ap

Introduction to the Special Section on Game-based Learning: Design and Applications (GbL)




ap

Locating the Weak Points of Innovation Capability before Launching a Development Project




ap

The Effects of Knowledge Sharing and Absorption on Organizational Innovation Performance – A Dynamic Capabilities Perspective




ap

Evaluating and Developing Innovation Capabilities with a Structured Method




ap

Social Capital and Knowledge Transfer in New Service Development: The Front/Back Office Perspective




ap

The Generalized Requirement Approach for Requirement Validation with Automatically Generated Program Code




ap

Mise en Scène: A Film Scholarship Augmented Reality Mobile Application




ap

Employees’ Involuntary Non-Use of ICT Influenced by Power Differences: A Case Study with the Grounded Theory Approach

Power differences affect implementation of information and communication technology (ICT) in a way that creates differences in ICT use. Involuntary non-use of new ICT at work occurs when employees want to use the new technology, but are unable to due to factors beyond their control. Findings from an in-depth qualitative study show how involuntary non-use of new ICT can be attributed to power differences between occupational groups in the same organization. The findings suggest that experience is a moderating variable and that closeness to formal power holders as well as closeness to the new technology increases the probability for expert control of the ICT-organization processes. These power differences favor ICT experts over ICT novices and result in a high-quality learning environment for the ICT experts characterized by autonomy, inclusion, and adequate work processes and technological solutions. The ICT novices try to navigate in a learning-hostile work environment characterized by marginalization through expert control, isolation, and inadequate work processes and technological solutions. This led to involuntary non-use by the ICT novices, while the experts became more proficient in ICT use. These findings give managers facing a technological organizational change tools to understand important mechanisms for implementing the change in their own organization, and help them take the right actions to integrate new technology and new organization of work.




ap

Knowledge Capture and Acquisition Mechanisms at Kisii University

Knowledge management and knowledge assets have gained much prominence in recent years and are said to improve organizational performance. Knowledge capture and acquisition mechanisms enhance organizational memory and performance. However, knowledge capture and acquisition mechanisms in higher education institutions are not well known. The aim of this study was to investigate the knowledge capture and acquisition mechanisms at Kisii University. This was a case study in which data were collected through interviews and questionnaires. Purposive sampling was used to determine interview participants while questionnaire respondents were selected through stratified random sampling. Qualitative and quantitative data were analysed using SPSS® student version 14; it revealed that there were various knowledge capture and acquisition mechanisms at Kisii University. It was also established that the University encountered various challenges in knowledge capture and acquisition and lacked some essential knowledge capture and acquisition mechanisms. In this regard, this study proposed knowledge capture and acquisition guidelines that may be adopted by the University to enhance its organizational memory and performance.




ap

The Potential for Facebook Application in Undergraduate Learning: A Study of Jordanian Students

The purpose of this paper was to explore the current and potential use of Facebook for learning purposes by Jordanian university students. The paper attempted to compare such use with other uses of Facebook. Further, the paper investigated Jordanian university students’ attitudes towards using Facebook as a formal academic tool, through the use of course-specific Facebook groups. To that end, quantitative data were collected from a sample of 451 students from three Jordanian public universities. Findings indicated that the vast majority of Jordanian students had Facebook accounts, which echoes its popularity amongst Jordanian youth compared to other types of online social networking sites. While both “social activities” and “entertainment” were the primary motivators for Jordanian students to create and use Facebook accounts, a growing number of them were using Facebook for academic purposes too. Further, Jordanian students had a positive attitude toward the use of “Facebook groups” as an educational tool for specific courses, and under specific conditions. Based on its findings, the paper provides suggestions for Jordanian higher institutions to invest in the application of Facebook as a formal academic tool.




