ia

Management information systems in the drug field / edited by George M. Beschner, Neil H. Sampson, National Institute on Drug Abuse ; and Christopher D'Amanda, Coordinating Office for Drug and Alcohol Abuse, City of Philadelphia.

Rockville, Maryland : National Institute on Drug Abuse, 1979.




ia

Psychosocial characteristics of drug-abusing women / by Marvin R. Burt, principal investigator ; Thomas J. Glynn, Barbara J. Sowder ; Burt Associates, Inc.

Rockville, Maryland : National Institute on Drug Abuse, 1979.




ia

An evaluation of the California civil addict program / by William H. McGlothlin, M. Douglas Anglin, Bruce D. Wilson.

Rockville, Maryland : National Institute on Drug Abuse, 1977.




ia

Human : a dialogue between body and mind.

[London] : [publisher not identified], [2019]




ia

Survey of drug information needs and problems associated with communications directed to practicing physicians : part III : remedial ad survey / [Arthur Ruskin, M.D.]

Springfield, Virginia : National Technical Information Service, 1974.




ia

The nature and treatment of nonopiate abuse : a review of the literature. Volume 2 / Wynne Associates for Division of Research, National Institute on Drug Abuse, Alcohol, Drug Abuse and Mental Health Administration, Department of Health, Education and Wel

Washington, D.C. : Wynne Associates, 1974.




ia

Evaluation of treatment programs for abusers of nonopiate drugs : problems and approaches. Volume 3 / Wynne Associates for Division of Research, National Institute on Drug Abuse, Alcohol, Drug Abuse and Mental Health Administration, Department of Health,

Washington, D.C. : Wynne Associates, [1974]




ia

Drug-related social work in street agencies : a study by the Institute for the Study of Drug Dependence / Nicholas Dorn and Nigel South.

Norwich : University of East Anglia : Social Work Today, 1984.




ia

Development of tolerance and cross-tolerance to psychomotor effects of benzodiazepines in man / by Kari Aranko.

Helsinki : Department of Pharmacology and Toxicology, University of Helsinki, 1985.




ia

Proceedings of the Parapsychological Association.

Durham, North Carolina : [Duke Station, 1957-[197-?]




ia

Archive of the Association Culturelle Franco-Australienne




ia

Series 02: H.C. Dorman pictorial material, 1960-1967




ia

Wedding photographs of William Thomas Cadell and Anne Macansh set in Harriet Scott graphic




ia

Herbert Compton diaries, 17 May – 29 July 1973




ia

The Most Excellent Order of the British Empire Association (New South Wales) further records, 1979-2012




ia

Former Alabama prep star Davenport transfers to Georgia

Maori Davenport, who drew national attention over an eligibility dispute during her senior year of high school, is transferring to Georgia after playing sparingly in her lone season at Rutgers. Lady Bulldogs coach Joni Taylor announced Davenport's decision Wednesday. The 6-foot-4 center from Troy, Alabama will have to sit out a season under NCAA transfer rules before she is eligible to join Georgia in 2021-22.




ia

Natalie Chou on why she took a stand against anti-Asian racism in wake of coronavirus

During Wednesday's "Pac-12 Perspective" podcast, Natalie Chou shared why she is using her platform to speak out against racism she sees in her community related to the novel coronavirus.




ia

UCLA's Natalie Chou on her role models, inspiring Asian-American girls in basketball

Pac-12 Networks' Mike Yam has a conversation with UCLA's Natalie Chou during Wednesday's "Pac-12 Perspective" podcast. Chou reflects on her role models, passion for basketball and how her mom has made a big impact on her hoops career.




ia

Natalie Chou breaks through stereotypes, inspires young Asian American girls on 'Our Stories' quick look

Watch the debut of "Our Stories - Natalie Chou" on Sunday, May 10 at 12:30 p.m. PT/ 1:30 p.m. MT on Pac-12 Network.




ia

Nonparametric confidence intervals for conditional quantiles with large-dimensional covariates

Laurent Gardes.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 661--701.

