandoned on classical measures.




gadolinium

A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced Cardiac Magnetic Resonance Imaging. (arXiv:2004.12314v3 [cs.CV] UPDATED)

Segmentation of cardiac images, particularly late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) widely used for visualizing diseased cardiac structures, is a crucial first step for clinical diagnosis and treatment. However, direct segmentation of LGE-MRIs is challenging due to its attenuated contrast. Since most clinical studies have relied on manual and labor-intensive approaches, automatic methods are of high interest, particularly optimized machine learning approaches. To address this, we organized the "2018 Left Atrium Segmentation Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset, and associated labels of the left atrium segmented by three medical experts, ultimately attracting the participation of 27 international teams. In this paper, extensive analysis of the submitted algorithms using technical and biological metrics was performed by undergoing subgroup analysis and conducting hyper-parameter analysis, offering an overall picture of the major design choices of convolutional neural networks (CNNs) and practical considerations for achieving state-of-the-art left atrium segmentation. Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm, significantly outperforming prior state-of-the-art. Particularly, our analysis demonstrated that double, sequentially used CNNs, in which a first CNN is used for automatic region-of-interest localization and a subsequent CNN is used for refined regional segmentation, achieved far superior results than traditional methods and pipelines containing single CNNs. This large-scale benchmarking study makes a significant step towards much-improved segmentation methods for cardiac LGE-MRIs, and will serve as an important benchmark for evaluating and comparing the future works in the field.




gadolinium

[ASAP] Rapid Detection of Gadolinium-Based Contrast Agents in Urine with a Chelated Europium Luminescent Probe

ACS Sensors
DOI: 10.1021/acssensors.0c00615