tc

Stretching assembly for cloth

A stretching assembly for cloth has a heating furnace, a pressing device and a shaping device. The heating furnace has two opposite sidewalls and a channel. The channel is formed through the opposite sidewalls of the heating furnace and has an inlet and an outlet. The pressing assembly is set to face the inlet of the heating furnace and has a first pressing wheel and a second pressing wheel. The first pressing wheel has multiple annular protruding segments formed on an external surface of the first pressing wheel. The second pressing wheel parallel the first pressing wheel to form a curved clearance between the pressing wheels and has multiple annular concave segments formed on an external surface of the second pressing wheel. The shaping device is set to face the outlet of the heating furnace, aligns with the pressing device and has two shaping wheels.




tc

Porous film manufacturing method and successive biaxial stretching apparatus for manufacturing porous film

Provided is a method for manufacturing a high-quality porous film. Here, while the porous film is being manufactured through forming micropores by stretching, a raw film is prevented from slipping on the surfaces of the respective rolls as much as possible even though the raw film includes oil or liquid paraffin as a solvent. The method is for manufacturing a porous film through forming micropores by successive biaxial stretching. A tensile force applied to the raw film F transferring from the longitudinal stretching machine (10) to the transverse stretching machine (50) is set not less than a stretching force necessary for the longitudinal stretching, and thus the raw film is prevented from slipping on a contact surface between the raw film and each roll of the longitudinal stretching machine (10).




tc

Sheet or film clipping stretcher

A clip support member 30 has a first shaft member 51 cantilevered by guide rollers 56 and 56 for a guiding along a reference rail with a recessed channel 101, the clip support member 30 being provided with a slider 40 having a second shaft member 52 cantilevered by guide rollers 57 and 57 for a guiding along a pitch setting rail 120 with a recessed channel 121, the clip support member 30 supporting a clip 20 at an end thereof, where it has the first shaft member 51, whereto one end of a main link member 53 and one end of a sub-link member 54 are pivotally connected, to constitute a reference linkage at the clip 20 end.




tc

Sheet or film oblique stretching method and sheet or film clipping stretcher

Clipping both right and left side edge parts of a sheet or film by right and left pitch-variable clips having flow-directional clip pitches variable along with travel movements, respectively, having positions (AR, AL) for initiation of enlargements of flow-directional clip pitches changed between right clips and left clips, and enlarging flow-directional clip pitches along with travel movements of clips to thereby make an oblique stretch.




tc

Dual clutch transmission designed as reduction gearing

A dual clutch transmission designed as a reduction gearing which has concentric central and hollow transmission shafts, exactly one layshaft, and two power shift elements. A hollow shaft is provided coaxially on the layshaft, which can be rotatably fixed to the layshaft, via one shift device, and to which at least two gears of the gear stages are rotatably fixed. A further hollow shaft is provided coaxially on either the central or the hollow transmission shaft, which can be connected, via one of the shift devices, with the central or the hollow transmission shaft and to which at least two further gears of the gear stages are rotatably fixed. At least three transmission ratios are obtainable as a result of engaging the shift element into the power flow in three of the gear stages, by which one transmission ratio results from engaging only one shift element into the power flow.




tc

Control device for dual clutch transmission and control method for dual clutch transmission

A control device for a dual clutch transmission includes a transmission control unit that determines immobility in an engaging-side clutch in a next stage as sticking and, when the engaging-side clutch in the next stage malfunctions and when a gear in a previous stage is out of engagement, engages the gear in the previous stage and thereafter controls a clutch torque capacity in the previous stage to a predetermined value, and a back torque limiter operates according to a predetermined condition to engage a release-side clutch in the previous stage.




tc

Clutch arrangement

A clutch arrangement, in particular for use in the drive train of a motor vehicle, including a flywheel which is arranged on the drive side and is coupled via a spring arrangement to a secondary disk and is part, with said secondary disk, of a two-mass flywheel. The secondary disk has at least one centrifugal force pendulum, and a threaded sleeve is screwed with an outer thread into an inner thread of the secondary disk, and a clutch housing is screwed to an inner thread of the threaded sleeve via a fastener.