Abstract:
The first part of the paper is dedicated to the construction of a $gamma$ - nonparametric confidence interval for a conditional quantile with a level depending on the sample size. When this level tends to 0 or 1 as the sample size increases, the conditional quantile is said to be extreme and is located in the tail of the conditional distribution. The proposed confidence interval is constructed by approximating the distribution of the order statistics selected with a nearest neighbor approach by a Beta distribution. We show that its coverage probability converges to the preselected probability $gamma $ and its accuracy is illustrated on a simulation study. When the dimension of the covariate increases, the coverage probability of the confidence interval can be very different from $gamma $. This is a well known consequence of the data sparsity especially in the tail of the distribution. In a second part, a dimension reduction procedure is proposed in order to select more appropriate nearest neighbors in the right tail of the distribution and in turn to obtain a better coverage probability for extreme conditional quantiles. This procedure is based on the Tail Conditional Independence assumption introduced in (Gardes, Extremes , pp. 57–95, 18(3) , 2018).




ia

Statistical convergence of the EM algorithm on Gaussian mixture models

Ruofei Zhao, Yuanzhi Li, Yuekai Sun.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 632--660.

Abstract:
We study the convergence behavior of the Expectation Maximization (EM) algorithm on Gaussian mixture models with an arbitrary number of mixture components and mixing weights. We show that as long as the means of the components are separated by at least $Omega (sqrt{min {M,d}})$, where $M$ is the number of components and $d$ is the dimension, the EM algorithm converges locally to the global optimum of the log-likelihood. Further, we show that the convergence rate is linear and characterize the size of the basin of attraction to the global optimum.




ia

Gaussian field on the symmetric group: Prediction and learning

François Bachoc, Baptiste Broto, Fabrice Gamboa, Jean-Michel Loubes.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 503--546.

Abstract:
In the framework of the supervised learning of a real function defined on an abstract space $mathcal{X}$, Gaussian processes are widely used. The Euclidean case for $mathcal{X}$ is well known and has been widely studied. In this paper, we explore the less classical case where $mathcal{X}$ is the non commutative finite group of permutations (namely the so-called symmetric group $S_{N}$). We provide an application to Gaussian process based optimization of Latin Hypercube Designs. We also extend our results to the case of partial rankings.




ia

On polyhedral estimation of signals via indirect observations

Anatoli Juditsky, Arkadi Nemirovski.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 458--502.

Abstract:
We consider the problem of recovering linear image of unknown signal belonging to a given convex compact signal set from noisy observation of another linear image of the signal. We develop a simple generic efficiently computable non linear in observations “polyhedral” estimate along with computation-friendly techniques for its design and risk analysis. We demonstrate that under favorable circumstances the resulting estimate is provably near-optimal in the minimax sense, the “favorable circumstances” being less restrictive than the weakest known so far assumptions ensuring near-optimality of estimates which are linear in observations.




ia

Parseval inequalities and lower bounds for variance-based sensitivity indices

Olivier Roustant, Fabrice Gamboa, Bertrand Iooss.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 386--412.

Abstract:
The so-called polynomial chaos expansion is widely used in computer experiments. For example, it is a powerful tool to estimate Sobol’ sensitivity indices. In this paper, we consider generalized chaos expansions built on general tensor Hilbert basis. In this frame, we revisit the computation of the Sobol’ indices with Parseval equalities and give general lower bounds for these indices obtained by truncation. The case of the eigenfunctions system associated with a Poincaré differential operator leads to lower bounds involving the derivatives of the analyzed function and provides an efficient tool for variable screening. These lower bounds are put in action both on toy and real life models demonstrating their accuracy.




ia

Consistent model selection criteria and goodness-of-fit test for common time series models

Jean-Marc Bardet, Kare Kamila, William Kengne.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 2009--2052.