ap

Innovation Capability: A Systematic Review and Research Agenda

Purpose: Innovation capability is a growing and significant area of academic research. However, there is little attempt to provide a cumulative overview of this phenomenon. The purpose of this systematic review is to synthesize peer reviewed articles published in the area to develop a conceptual framework and to aid future research. Design/Methodology/Approach: The paper adopted a systematic review of literature on innovation capability. The final screening generated 51 articles from 30 journals from 2000-2015. Findings: The examination and synthesis of the theoretical and the empirical articles show that (1) the authors applied narrow range of conceptual and theoretical foundations; (2) innovation capability is being investigated mostly at the firm level for about 90% of the articles, and marginally about 5% at network (supply) chain level; (3) the authors define innovation capability in different ways and use diverse set of dimensions to measure innovation capability; (4) there is potential for future research across firms in innovation management disciplines. Practical implications: The review contributes to theory development in organizational capability literature in general. Managers wishing to innovate need to examine critically and integrate some of the innovation capability dimensions proposed in this paper. Originality: The review is unique in the sense that it provides conceptualisation of innovation capability framework.




ap

A Conceptual Model for the Creation of a Process-Oriented Knowledge Map (POK-Map) and Implementation in an Electric Power Distribution Company

Helping a company organize and capture the knowledge used by its employees and business processes is a daunting task. In this work we examine several proposed methodologies and synthesize them into a new methodology that we demonstrate through a case study of an electric power distribution company. This is a practical research study. First, the research approach for creating the knowledge map is process-oriented and the processes are considered as the main elements of the model. This research was done in four stages: literature review, model editing, model validation and case study. The Delphi method was used for the research model validation. Some of the important outputs of this research were mapping knowledge flows, determining the level of knowledge assets, expert-area knowledge map, preparing knowledge meta-model, and updating the knowledge map according to the company’s processes. Besides identifying, auditing and visualizing tacit and explicit knowledge, this knowledge mapping enables us to analyze the knowledge areas’ situation and subsequently help us to improve the processes and overall performance. So, a process map does knowledge mapping in a clear and accurate frame. Once the knowledge is used in processes, it creates value.




ap

The Application of a Knowledge Management Framework to Automotive Original Component Manufacturers

Aim/Purpose: This paper aims to present an example of the application of a Knowledge Man-agement (KM) framework to automotive original component manufacturers (OEMs). The objective is to explore KM according to the four pillars of a selected KM framework. Background: This research demonstrates how a framework, namely the George Washington University’s Four Pillar Framework, can be used to determine the KM status of the automotive OEM industry, where knowledge is complex and can influence the complexity of the KM system (KMS) used. Methodology: An empirical study was undertaken using a questionnaire to gather quantitative data. There were 38 respondents from the National Association of Automotive Component and Allied Manufacturers (NAACAM) and suppliers from three major automotive OEMs. The respondents were required to be familiar with the company’s KMS. Contribution: Currently there is a limited body of research available on the KM implementation frameworks for the automotive industry. This study presents a novel approach to the use of a KM framework to reveal the status of KM in automotive OEMs. At the time of writing, the relationship between the four pillars and the complexity of KMS had not yet been determined. Findings: The results indicate that there is a need to improve KM in the automotive OEM industry. According to the relationships investigated, the four pillars, namely leadership, organization, technology and learning, are considered important for KM, regardless of the level of KMS complexity, Recommendations for Practitioners: Automotive OEMs need to ensure that the KM aspects are established and should be periodically evaluated by using a KM framework such as the George Washington University’s Four Pillar Framework to identify KM weaknesses. Recommendation for Researchers: The establishment and upkeep of a successful KM environment is challenging due to the complexity involved with various influencing aspects. To ensure that all aspects are considered in KM environments, comprehensive KM frameworks, such as the George Washington University’s Four Pillar Framework, need to be applied. Impact on Society: The status of KM management and accessibility of knowledge in organizations needs to be periodically examined, in order to improve supplier and OEM knowledge sharing. Future Research: Although the framework used provides a process for KM status determination, this study could be extended by investigating a methodology that includes KMS best practice and tools. This study could be repeated at a national and international level to provide an indication of KM practice within the entire automotive industry.




ap

Socio-Technical Approach, Decision-Making Environment, and Sustainable Performance: Role of ERP Systems