tc

Hydraulic Circuit for Clutch Actuation

A hydraulic circuit includes a clutch actuator operatively associated with a clutch that may be disposed in a transmission. A hydraulic fluid source supplies pressurized hydraulic fluid for the clutch actuator. To measure the filling rate of the hydraulic actuator, a reference actuator having a predetermined filling rate is disposed in parallel with the hydraulic actuator and in fluid communication with the hydraulic fluid source. If hydraulic pressure associated with the reference actuator does not correspond to the hydraulic pressure associated with the clutch actuator, a compensation valve can appropriately respond by selectively directing hydraulic fluid to or from the clutch actuator. In a further embodiment, the reference actuator and compensation valve may be replaced with an electrohydraulic valve utilizing feedback from the hydraulic pressure present at the inlet of the clutch actuator.




tc

Hydraulic Circuit for Clutch Actuation

A hydraulic circuit includes a clutch actuator operatively with a clutch that may be disposed in a transmission. A hydraulic fluid source supplies pressurized hydraulic fluid for the clutch actuator. An on-off valve is disposed in fluid communication between the clutch actuator and the hydraulic fluid source; the on-off valve configured to fill the clutch actuator with hydraulic fluid. An accumulator is disposed in parallel with the on-off valve and in fluid communication with the clutch actuator. The accumulator is adapted to receive hydraulic fluid redirected from the clutch actuator and to provide a counter-pressure for modulating the clutch actuator.




tc

SELECTABLE ONE-WAY CLUTCH

A selectable one-way clutch includes a pocket plate; a notch plate; engagement pieces housed in housing recesses of the pocket plate; elastic members biasing the engagement pieces; a selector plate switching states of the engagement pieces; and elastic bodies disposed at least in one of contact portions where contact are made between the engagement pieces and the notch plate and contact portions where contacts are made between the engagement pieces and the pocket plate.




tc

Fluid Driving Device, Motor Assembly and Friction Clutch Thereof

A fluid driving device, a motor assembly and a friction clutch thereof are disclosed. The friction clutch includes: a fixing member fixed on a rotary shaft; a connecting member slidable disposed on the rotary shaft, wherein when the rotary shaft starts rotating, an axial distance between the connecting member and the fixing member changes such that a friction force between the fixing member and the connecting member increases until the connecting member rotates synchronously with the fixing member; a loading member slidable disposed on the rotary shaft, the loading member and the connecting member being circumferentially positioned; and a restoring member configured to reduce an amount of change of the axial distance between the fixing member and the connecting member when the rotary shaft stops rotating.




tc

Dual Layer Sintered Metallic Clutch Friction Facing

A method for forming a friction facing comprises placing a bonding powder mix in to a die, and placing a performance powder mix in to the die. Pressing the performance powder mix and the bonding powder mix creates a compact. Sintering the compact forms a friction facing. A clutch disc assembly can be formed. A clutch disc can comprise a mounting hole for securing a friction facing and a backer plate can comprise a pass-through hole. A mounting mechanism joins the mounting hole to the pass-through hole. The mounting mechanism comprises a head-height for a portion of the mounting mechanism that is mounted near the sintered compact. The bonding layer comprises a thickness corresponding to the head-height of the mounting mechanism.




tc

WET DUAL MULTI-PLATE CLUTCH WITH LEVERS OUTSIDE THE WET CHAMBER

A multi-plate dual clutch for coupling a motor vehicle engine to a drive shaft of a motor vehicle transmission and to an auxiliary power take-off output shaft of the motor vehicle. The dual clutch includes a drive clutch for coupling the motor vehicle engine with the drive shaft, and an auxiliary power take-off clutch for coupling the motor vehicle engine with the auxiliary output shaft. The drive clutch and the auxiliary power take-off clutch can each to be operated independently of one another by a separate lever mechanism. The dual clutch includes a wet chamber housing in which the drive clutch and the auxiliary power take-off clutch are accommodated in fluid-tight relationship, while the respective lever mechanisms for the drive clutch and the auxiliary power take-off clutch are located outside the wet chamber housing.




tc

CLUTCH PACK WITH ROBUST HYSTERESIS

A hysteresis device assembly comprises a first spacer plate, a second spacer plate, a stack plate, and a hub. The hub engages the second spacer plate. The hysteresis device assembly further comprises a tabbed washer comprising a tab. The tab engages the first spacer plate and the stack plate.