Abstract:
This paper studies the model selection problem in a large class of causal time series models, which includes both the ARMA or AR($infty $) processes, as well as the GARCH or ARCH($infty $), APARCH, ARMA-GARCH and many others processes. To tackle this issue, we consider a penalized contrast based on the quasi-likelihood of the model. We provide sufficient conditions for the penalty term to ensure the consistency of the proposed procedure as well as the consistency and the asymptotic normality of the quasi-maximum likelihood estimator of the chosen model. We also propose a tool for diagnosing the goodness-of-fit of the chosen model based on a Portmanteau test. Monte-Carlo experiments and numerical applications on illustrative examples are performed to highlight the obtained asymptotic results. Moreover, using a data-driven choice of the penalty, they show the practical efficiency of this new model selection procedure and Portemanteau test.




ia

Asymptotic properties of the maximum likelihood and cross validation estimators for transformed Gaussian processes

François Bachoc, José Betancourt, Reinhard Furrer, Thierry Klein.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1962--2008.

Abstract:
The asymptotic analysis of covariance parameter estimation of Gaussian processes has been subject to intensive investigation. However, this asymptotic analysis is very scarce for non-Gaussian processes. In this paper, we study a class of non-Gaussian processes obtained by regular non-linear transformations of Gaussian processes. We provide the increasing-domain asymptotic properties of the (Gaussian) maximum likelihood and cross validation estimators of the covariance parameters of a non-Gaussian process of this class. We show that these estimators are consistent and asymptotically normal, although they are defined as if the process was Gaussian. They do not need to model or estimate the non-linear transformation. Our results can thus be interpreted as a robustness of (Gaussian) maximum likelihood and cross validation towards non-Gaussianity. Our proofs rely on two technical results that are of independent interest for the increasing-domain asymptotic literature of spatial processes. First, we show that, under mild assumptions, coefficients of inverses of large covariance matrices decay at an inverse polynomial rate as a function of the corresponding observation location distances. Second, we provide a general central limit theorem for quadratic forms obtained from transformed Gaussian processes. Finally, our asymptotic results are illustrated by numerical simulations.




ia

Univariate mean change point detection: Penalization, CUSUM and optimality

Daren Wang, Yi Yu, Alessandro Rinaldo.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1917--1961.

Abstract:
The problem of univariate mean change point detection and localization based on a sequence of $n$ independent observations with piecewise constant means has been intensively studied for more than half century, and serves as a blueprint for change point problems in more complex settings. We provide a complete characterization of this classical problem in a general framework in which the upper bound $sigma ^{2}$ on the noise variance, the minimal spacing $Delta $ between two consecutive change points and the minimal magnitude $kappa $ of the changes, are allowed to vary with $n$. We first show that consistent localization of the change points is impossible in the low signal-to-noise ratio regime $frac{kappa sqrt{Delta }}{sigma }preceq sqrt{log (n)}$. In contrast, when $frac{kappa sqrt{Delta }}{sigma }$ diverges with $n$ at the rate of at least $sqrt{log (n)}$, we demonstrate that two computationally-efficient change point estimators, one based on the solution to an $ell _{0}$-penalized least squares problem and the other on the popular wild binary segmentation algorithm, are both consistent and achieve a localization rate of the order $frac{sigma ^{2}}{kappa ^{2}}log (n)$. We further show that such rate is minimax optimal, up to a $log (n)$ term.




ia

Bayesian variance estimation in the Gaussian sequence model with partial information on the means

Gianluca Finocchio, Johannes Schmidt-Hieber.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 239--271.

Abstract:
Consider the Gaussian sequence model under the additional assumption that a fixed fraction of the means is known. We study the problem of variance estimation from a frequentist Bayesian perspective. The maximum likelihood estimator (MLE) for $sigma^{2}$ is biased and inconsistent. This raises the question whether the posterior is able to correct the MLE in this case. By developing a new proving strategy that uses refined properties of the posterior distribution, we find that the marginal posterior is inconsistent for any i.i.d. prior on the mean parameters. In particular, no assumption on the decay of the prior needs to be imposed. Surprisingly, we also find that consistency can be retained for a hierarchical prior based on Gaussian mixtures. In this case we also establish a limiting shape result and determine the limit distribution. In contrast to the classical Bernstein-von Mises theorem, the limit is non-Gaussian. We show that the Bayesian analysis leads to new statistical estimators outperforming the correctly calibrated MLE in a numerical simulation study.




ia

Perspective maximum likelihood-type estimation via proximal decomposition

Patrick L. Combettes, Christian L. Müller.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 207--238.