Aim/Purpose: This explanatory study aimed to determine the mediating role of ERP in the relation between the effect of a socio-technical approach and decision-making environment, and firms’ sustainable performance. Background: Although earlier studies have discussed the critical success factors of the failure or success of an ERP system and the extent to which it achieves its desired objectives, the current study focused on the significant impact of socio-technical elements and decision-making environment on the success of the ERP system (i.e., sustainable performance). In addition, the lack of research on ERP as a mediator in the above relationship motivated this study to bridge the literature gap. Methodology: The data was collected using questionnaires distributed to 233 randomly selected employees of three multinational companies (BP, LUKOIL, and Eni) operating in Iraq. The structural equation modeling was employed to test the hypothesized relationships. Contribution: The study contributes to the literature by examining the mediating role of the ERP system in the relationship between socio-technical elements and the decision-making environment, as well as, the moderating role of organizational culture in the relationship between socio-technical elements and ERP systems. Findings: The results showed that ERP is a significant mediator between the linkage of socio-technical elements and the decision-making environment while organizational culture has an insignificant moderating role in the relationship between socio-technical elements and ERP systems. Recommendations for Practitioners: In a developing country like Iraq, there is a need to implement ERP to achieve better sustainable performance through change management and organizational development that ultimately work towards enhancing individual capabilities, knowledge, and training. Recommendation for Researchers: The researchers are recommended to conduct an in-depth study of the phenomenon based on theoretical and empirical grounds, particularly in light of the relationship of socio-technical elements and decision-making environments. Impact on Society: This study provides a reference for organizations with similar cultural backgrounds in using ERP systems to minimize pollution in Iraqi context. Future Research: A more in-depth study can be performed using a bigger sample, which not only includes the oil industry but also the other industries.




ap

To Read or Not to Read: Modeling Online Newspaper Reading Satisfaction and Its Impact on Revisit Intention and Word-Of-Mouth

Aim/Purpose: In this research, we examined the influence of the information system (IS) quality dimensions proposed by Wixom and Todd on reading satisfaction of online newspaper readers in Bangladesh, especially the readers’ intention to revisit and recommendations through electronic word-of-mouth (eWOM). Background: We identified the top 50 most visited websites, of which 13 were online newspapers, although their ranking among Bangladesh online newspapers varies from month to month. The literature illustrates that, despite the wide availability of online news portals and the fluctuations in frequency of visits, little is known about the factors that affect the satisfaction, word-of-mouth, and frequency of visits of readers. An understanding of reader satisfaction will help to gain richer insights into the phenomenon of readers’ intention to revisit and recommendation by eWOM. Stakeholders of online newspapers can then focus on those factors to increase visits to their websites, which will help them attract online advertisements from different organisations. Methodology: Data were collected using a structured questionnaire, from 217 people who responded to the survey. We used SmartPLS 3 to analyze the data collected, as it is based on second-generation analysis, which in turn is based on structural equation modeling (SEM). Contribution: This research explores the impacts of technological dimensions on readers’ satisfaction, as most of the previous research has focused on cultural or social dimensions. Findings: The results supported all of the hypothesized relationships between technological dimensions and reader satisfaction with online newspapers, except for one. The first, information, was predicted with accuracy and completeness, while the second object-based belief, system quality, was predicted by its accessibility, flexibility, reliability, and timeliness. Overall, quality factors influencing readers’ satisfaction were shown to lead to word-of-mouth revisit intentions. Our proposed model was empirically tested and has contributed to a nascent body of knowledge about readers’ revisit intentions and eWOM recommendations regarding online newspapers. It was also shown that strong satisfaction leads to higher revisit intention and eWOM. Recommendations for Practitioners: To keep the users satisfied, online newspapers need to focus on improving information quality (IQ) and system quality (SQ). If they do this well, they will be rewarded with higher revisit intention and recommendations by eWOM. Recommendation for Researchers: This study extends Oh’s customer loyalty model by integrating the Wixom-Todd model. This study reinforces an alternative rationale of the construct satisfaction. Future Research: We ignored negative stimulus like technostress, which can have an impact on satisfaction. In future, we will test the relationship between technostress and its impact on online newspaper reading.