tc

Anti-Backlash Clutch Plates

An assembly comprising a first member, a second member, and a clutch plate. The second member is maintained in a spaced apart relationship from the first member. The clutch plate has radially extending engagement structures and is disposed between the first member and the second member. The clutch plate has a first half and a second half that are slidably rotatable with respect to one another. The first half and the second half of the clutch plate rotate in opposite directions when axial pressure is applied to the first member.




tc

DOUBLE CLUTCH ASSEMBLY AND DEVICE FOR ASSISTING ACTUATOR OF THE SAME

The present disclosure provides a double clutch assembly and a device for assisting an actuator of the double clutch. The device applies an assistance force to the actuator upon an operation of the actuator. In particular, the double clutch assembly includes first and second actuators which engage or disengage first and second clutches, respectively. The device includes: an elastic member to apply an elastic force; a first transfer portion to transfer the elastic force of the elastic member to the first actuator; and a second transfer portion to transfer the elastic force of the elastic member to the second actuator.




tc

A CLUTCH DRIVING DEVICE FOR DECELERATION CLUTCH

A driving device for a deceleration clutch, comprises a on a driving motor shaft. The drive wheel has a supporting surface with a height difference in the axial direction. A head of a shift fork lever controls the clutch sleeve to move up and down. A tail of the shift fork lever is supported on the supporting surface. The tail of the shift fork lever relatively slides on the supporting surface, so that a height of the tail of the shift fork lever changes which drives a height of the head of the shift fork and further drives the clutch sleeve to move up and down. Alternatively, the drive wheel has a supporting slide rail with a height difference in the axial direction, or has cam circumference that is radially gradient, or a bracing rod is eccentrically arranged on an end surface of the drive wheel.




tc

CLUTCH DEVICE FOR MOTORCYCLE

A clutch center includes a pressure receiving part and is accommodated inside a clutch housing. A pressure plate includes a pressure applying part disposed at an interval from the pressure receiving part in an axial direction. A clutch portion is disposed between the pressure receiving part and the pressure applying part, and allows and blocks transmission of a power between the clutch housing and the clutch center. A first cam portion is disposed on one side of the clutch center in the axial direction, and increases an engaging force of the clutch portion when a forward drive force acts on a clutch device. A second cam portion is disposed on the other side of the clutch center in the axial direction, and reduces the engaging force of the clutch portion when a reverse drive force acts on the clutch device.




tc

CLUTCH DEVICE FOR MOTORCYCLE

A clutch center includes a pressure receiving part and is accommodated inside the clutch housing. A pressure plate includes a pressure applying part disposed at an interval from the pressure receiving part in an axial direction. A clutch portion is disposed between the pressure receiving part and the pressure applying part, and allows and blocks transmission of a power between the clutch housing and the pressure plate. A first cam portion is disposed on one side of the pressure plate in the axial direction, and increases an engaging force of the clutch portion when a forward drive force acts on a clutch device. A second cam portion is disposed on the other side of the pressure plate in the axial direction, and reduces the engaging force of the clutch portion when a reverse drive force acts on the clutch device.




tc

METHOD AND SYSTEM FOR LATCHING AN ACTUATOR

An axle disconnect system including an actuator having an energizable coil in an overmold that is at least partially surrounded by a coil housing. An armature is in sliding engagement with the housing such that the magnetic flux through the magnetic circuit is uninterrupted. Disposed between one of (i) the housing or armature and (ii) a sliding collar is a slide ring. The sliding collar is located directly radially inward from the slide ring. A first end portion of the sliding collar has a set of axially extending teeth. Radially inward from the first end portion of the sliding collar is a return spring groove having a return spring. An outer surface of a second end portion of an output gear has a set of axially extending teeth that are selectively engageable with the teeth on the first end portion of the sliding collar.




tc

One-Way Clutch

Since one end of a spring is received by a planar portion of a spring seat provided on any one of an outer plate and an inner plate, it is possible to support the spring with a planar member without machining a bottom wall face of the outer plate into a planar shape. Since the spring seat has seat guide portions that contact the outer plate, it is possible to suppress the fluctuation of the spring seat and the fluctuation of the spring by the seat guide portions, so it is possible to reliably prevent interference of the spring with its peripheral portion. Therefore, a load on the spring is reduced, so it is possible to improve the durability of a one-way clutch.