Abstract:
We introduce a flexible optimization model for maximum likelihood-type estimation (M-estimation) that encompasses and generalizes a large class of existing statistical models, including Huber’s concomitant M-estimator, Owen’s Huber/Berhu concomitant estimator, the scaled lasso, support vector machine regression, and penalized estimation with structured sparsity. The model, termed perspective M-estimation, leverages the observation that convex M-estimators with concomitant scale as well as various regularizers are instances of perspective functions, a construction that extends a convex function to a jointly convex one in terms of an additional scale variable. These nonsmooth functions are shown to be amenable to proximal analysis, which leads to principled and provably convergent optimization algorithms via proximal splitting. We derive novel proximity operators for several perspective functions of interest via a geometrical approach based on duality. We then devise a new proximal splitting algorithm to solve the proposed M-estimation problem and establish the convergence of both the scale and regression iterates it produces to a solution. Numerical experiments on synthetic and real-world data illustrate the broad applicability of the proposed framework.




ia

Bias correction in conditional multivariate extremes

Mikael Escobar-Bach, Yuri Goegebeur, Armelle Guillou.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1773--1795.

Abstract:
We consider bias-corrected estimation of the stable tail dependence function in the regression context. To this aim, we first estimate the bias of a smoothed estimator of the stable tail dependence function, and then we subtract it from the estimator. The weak convergence, as a stochastic process, of the resulting asymptotically unbiased estimator of the conditional stable tail dependence function, correctly normalized, is established under mild assumptions, the covariate argument being fixed. The finite sample behaviour of our asymptotically unbiased estimator is then illustrated on a simulation study and compared to two alternatives, which are not bias corrected. Finally, our methodology is applied to a dataset of air pollution measurements.




ia

On the predictive potential of kernel principal components

Ben Jones, Andreas Artemiou, Bing Li.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1--23.

Abstract:
We give a probabilistic analysis of a phenomenon in statistics which, until recently, has not received a convincing explanation. This phenomenon is that the leading principal components tend to possess more predictive power for a response variable than lower-ranking ones despite the procedure being unsupervised. Our result, in its most general form, shows that the phenomenon goes far beyond the context of linear regression and classical principal components — if an arbitrary distribution for the predictor $X$ and an arbitrary conditional distribution for $Yvert X$ are chosen then any measureable function $g(Y)$, subject to a mild condition, tends to be more correlated with the higher-ranking kernel principal components than with the lower-ranking ones. The “arbitrariness” is formulated in terms of unitary invariance then the tendency is explicitly quantified by exploring how unitary invariance relates to the Cauchy distribution. The most general results, for technical reasons, are shown for the case where the kernel space is finite dimensional. The occurency of this tendency in real world databases is also investigated to show that our results are consistent with observation.




ia

Random distributions via Sequential Quantile Array

Annalisa Fabretti, Samantha Leorato.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1611--1647.

Abstract:
We propose a method to generate random distributions with known quantile distribution, or, more generally, with known distribution for some form of generalized quantile. The method takes inspiration from the random Sequential Barycenter Array distributions (SBA) proposed by Hill and Monticino (1998) which generates a Random Probability Measure (RPM) with known expected value. We define the Sequential Quantile Array (SQA) and show how to generate a random SQA from which we can derive RPMs. The distribution of the generated SQA-RPM can have full support and the RPMs can be both discrete, continuous and differentiable. We face also the problem of the efficient implementation of the procedure that ensures that the approximation of the SQA-RPM by a finite number of steps stays close to the SQA-RPM obtained theoretically by the procedure. Finally, we compare SQA-RPMs with similar approaches as Polya Tree.




ia

Asymptotic seed bias in respondent-driven sampling

Yuling Yan, Bret Hanlon, Sebastien Roch, Karl Rohe.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1577--1610.