ap

The Role of Knowledge Management Process and Intellectual Capital as Intermediary Variables between Knowledge Management Infrastructure and Organization Performance

Aim/Purpose: The objective of this study was to assess the interrelationships among knowledge management infrastructure, knowledge management process, intellectual capital, and organization performance. Background: Although knowledge management capability is extensively used by organizations, reaching their maximum financial and non-financial performances has not been fully researched. Therefore, organizations need to optimize their performance by exploiting knowledge management capability through the accumulation of intellectual capital, where the new competitiveness is shifting from tangible to intangible resources. Methodology: This study adopted a positivist philosophy and deductive approach to accomplish the main goal of this research. Moreover, this research employed a quantitative approach since this study is concerned with causal relationship between variables. A questionnaire-based survey was designed to evaluate the research model using a convenience sample of 134 employees from the food industry sector in Jordan. Surveyed data was examined following the structural equation modeling procedures. Contribution: This study highlighted the potential benefits of applying the knowledge management capabilities, intellectual capital, and organizational performance to the food industrial sector in Jordan. Future research suggestions are also provided. Findings: Results indicated that knowledge management infrastructure had a positive effect on knowledge management process. In addition, knowledge management process impacted positively intellectual capital and organization performance and mediated the relationship between knowledge management infrastructure and intellectual capital. However, knowledge management infrastructure did not positively associate to organization performance. Recommendations for Practitioners: The current model is designed to help managers and decision makers to improve their management capabilities as well as their organization financial and non-financial performance through exploiting the organizational knowledge management infrastructure and intellectual capital approaches. Recommendation for Researchers: Our findings can be used as a base of knowledge to conduct further studies about knowledge management capabilities, intellectual capital, and organization performance following different criteria and research procedures. Impact on Society: The designed model highlights a significant organizational performance approach that can influence Jordanian food industrial sector positively. Future Research: The current designed research model can be applied and assessed further in other sectors including banking and industrial sectors across developed and developing countries. Also, we suggest that in addition to focusing on knowledge management process and intellectual capital as mediating variables, future research could test our findings in a longitudinal study and examine how to affect financial and non-financial performance.




ap

The Mechanism of Internet Capability Driving Knowledge Creation Performance: The Effects of Strategic Flexibility and Informatization Density

Aim/Purpose: This study analyzes the mechanism of Internet capability (IC) driving knowledge creation performance (KCP). We consider the mediating role of strategic flexibility and the moderating role of informatization density. Background: The key to achieving KCP for firms is to transform knowledge created into new products or services and to realize the economic benefits. However, the research has not paid enough attention to firms’ KCP. Based on dynamic capability theory, this study empirically reveals how firms drive KCP through Internet capability. Methodology: The study uses survey data from 399 organizations in China. Through structural equation modeling, this study assesses the relationship between Internet capability, strategic flexibility, and KCP and uses hierarchical regression to test the moderating role of informatization density. Contribution: First, this study expands research on knowledge creation and focuses on the further achievement of knowledge creation performance. The study also enriches the exploration of KCP in the Internet context and deepens the research on the internal mechanism by which Internet capability influences KCP. Second, this study highlights the important role of informatization density in the Internet context and expands the research on the impact of external factors on the internal mechanism. Findings: First, Internet capability has a significantly positive effect on both strategic flexibility and KCP. Furthermore, Internet capability directly impacts strategic flexibility, yet it affects KCP both directly and indirectly through strategic flexibility, which confirms that strategic flexibility is a partial mediator in the relationship between Internet capability and KCP. Second, strategic flexibility positively influences KCP. Third, informatization density has a significant moderating effect on the relationship between Internet capability and KCP. Recommendations for Practitioners: The results indicate that firms should consider the importance of Internet capability and strategic flexibility for KCP in the Internet context. This study also provides a theoretical basis that could guide the Chinese government’s informatization construction of the industrial chain. Recommendation for Researchers: Researchers could further explore the role of other mediator variables (e.g., business process management, organizational agility) and consider the role of other moderator variables (e.g., resource commitment, learning orientation). Impact on Society: This study provides a reference for enterprises with similar cultural backgrounds in using Internet capability to enhance their competitive advantage. Future Research: Future research could collect data from various countries and regions to test the research model and conduct longitudinal studies to increase the robustness of the conclusions.