tc

Self-Locking Clutch Mechanism

A self-locking clutch mechanism comprising a base, an output member journalled to the base, a first spring engaged between the base and the output member, the first spring exerting a first spring force in a first direction, a clutch spring engaged with an intermediate member and frictionally engaged with a base cylindrical surface, an input member rotationally engaged with the base, the input member intermittently engagable with the clutch spring through a control member such that the clutch spring is temporarily released from the base cylindrical surface upon a rotary movement of the control member in a first direction, the intermediate member rotates upon release of the clutch spring from the base cylindrical surface, and a second spring engaged between the intermediate member and the output member, the second spring exerting a second spring force opposite the first spring force.




tc

CLUTCH SYSTEM FOR A VEHICLE POWERTRAIN

A clutch pack includes a first set of clutch plates and a second set of clutch plates. The first set of clutch plates are arranged in an alternating configuration with the second set of clutch plates. The first set of clutch plates has radially outward extending teeth. The second set of clutch plates has radially inward extending teeth that define channels that are configured to allow air to flow into the clutch pack in an axial direction such that lubrication fluid located between adjacent clutch plates is channeled radially outward.




tc

CLUTCH DEVICE

A clutch device 1 is provided with a first clutch C1 and a second clutch C2, which disengageably transmit a rotational motion. The first clutch C1 includes a first outer drum 111, first outer plates 111a, a first inner hub 113, and first inner discs 113a. The second clutch C2 includes a second outer drum 121, second outer plates 121a, a second inner hub 123, and second inner discs 123a. The first outer drum 111 and the second outer drum 121 are connected, and the second inner hub 123 is journaled by the first inner hub 113 through the intermediary of a ball bearing 131.




tc

CLUTCH ACTUATION DEVICE

A clutch actuation device includes two plates that can selectively extend and compress relative to one another to selectively engage or disengage a clutch. Each plate includes a plurality of grooves, each groove having a deep end portion, a shallow end portion, and a ramped or inclined surface between the end portions. Each groove on the first plate corresponds with a respective groove on the second plate to define a plurality of pockets. Within each pocket is an elongated member having a pair of curved ends and an elongated shaft therebetween. The curved ends sit in the deep end portions of the grooves. To extend the plates relative to one another, the first plate is rotated relative to the second plate. This causes the curved ends of the elongated members to pivot within the deep end portions, and the elongated shaft extends away from the ramped surface, separating the plates.




tc

DEVICE FOR ACTUATING A CLUTCH-CONTROLLED TRANSFER CASE HAVING A TWO-STAGE INTERMEDIATE GEARING AND CLUTCH-CONTROLLED TRANSFER CASE THAT HAS A TWO-STAGE INTERMEDIATE GEARING AND THAT IS EQUIPPED WITH SAID DEVICE

The invention relates to a device for actuating a clutch-controlled transfer case having a two-stage intermediate gearing and a clutch-controlled transfer case that has a two-stage intermediate gearing and that is equipped with such a device. The device comprises: a rotatably driven selector shaft,a drive for rotating the selector shaft,a clutch cam disk, which can be rotated about a clutch cam disk axis by means of the selector shaft, andat least one scissor lever, wherein: one end (06) of at least one scissor lever is guided in a gate provided on the clutch cam disk,the gate has a curved path for each scissor lever, in which curved path the end of the scissor lever associated with the curved path is guided,the curved path winds around the clutch cam disk axis by at least 360°,the curved path has at least one helical segment having a continuously increasing or decreasing distance from the clutch cam disk axis, along which segment one end of a scissor lever guided therein experiences a continuously increasing or decreasing change in deflection with respect to the clutch cam disk axis during a rotation of the clutch cam disk with increasing angle of rotation, andthe clutch cam disk is disposed in such a way that the clutch cam disk can be rotated with respect to the selector shaft between two stops by an angle-of-rotation range such that, by means of rotation of the selector shaft within the angle-of-rotation range situated between said stops, shifting back and forth between the shifting stages of the intermediate gearing occurs, and, by means of rotation of the selector shaft beyond the angle-of-rotation range, the end of the at least one scissor lever experiences a deflection for actuating the clutch while a selected shifting stage is maintained.