Abstract:
Respondent-driven sampling (RDS) collects a sample of individuals in a networked population by incentivizing the sampled individuals to refer their contacts into the sample. This iterative process is initialized from some seed node(s). Sometimes, this selection creates a large amount of seed bias. Other times, the seed bias is small. This paper gains a deeper understanding of this bias by characterizing its effect on the limiting distribution of various RDS estimators. Using classical tools and results from multi-type branching processes [12], we show that the seed bias is negligible for the Generalized Least Squares (GLS) estimator and non-negligible for both the inverse probability weighted and Volz-Heckathorn (VH) estimators. In particular, we show that (i) above a critical threshold, VH converge to a non-trivial mixture distribution, where the mixture component depends on the seed node, and the mixture distribution is possibly multi-modal. Moreover, (ii) GLS converges to a Gaussian distribution independent of the seed node, under a certain condition on the Markov process. Numerical experiments with both simulated data and empirical social networks suggest that these results appear to hold beyond the Markov conditions of the theorems.




ia

Beta-Binomial stick-breaking non-parametric prior

María F. Gil–Leyva, Ramsés H. Mena, Theodoros Nicoleris.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1479--1507.

Abstract:
A new class of nonparametric prior distributions, termed Beta-Binomial stick-breaking process, is proposed. By allowing the underlying length random variables to be dependent through a Beta marginals Markov chain, an appealing discrete random probability measure arises. The chain’s dependence parameter controls the ordering of the stick-breaking weights, and thus tunes the model’s label-switching ability. Also, by tuning this parameter, the resulting class contains the Dirichlet process and the Geometric process priors as particular cases, which is of interest for MCMC implementations. Some properties of the model are discussed and a density estimation algorithm is proposed and tested with simulated datasets.




ia

A Bayesian approach to disease clustering using restricted Chinese restaurant processes

Claudia Wehrhahn, Samuel Leonard, Abel Rodriguez, Tatiana Xifara.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1449--1478.

Abstract:
Identifying disease clusters (areas with an unusually high incidence of a particular disease) is a common problem in epidemiology and public health. We describe a Bayesian nonparametric mixture model for disease clustering that constrains clusters to be made of adjacent areal units. This is achieved by modifying the exchangeable partition probability function associated with the Ewen’s sampling distribution. We call the resulting prior the Restricted Chinese Restaurant Process, as the associated full conditional distributions resemble those associated with the standard Chinese Restaurant Process. The model is illustrated using synthetic data sets and in an application to oral cancer mortality in Germany.




ia

A fast and consistent variable selection method for high-dimensional multivariate linear regression with a large number of explanatory variables

Ryoya Oda, Hirokazu Yanagihara.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1386--1412.

Abstract:
We put forward a variable selection method for selecting explanatory variables in a normality-assumed multivariate linear regression. It is cumbersome to calculate variable selection criteria for all subsets of explanatory variables when the number of explanatory variables is large. Therefore, we propose a fast and consistent variable selection method based on a generalized $C_{p}$ criterion. The consistency of the method is provided by a high-dimensional asymptotic framework such that the sample size and the sum of the dimensions of response vectors and explanatory vectors divided by the sample size tend to infinity and some positive constant which are less than one, respectively. Through numerical simulations, it is shown that the proposed method has a high probability of selecting the true subset of explanatory variables and is fast under a moderate sample size even when the number of dimensions is large.




ia

Differential network inference via the fused D-trace loss with cross variables

Yichong Wu, Tiejun Li, Xiaoping Liu, Luonan Chen.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1269--1301.