ap

An Overlapless Incident Management Maturity Model for Multi-Framework Assessment (ITIL, COBIT, CMMI-SVC)

Aim/Purpose: This research aims to develop an information technology (IT) maturity model for incident management (IM) process that merges the most known IT frameworks’ practices. Our proposal intends to help organizations overcome the current limitations of multiframework implementation by informing organizations about frameworks’ overlap before their implementation. Background: By previously identifying frameworks’ overlaps it will assist organizations during the multi-framework implementation in order to save resources (human and/or financial). Methodology: The research methodology used is design science research (DSR). Plus, the authors applied semi-structured interviews in seven different organizations to demonstrate and evaluate the proposal. Contribution: This research adds a new and innovative artefact to the body of knowledge. Findings: The proposed maturity model is seen by the practitioners as complete and useful. Plus, this research also reinforces the frameworks’ overlap issue and concludes that some organizations are unaware of their actual IM maturity level; some organizations are unaware that they have implemented practices of other frameworks besides the one that was officially adopted. Recommendations for Practitioners: Practitioners may use this maturity model to assess their IM maturity level before multi-framework implementation. Moreover, practitioners are also incentivized to communicate further requirements to academics regarding multi-framework assessment maturity models. Recommendation for Researchers: Researchers may explore and develop multi-frameworks maturity models for the remaining processes of the main IT frameworks. Impact on Society: This research findings and outcomes are a step forward in the development of a unique overlapless maturity model covering the most known IT frameworks in the market thus helping organizations dealing with the increasing frameworks’ complexity and overlap. Future Research: Overlapless maturity models for the remaining IT framework processes should be explored.




ap

Crisis and Disaster Situations on Social Media Streams: An Ontology-Based Knowledge Harvesting Approach

Aim/Purpose: Vis-à-vis management of crisis and disaster situations, this paper focuses on important use cases of social media functions, such as information collection & dissemination, disaster event identification & monitoring, collaborative problem-solving mechanism, and decision-making process. With the prolific utilization of disaster-based ontological framework, a strong disambiguation system is realized, which further enhances the searching capabilities of the user request and provides a solution of unambiguous in nature. Background: Even though social media is information-rich, it has created a challenge for deriving a decision in critical crisis-related cases. In order to make the whole process effective and avail quality decision making, sufficiently clear semantics of such information is necessary, which can be supplemented through employing semantic web technologies. Methodology: This paper evolves a disaster ontology-based system availing a framework model for monitoring uses of social media during risk and crisis-related events. The proposed system monitors a discussion thread discovering whether it has reached its peak or decline after its root in the social forum like Twitter. The content in social media can be accessed through two typical ways: Search Application Program Interfaces (APIs) and Streaming APIs. These two kinds of API processes can be used interchangeably. News content may be filtered by time, geographical region, keyword occurrence and availability ratio. With the support of disaster ontology, domain knowledge extraction and comparison against all possible concepts are availed. Besides, the proposed method makes use of SPARQL to disambiguate the query and yield the results which produce high precision. Contribution: The model provides for the collection of crisis-related temporal data and decision making through semantic mapping of entities over concepts in a disaster ontology we developed, thereby disambiguating potential named entities. Results of empirical testing and analysis indicate that the proposed model outperforms similar other models. Findings: Crucial findings of this research lie in three aspects: (1) Twitter streams and conventional news media tend to offer almost similar types of news coverage for a specified event, but the rate of distribution among topics/categories differs. (2) On specific events such as disaster, crisis or any emergency situations, the volume of information that has been accumulated between the two news media stands divergent and filtering the most potential information poses a challenging task. (3) Relational mapping/co-occurrence of terms has been well designed for conventional news media, but due to shortness and sparseness of tweets, there remains a bottleneck for researchers. Recommendations for Practitioners: Though metadata avails collaborative details of news content and it has been conventionally used in many areas like information retrieval, natural language processing, and pattern recognition, there is still a lack of fulfillment in semantic aspects of data. Hence, the pervasive use of ontology is highly suggested that build semantic-oriented metadata for concept-based modeling, information flow searching and knowledge exchange. Recommendation for Researchers: The strong recommendation for researchers is that instead of heavily relying on conventional Information Retrieval (IR) systems, one can focus more on ontology for improving the accuracy rate and thereby reducing ambiguous terms persisting in the result sets. In order to harness the potential information to derive the hidden facts, this research recommends clustering the information from diverse sources rather than pruning a single news source. It is advisable to use a domain ontology to segregate the entities which pose ambiguity over other candidate sets thus strengthening the outcome. Impact on Society: The objective of this research is to provide informative summarization of happenings such as crisis, disaster, emergency and havoc-based situations in the real world. A system is proposed which provides the summarized views of such happenings and corroborates the news by interrelating with one another. Its major task is to monitor the events which are very booming and deemed important from a crowd’s perspective. Future Research: In the future, one shall strive to help to summarize and to visualize the potential information which is ranked high by the model.