tc

TORQUE CONVERTER LOCKUP CLUTCH INCLUDING PISTON SHIM

A lockup clutch for a torque converter is provided. The lockup clutch includes a clutch plate and a piston assembly. The piston assembly includes a base section and a shim fixed to the base section. The shim is arranged for contacting the clutch plate to cause engagement of the lockup clutch. A method of forming a lockup clutch is also provided. The method includes fixing a shim to a base section to form a piston assembly; and arranging the piston assembly adjacent to a clutch plate such that the shim is arranged for contacting the clutch plate to cause engagement of the lockup clutch. A torque converter is also provided.




tc

DUAL RAMP ACTUATOR CONTROLLING A TWO CLUTCH SYSTEM FOR A DRIVELINE

A ball ramp actuator assembly including a control ring, an activation ring including a first section and a second section, two circumferential plate grooves formed between the control ring and the sections of the activation ring which contain rolling elements, two clutches, a gear and an actuator. The first and second sections are splined together allowing for axial movement. The first clutch is connected to the first section of the activation ring and a second clutch is connected to the second section of the activation ring. The rotation of a section of the activation ring axially in one direction allows the corresponding plate groove to expand and apply a load to the corresponding clutch while the other section of the activation ring remains inactive and rotation in the opposite direction activates the other clutch respectively.




tc

SHIFTING DEVICE FOR A CLUTCH

A shifting device for a positively engaging clutch having complementary first and second positively engaging coupling elements includes a housing and an actuator rod which is axially movable within the housing by means of an associated rod actuating mechanism. A clutch shift fork for engagement with the first coupling element is mounted on the actuator rod for axial movement of the first coupling element into and out of engagement with the second coupling element in response to axial movement of the actuator rod. The clutch shift fork is mounted on the actuator rod by a threaded connector such that the clutch shift fork is axially movable on the actuator rod. Thus conveniently the axial position of the clutch fork on the shaft may be altered by rotating the shaft relative to the clutch fork for accurate positioning of the clutch fork relative to the coupling element with which it engages.




tc

REVERSE INPUT BLOCKING CLUTCH

In a locking type reverse input blocking clutch, smooth finished surfaces having no directionality are formed, by barrel polishing, on surfaces brought into contact with rollers while rotation is being transmitted from the input side to the output side, i.e. an inner peripheral cylindrical surface of an outer ring and a surface of a lid portion opposed to the rollers. With this arrangement, it is possible to reduce the sliding resistance between the rollers and the outer ring and between the rollers and the lid portion, without the need to reduce the forces of springs for pushing the rollers into narrow portions of wedge-shaped spaces. This in turn makes it possible to reduce the torque necessary to transmit rotation from the input side to the output side, while maintaining high locking performance.




tc

ONE-WAY CLUTCH

A one-way clutch includes an inner ring, an outer ring, a plurality of rollers, an annular cage that holds the rollers, and springs that bias the rollers toward a first side in a circumferential direction. The inner ring has a rib portion located on a first side in an axial direction and protruding outward in a radial direction. The cage has a pair of annular portions provided on the first side and a second side in the axial direction with respect to the rollers and a plurality of cage bars. One of the annular portions on the first side in the axial direction has an abutting contact surface that comes into abutting contact with the rib portion in the axial direction.




tc

One-Way Clutch

A one-way clutch includes an inner ring, an outer ring, a plurality of rollers, an annular cage in which pockets are formed at intervals in a circumferential direction so that the rollers are held in the pockets, and springs attached to cage bars of the cage to bias the rollers. The cage has protruding portions fitted in the inner ring so that the cage is not allowed to rotate with respect to the inner ring. The inner ring has recessed portions each including a cam surface that allows a corresponding one of the engagement elements to be engaged between the cam surface and an inner peripheral surface of the outer ring. Each of the recessed portions further has a fitting surface that is formed as a surface continuous with the cam surface in the recessed portion and on which a corresponding one of the protruding portions is closely fitted.