Abstract:
Detecting the change of biological interaction networks is of great importance in biological and medical research. We proposed a simple loss function, named as CrossFDTL, to identify the network change or differential network by estimating the difference between two precision matrices under Gaussian assumption. The CrossFDTL is a natural fusion of the D-trace loss for the considered two networks by imposing the $ell _{1}$ penalty to the differential matrix to ensure sparsity. The key point of our method is to utilize the cross variables, which correspond to the sum and difference of two precision matrices instead of using their original forms. Moreover, we developed an efficient minimization algorithm for the proposed loss function and further rigorously proved its convergence. Numerical results showed that our method outperforms the existing methods in both accuracy and convergence speed for the simulated and real data.




ia

A general drift estimation procedure for stochastic differential equations with additive fractional noise

Fabien Panloup, Samy Tindel, Maylis Varvenne.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1075--1136.

Abstract:
In this paper we consider the drift estimation problem for a general differential equation driven by an additive multidimensional fractional Brownian motion, under ergodic assumptions on the drift coefficient. Our estimation procedure is based on the identification of the invariant measure, and we provide consistency results as well as some information about the convergence rate. We also give some examples of coefficients for which the identifiability assumption for the invariant measure is satisfied.




ia

Testing goodness of fit for point processes via topological data analysis

Christophe A. N. Biscio, Nicolas Chenavier, Christian Hirsch, Anne Marie Svane.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1024--1074.

Abstract:
We introduce tests for the goodness of fit of point patterns via methods from topological data analysis. More precisely, the persistent Betti numbers give rise to a bivariate functional summary statistic for observed point patterns that is asymptotically Gaussian in large observation windows. We analyze the power of tests derived from this statistic on simulated point patterns and compare its performance with global envelope tests. Finally, we apply the tests to a point pattern from an application context in neuroscience. As the main methodological contribution, we derive sufficient conditions for a functional central limit theorem on bounded persistent Betti numbers of point processes with exponential decay of correlations.




ia

Conditional density estimation with covariate measurement error

Xianzheng Huang, Haiming Zhou.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 970--1023.

Abstract:
We consider estimating the density of a response conditioning on an error-prone covariate. Motivated by two existing kernel density estimators in the absence of covariate measurement error, we propose a method to correct the existing estimators for measurement error. Asymptotic properties of the resultant estimators under different types of measurement error distributions are derived. Moreover, we adjust bandwidths readily available from existing bandwidth selection methods developed for error-free data to obtain bandwidths for the new estimators. Extensive simulation studies are carried out to compare the proposed estimators with naive estimators that ignore measurement error, which also provide empirical evidence for the effectiveness of the proposed bandwidth selection methods. A real-life data example is used to illustrate implementation of these methods under practical scenarios. An R package, lpme, is developed for implementing all considered methods, which we demonstrate via an R code example in Appendix B.2.




ia

Reduction problems and deformation approaches to nonstationary covariance functions over spheres

Emilio Porcu, Rachid Senoussi, Enner Mendoza, Moreno Bevilacqua.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 890--916.

Abstract:
The paper considers reduction problems and deformation approaches for nonstationary covariance functions on the $(d-1)$-dimensional spheres, $mathbb{S}^{d-1}$, embedded in the $d$-dimensional Euclidean space. Given a covariance function $C$ on $mathbb{S}^{d-1}$, we chase a pair $(R,Psi)$, for a function $R:[-1,+1] o mathbb{R}$ and a smooth bijection $Psi$, such that $C$ can be reduced to a geodesically isotropic one: $C(mathbf{x},mathbf{y})=R(langle Psi (mathbf{x}),Psi (mathbf{y}) angle )$, with $langle cdot ,cdot angle $ denoting the dot product. The problem finds motivation in recent statistical literature devoted to the analysis of global phenomena, defined typically over the sphere of $mathbb{R}^{3}$. The application domains considered in the manuscript makes the problem mathematically challenging. We show the uniqueness of the representation in the reduction problem. Then, under some regularity assumptions, we provide an inversion formula to recover the bijection $Psi$, when it exists, for a given $C$. We also give sufficient conditions for reducibility.




ia

The bias of isotonic regression

Ran Dai, Hyebin Song, Rina Foygel Barber, Garvesh Raskutti.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 801--834.

