3dx Exploiting Friedel pairs to interpret scanning 3DXRD data from complex geological materials By journals.iucr.org Published On :: A new processing technique for synchrotron scanning 3D X-ray diffraction data is introduced, utilizing symmetric Bragg reflections hkl and hkl, known as Friedel pairs. This technique is designed to tackle the difficulties associated with large, highly deformed, polyphase materials, especially geological samples. Full Article text
3dx Exploiting Friedel pairs to interpret scanning 3DXRD data from complex geological materials By journals.iucr.org Published On :: 2024-11-08 The present study introduces a processing strategy for synchrotron scanning 3D X-ray diffraction (s3DXRD) data, aimed at addressing the challenges posed by large, highly deformed, polyphase materials such as crystalline rocks. Leveraging symmetric Bragg reflections known as Friedel pairs, our method enables diffraction events to be precisely located within the sample volume. This method allows for fitting the phase, crystal structure and unit-cell parameters at the intra-grain scale on a voxel grid. The processing workflow incorporates several new modules, designed to (i) efficiently match Friedel pairs in large s3DXRD datasets containing up to 108 diffraction peaks; (ii) assign phases to each pixel or voxel, resolving potential ambiguities arising from overlap in scattering angles between different crystallographic phases; and (iii) fit the crystal orientation and unit cell locally on a point-by-point basis. We demonstrate the effectiveness of our technique on fractured granite samples, highlighting the ability of the method to characterize complex geological materials and show their internal structure and mineral composition. Additionally, we include the characterization of a metal gasket made of a commercial aluminium alloy, which surrounded the granite sample during experiments. The results show the effectiveness of the technique in recovering information about the internal texture and residual strain of materials that have undergone high levels of plastic deformation. Full Article text
3dx Introducing new 3DX Canvas in Allegro X Advanced Package Designer By community.cadence.com Published On :: Tue, 05 Dec 2023 12:50:25 GMT Have you heard that starting SPB 23.1, Allegro Package Designer Plus (APD+) will be renamed as Allegro X Advanced Package Designer (Allegro X APD)? Allegro X APD offers multiple new features and enhancements on topics like Via Structures, Wirebond, Etchback, Text Wizards, 3D Canvas, and more. This post presents the new 3DX Canvas introduced in SPB 23.1. This can be invoked from Allegro X APD (from the menu item View > 3DX Canvas). Some of the key benefits of the new canvas: This canvas addresses the scale and complexity in large modern package designs. It provides highly efficient visual representation and implementation of packages. The new architecture enables high-performance 3D incremental updates by utilizing GPU for fast rendering. Real-time 3D incremental updates are supported, which means that the 3D view is in sync with all changes to the database. The new canvas provides 3D visualization support for packaging objects such as wire bonds, ball, die bump/pillar geometries, die stacks, etch back, and plating bar. This release also introduces the interactive measurement tool for a 3D view of packages. Once you open 3DX Canvas, press the Alt key and you can select the objects you want to measure. 3DX Canvas provides new 3D DRC Bond Wire Clearances with Real 3D DRC Checks. True 3D DRC in Constraint Manager has been introduced. If you open Constraint Manager, there will be a new worksheet added. Following DRC checks are supported: Wire to Wire Wire to Finger Wire to Shape Wire to Cline Wire to Component Full Article
3dx Reconstructing intragranular strain fields in polycrystalline materials from scanning 3DXRD data By scripts.iucr.org Published On :: 2020-02-21 Two methods for reconstructing intragranular strain fields are developed for scanning three-dimensional X-ray diffraction (3DXRD). The methods are compared with a third approach where voxels are reconstructed independently of their neighbours [Hayashi, Setoyama & Seno (2017). Mater. Sci. Forum, 905, 157–164]. The 3D strain field of a tin grain, located within a sample of approximately 70 grains, is analysed and compared across reconstruction methods. Implicit assumptions of sub-problem independence, made in the independent voxel reconstruction method, are demonstrated to introduce bias and reduce reconstruction accuracy. It is verified that the two proposed methods remedy these problems by taking the spatial properties of the inverse problem into account. Improvements in reconstruction quality achieved by the two proposed methods are further supported by reconstructions using synthetic diffraction data. Full Article text