tc

ONE-WAY CLUTCH AND IMAGE FORMING APPARATUS

A one-way clutch is configured to allow rotation in one direction with respect to a shaft and regulate rotation in the other direction, and includes a housing, a plurality of needles, a plurality of magnets, a plurality of first accommodating portions, and a plurality of second accommodating portions. The housing includes a fitting hole into which the shaft is fit. The plurality of magnets are respectively arranged adjacent to the plurality of needles. Each magnet has an S pole and an N pole corresponding to a first end side and a second end side of one of the needles, and attracts one of the needles by magnetic force to a first circumferential direction of the shaft. The plurality of first accommodating portions accommodate the plurality of needles, respectively. The plurality of second accommodating portions are respectively arranged adjacent to the first accommodating portions, and respectively accommodate the plurality of magnets.




tc

ONE-WAY CLUTCH

A one-way clutch is disclosed, which improves durability while reducing a drag torque and restraining burning of a block bearing. The one-way clutch includes: a torque transfer mechanism disposed between an outer race 2 and an inner race 3 so disposed in the outer race 2 as to be spaced inwardly in a diametrical direction, and hindering the outer race 2 and the inner race 3 from making a relative rotation in a predetermined direction; and block bearings 6 disposed between the outer race 2 and the inner race 3 together with the torque transfer mechanism, and keeping the outer race 2 and the inner race 3 in a concentric state, in which each block bearing has a slide surface 6f contiguous with an axis-directional surface of the outer race 2 or the inner race 3, and at least part of the slide surface 6f is a roughened surface.




tc

DUAL CLUTCH DEVICE

A dual clutch device includes a first piston applying a first clutch by a hydraulic pressure supplied into a first hydraulic pressure chamber and releasing the first clutch by a first spring, a second piston applying a second clutch by a hydraulic pressure supplied into a second hydraulic pressure chamber and releasing the second clutch by a second spring, a first supply line supplying a hydraulic pressure into the first hydraulic pressure chamber and a second hydraulic pressure canceling chamber, a second supply line supplying a hydraulic pressure into the second hydraulic pressure chamber and a first hydraulic pressure canceling chamber, a first valve allowing or cutting the supply of hydraulic pressure into the first hydraulic pressure chamber and the second hydraulic pressure canceling chamber, and a second valve allowing or cutting the supply of hydraulic pressure into the second hydraulic pressure chamber and the first hydraulic pressure canceling chamber.




tc

SR LATCH CIRCUIT WITH SINGLE GATE DELAY

An SR latch circuit with single gate delay is provided. The circuit has an an enable input and an SR latch. There is first input stage having an input for receiving a set input and having an output for producing a first component of the SR latch circuit output, the first input stage having only one transistor that receives the enable input, the first input stage becoming transparent while enabled, the first input stage having a single gate delay between the input of the first input stage and the output of the first input stage. There is a second input stage having an input for receiving a reset input and having an output for producing a second component of the SR latch circuit output, the second input stage having only one transistor that receives the enable input, the second input stage becoming transparent while enabled, the second input stage having a single gate delay between the input of the second input stage and the output of the second input stage.




tc

Voltage-Resistant Switch

A voltage-resistant switch is described. The switch comprises a signal input, a first FET transistor with a first channel with an extended drain and a first gate connector and a second FET transistor with a first channel with an extended drain and a second gate connector. A control signal connector is connected with the first gate connector and with the second gate connector via a second node and with the first channel and the second channel via a second resistor, and a signal connector is connected with the second channel. The voltage-resistant switch can be switched on and off.




tc

ELECTRONIC SWITCH, AND CORRESPONDING DEVICE AND METHOD

A high-voltage electronic switch includes first and second transistors defining a current flow path between an input and output of the switch. The transistors have a common point of the current flow path and a common control terminal. A control circuit includes a voltage line receiving a limit operating voltage and first and second branches coupled between the voltage line and the common point and common control terminal, respectively. Further transistors are activated, upon turning-off of the first and second transistors, for coupling the branches to the voltage line. The branches include a parallel connected resistor, diode, and string of diodes with opposite polarities. The diode of the first branch plus string of diodes of the second branch and diode of the second branch plus string of diodes of the first branch provide coupling paths between the voltage line and, respectively, the common point and common control terminal.