Abstract:
We study the bias of the isotonic regression estimator. While there is extensive work characterizing the mean squared error of the isotonic regression estimator, relatively little is known about the bias. In this paper, we provide a sharp characterization, proving that the bias scales as $O(n^{-eta /3})$ up to log factors, where $1leq eta leq 2$ is the exponent corresponding to Hölder smoothness of the underlying mean. Importantly, this result only requires a strictly monotone mean and that the noise distribution has subexponential tails, without relying on symmetric noise or other restrictive assumptions.




ia

The bias and skewness of M -estimators in regression

Christopher Withers, Saralees Nadarajah

Source: Electron. J. Statist., Volume 4, 1--14.

Abstract:
We consider M estimation of a regression model with a nuisance parameter and a vector of other parameters. The unknown distribution of the residuals is not assumed to be normal or symmetric. Simple and easily estimated formulas are given for the dominant terms of the bias and skewness of the parameter estimates. For the linear model these are proportional to the skewness of the ‘independent’ variables. For a nonlinear model, its linear component plays the role of these independent variables, and a second term must be added proportional to the covariance of its linear and quadratic components. For the least squares estimate with normal errors this term was derived by Box [1]. We also consider the effect of a large number of parameters, and the case of random independent variables.




ia

Universal Latent Space Model Fitting for Large Networks with Edge Covariates

Latent space models are effective tools for statistical modeling and visualization of network data. Due to their close connection to generalized linear models, it is also natural to incorporate covariate information in them. The current paper presents two universal fitting algorithms for networks with edge covariates: one based on nuclear norm penalization and the other based on projected gradient descent. Both algorithms are motivated by maximizing the likelihood function for an existing class of inner-product models, and we establish their statistical rates of convergence for these models. In addition, the theory informs us that both methods work simultaneously for a wide range of different latent space models that allow latent positions to affect edge formation in flexible ways, such as distance models. Furthermore, the effectiveness of the methods is demonstrated on a number of real world network data sets for different statistical tasks, including community detection with and without edge covariates, and network assisted learning.




ia

Expectation Propagation as a Way of Life: A Framework for Bayesian Inference on Partitioned Data

A common divide-and-conquer approach for Bayesian computation with big data is to partition the data, perform local inference for each piece separately, and combine the results to obtain a global posterior approximation. While being conceptually and computationally appealing, this method involves the problematic need to also split the prior for the local inferences; these weakened priors may not provide enough regularization for each separate computation, thus eliminating one of the key advantages of Bayesian methods. To resolve this dilemma while still retaining the generalizability of the underlying local inference method, we apply the idea of expectation propagation (EP) as a framework for distributed Bayesian inference. The central idea is to iteratively update approximations to the local likelihoods given the state of the other approximations and the prior. The present paper has two roles: we review the steps that are needed to keep EP algorithms numerically stable, and we suggest a general approach, inspired by EP, for approaching data partitioning problems in a way that achieves the computational benefits of parallelism while allowing each local update to make use of relevant information from the other sites. In addition, we demonstrate how the method can be applied in a hierarchical context to make use of partitioning of both data and parameters. The paper describes a general algorithmic framework, rather than a specific algorithm, and presents an example implementation for it.




ia

High-Dimensional Interactions Detection with Sparse Principal Hessian Matrix

In statistical learning framework with regressions, interactions are the contributions to the response variable from the products of the explanatory variables. In high-dimensional problems, detecting interactions is challenging due to combinatorial complexity and limited data information. We consider detecting interactions by exploring their connections with the principal Hessian matrix. Specifically, we propose a one-step synthetic approach for estimating the principal Hessian matrix by a penalized M-estimator. An alternating direction method of multipliers (ADMM) is proposed to efficiently solve the encountered regularized optimization problem. Based on the sparse estimator, we detect the interactions by identifying its nonzero components. Our method directly targets at the interactions, and it requires no structural assumption on the hierarchy of the interactions effects. We show that our estimator is theoretically valid, computationally efficient, and practically useful for detecting the interactions in a broad spectrum of scenarios.