tc

Power Switch Drivers with Equalizers for Paralleled Switches

Capacitors connected between gate terminals of a plurality of parallel-connected power transistors are charged and discharged in each switching cycle to provide a plurality of power transistor control waveforms from a single gate driver waveform that equalize power losses/temperatures or steady-state currents among the plurality of power transistors. The capacitors are charged to different voltages by diverting current from one transistor driver by disabling another power transistor driver at different respective times in response to measured transient or steady state current or temperature or other operational parameter.




tc

SEMICONDUCTOR INTEGRATED CIRCUIT AND HIGH FREQUENCY ANTENNA SWITCH

An integrated circuit includes a drive circuit with a first inverter circuit with a first transistor of a first conductivity type and a second transistor of a second conductivity type. The drains of the first and second transistors are connected. An output circuit is provided having a third transistor of the second conductivity with a gate connected to the drains of the first and second transistors. A capacitor is connected between the gate and a drain of the third transistor and has a capacitance greater than 0.5 pF and less than or equal to 3.0 pF. A gate width of the first transistor when divided by a gate width of the third transistor has a value of less than 1/100. The output circuit is configured to output a transmission signal from the drain of the third transistor.




tc

Electronic Switching Device and System

The present invention is directed to an electronic switch device, the device including a housing assembly including a front cover assembly having a user accessible surface, a back body assembly, terminals configured to be coupled to an AC power source and the load; an antenna assembly including an antenna substrate disposed inside the housing assembly adjacent a portion of the front cover assembly, an antenna being disposed on the antenna substrate having a conductive grid structure; and a circuit assembly disposed inside the housing assembly coupled to the terminals, the circuit assembly comprising a printed circuit board, the printed circuit board including a ground plane, the circuit assembly being electrically connected to the antenna assembly via a conductor, the printed circuit board being separated from the antenna assembly by a predetermined distance, the circuit assembly including a relay switch having at least one solenoid winding connected to the circuit assembly and a set of contacts.




tc

DEVICE AND METHOD FOR PRODUCING A DYNAMIC REFERENCE SIGNAL FOR A DRIVER CIRCUIT FOR A SEMICONDUCTOR POWER SWITCH

A device (442) for producing a dynamic reference signal (UREF) for a control circuit for a power semiconductor switch comprises a reference signal generator (442) for providing a dynamic reference signal (UREF), which has a stationary signal level after elapse of a predefined time following a switching process of the power semiconductor switch, a passive charging circuit (450) which is configured to increase a signal level of the dynamic reference signal in reaction to a switching of a control signal of the power semiconductor switch from an OFF state to ON state for at least one part of the predefined time above the stationary signal level, in order to produce the dynamic reference signal and an output (A) for tapping the dynamic reference signal (UREF).




tc

System and Method for a Switchable Capacitance

In accordance with an embodiment, an adjustable capacitance circuit comprising a first branch comprising plurality of transistors having load paths coupled in series with a first capacitor. A method of operating the adjustable capacitance circuit includes programming a capacitance by selectively turning-on and turning-off ones of the plurality of transistors, wherein the load path of each transistor of the plurality of transistors is resistive when the transistor is on and is capacitive when the transistor is off.




tc

FEED-FORWARD CIRCUIT TO IMPROVE INTERMODULATION DISTORTION PERFORMANCE OF RADIO-FREQUENCY SWITCH

A radio-frequency (RF) switch includes a field-effect transistor (FET) disposed between a first node and a second node, the FET having a source, a drain, a gate, and a body. The RF switch further includes a coupling circuit including a first path and a second path, the first path being connected between the gate and one of the source or the drain via a first resistor in series with a first capacitor, the second path being connected between the body and the one of the source or the drain via a second resistor in series with a second capacitor, the coupling circuit configured to allow discharge of interface charge from either or both of the gate and body.




tc

Six-wheeled stretcher

A stretcher including an upper frame for mounting a lifter thereon, a front leg pivotably attached to the upper frame, a rear leg pivotably attached to the upper frame, a fixed caster attached to one end of the front leg, a swivel caster attached to one end of the rear leg, and an auxiliary swivel caster attached to the front leg, wherein the upper frame is vertically adjustable by folding the front and rear legs relative to the upper frame, and wherein the auxiliary swivel caster is positioned relative to the fixed caster such that the auxiliary swivel caster is in contact with the ground when the upper frame is fully lowered and the front leg is folded away from the rear leg, and the auxiliary swivel caster is out of contact with the ground when the upper frame is fully lowered and the front leg is folded toward the rear leg.




tc

WIRELESS ACCESS CONTROL SYSTEM INCLUDING CLOSED DOOR POSITION AND INTERIOR AREA REMOTE ACCESS WIRELESS COMMUNICATIONS DEVICE BASED LOCK SWITCHING AND RELATED METHODS

A wireless access control system may include a remote access wireless communications device and a lock assembly to be mounted on a door. The lock assembly may include a lock, a door position sensor, interior and exterior directional antennas, lock wireless communications circuitry, a touch sensor, and a lock controller. The lock controller may be configured to unlock the lock based upon the touch sensor, determine when the door is closed after being opened based upon the door position sensor, determine whether the remote access wireless device is in an interior or an exterior based upon the directional antennas, switch the lock to the locked position when the door is closed and when the remote access wireless device is in the interior, and not switch the lock to the locked position when the door is closed and when the remote access wireless device is in the exterior.




tc

WIRELESS ACCESS CONTROL SYSTEM INCLUDING CLOSED DOOR POSITION AND EXTERIOR AREA REMOTE ACCESS WIRELESS COMMUNICATIONS DEVICE BASED LOCK SWITCHING AND RELATED METHODS

A wireless access control system may include a remote access wireless communications device and a lock assembly to be mounted on a door. The lock assembly may include a lock, a door position sensor, interior and exterior directional antennas, lock wireless communications circuitry, and a lock controller. The lock controller determine whether the lock is manually unlocked, determine when the door is closed after being opened based upon the door position sensor, and determine whether the remote access wireless device is in an interior or an exterior based upon the directional antennas. The lock controller may also switch the lock to the locked position when the door is closed and when the remote access wireless device is in the exterior, and not switch the lock to the locked position when the door is closed and when the remote access wireless device is in the interior.




tc

Monitoring and Alert System and Method for Latching Mechanisms

A monitoring and alert system for retro-fitting to latching mechanisms. A master control unit is located proximate to an operator of the system. It includes a user interface having: an input enabling an operator to arm the system and then allow it to operate with minimal interaction of the operator. It also includes an output alerting the operator as to the status of the system in relation to a plurality of prescribed conditions. One or more slave units having sensing units detecting a latched and unlatched state are attached to a discrete latching mechanism for detecting the latching status thereof. Each slave unit comprises sensing means to detect whether the latching mechanism is in a latched state or an unlatched state.




tc

DEVICE AND METHOD FOR MEASURING PITCH AND ROLL TORQUES

Embodiments of the invention provide a device for measuring pitch and roll torques. The device comprises a sensor plate having a horizontal cross member, a vertical cross member and a surrounding member connecting ends of the horizontal and vertical cross members, wherein the horizontal cross member and the vertical cross member intersect each other at a centre region of the sensor plate; a VCM coil attached to the sensor plate and configured to generate a pitch and a roll torque when an electrical current is applied to the VCM coil; a first strain gauge attached to a surface of the horizontal cross member and configured to detect a horizontal strain caused by the pitch and roll torques; and a second strain gauge attached to a surface of the vertical cross member and configured to detect a vertical strain caused by the pitch and roll torques.




tc

FOREIGN ORGANIZATION NAME MATCHING

Embodiments include a system, method, and computer program product for foreign organization name matching. Aspects include receiving a first entity name from a first database configured in a first language and receiving a second database, wherein the second database includes a plurality of entity names in a second language, wherein the first and second languages are different. Aspects also include performing an Internet search based on the first entity name, wherein a language setting of the Internet search is configured to the second language and identifying a list of candidate names based on a set of results from the Internet search. Another aspect includes filtering the list to obtain a resulting candidate name and determining whether the resulting candidate name matches one of the entity names in the second database. Aspects include associating the first entity name and a matching entity name in the second database based on the determination.