ia

A Unified Framework for Structured Graph Learning via Spectral Constraints

Graph learning from data is a canonical problem that has received substantial attention in the literature. Learning a structured graph is essential for interpretability and identification of the relationships among data. In general, learning a graph with a specific structure is an NP-hard combinatorial problem and thus designing a general tractable algorithm is challenging. Some useful structured graphs include connected, sparse, multi-component, bipartite, and regular graphs. In this paper, we introduce a unified framework for structured graph learning that combines Gaussian graphical model and spectral graph theory. We propose to convert combinatorial structural constraints into spectral constraints on graph matrices and develop an optimization framework based on block majorization-minimization to solve structured graph learning problem. The proposed algorithms are provably convergent and practically amenable for a number of graph based applications such as data clustering. Extensive numerical experiments with both synthetic and real data sets illustrate the effectiveness of the proposed algorithms. An open source R package containing the code for all the experiments is available at https://CRAN.R-project.org/package=spectralGraphTopology.




ia

Distributed Feature Screening via Componentwise Debiasing

Feature screening is a powerful tool in processing high-dimensional data. When the sample size N and the number of features p are both large, the implementation of classic screening methods can be numerically challenging. In this paper, we propose a distributed screening framework for big data setup. In the spirit of 'divide-and-conquer', the proposed framework expresses a correlation measure as a function of several component parameters, each of which can be distributively estimated using a natural U-statistic from data segments. With the component estimates aggregated, we obtain a final correlation estimate that can be readily used for screening features. This framework enables distributed storage and parallel computing and thus is computationally attractive. Due to the unbiased distributive estimation of the component parameters, the final aggregated estimate achieves a high accuracy that is insensitive to the number of data segments m. Under mild conditions, we show that the aggregated correlation estimator is as efficient as the centralized estimator in terms of the probability convergence bound and the mean squared error rate; the corresponding screening procedure enjoys sure screening property for a wide range of correlation measures. The promising performances of the new method are supported by extensive numerical examples.




ia

Targeted Fused Ridge Estimation of Inverse Covariance Matrices from Multiple High-Dimensional Data Classes

We consider the problem of jointly estimating multiple inverse covariance matrices from high-dimensional data consisting of distinct classes. An $ell_2$-penalized maximum likelihood approach is employed. The suggested approach is flexible and generic, incorporating several other $ell_2$-penalized estimators as special cases. In addition, the approach allows specification of target matrices through which prior knowledge may be incorporated and which can stabilize the estimation procedure in high-dimensional settings. The result is a targeted fused ridge estimator that is of use when the precision matrices of the constituent classes are believed to chiefly share the same structure while potentially differing in a number of locations of interest. It has many applications in (multi)factorial study designs. We focus on the graphical interpretation of precision matrices with the proposed estimator then serving as a basis for integrative or meta-analytic Gaussian graphical modeling. Situations are considered in which the classes are defined by data sets and subtypes of diseases. The performance of the proposed estimator in the graphical modeling setting is assessed through extensive simulation experiments. Its practical usability is illustrated by the differential network modeling of 12 large-scale gene expression data sets of diffuse large B-cell lymphoma subtypes. The estimator and its related procedures are incorporated into the R-package rags2ridges.




ia

On the consistency of graph-based Bayesian semi-supervised learning and the scalability of sampling algorithms

This paper considers a Bayesian approach to graph-based semi-supervised learning. We show that if the graph parameters are suitably scaled, the graph-posteriors converge to a continuum limit as the size of the unlabeled data set grows. This consistency result has profound algorithmic implications: we prove that when consistency holds, carefully designed Markov chain Monte Carlo algorithms have a uniform spectral gap, independent of the number of unlabeled inputs. Numerical experiments illustrate and complement the theory.