ap

Information Technology Capabilities and SMEs Performance: An Understanding of a Multi-Mediation Model for the Manufacturing Sector

Aim/Purpose: Despite the fact that the plethora of studies demonstrate the positive impact of information technology (IT) capabilities on SMEs performance, the understanding of underlying mechanisms through which IT capabilities affect the firm performance is not yet clear. This study fills these gaps by explaining the roles of absorptive capacity and corporate entrepreneurship. The study also elaborates the effect of IT capability dimensions (IT integration and IT alignment) upon the SMEs performance outcomes through the mediating sequential process of absorptive capacity and corporate entrepreneurship. Methodology: This study empirically tests a theoretical model based on the Dynamic Capability View (DCV), by using the partial least square (PLS) technique with a sample of 489 manufacturing SMEs in Pakistan. A survey is employed for the data collection by following the cluster sampling approach. Contribution: This research contributes to the literature of IT by bifurcating the IT capability into two dimensions, IT integration and IT alignment, which allows us to distinguish between different sources of IT capabilities. Additionally, our findings shed the light on the dynamic capability view by theoretically and empirically demonstrating how absorptive capacity and corporate entrepreneurship sequentially affect the firms' performance outcomes. At last, this study contributes to the literature of SMEs by measuring the two levels of performance: innovation performance and firm performance. Findings: The results of the analysis show that the absorptive capacity and the corporate entrepreneurship significantly mediate the relationship between both dimensions of IT capability and performance outcomes.




ap

A Cognitive Knowledge-based Model for an Academic Adaptive e-Advising System

Aim/Purpose: This study describes a conceptual model, based on the principles of concept algebra that can provide intelligent academic advice using adaptive, knowledge-based feedback. The proposed model advises students based on their traits and academic history. The system aims to deliver adaptive advice to students using historical data from previous and current students. This data-driven approach utilizes a cognitive knowledge-based (CKB) model to update the weights (values that indicate the strength of relationships between concepts) that exist between student’s performances and recommended courses. Background: A research study conducted at the Public Authority for Applied Education and Training (PAAET), a higher education institution in Kuwait, indicates that students’ have positive perceptions of the e-Advising system. Most students believe that PAAET’s e-Advising system is effective because it allows them to check their academic status, provides a clear vision of their academic timeline, and is a convenient, user-friendly, and attractive online service. Student advising can be a tedious element of academic life but is necessary to fill the gap between student performance and degree requirements. Higher education institutions have prioritized assisting undecided students with career decisions for decades. An important feature of e-Advising systems is personalized feedback, where tailored advice is provided based on students' characteristics and other external parameters. Previous e-Advising systems provide students with advice without taking into consideration their different attributes and goals. Methodology: This research describes a model for an e-Advising system that enables students to select courses recommended based on their personalities and academic performance. Three algorithms are used to provide students with adaptive course selection advice: the knowledge elicitation algorithm that represents students' personalities and academic information, the knowledge bonding algorithm that combines related concepts or ideas within the knowledge base, and the adaptive e-Advising model that recommends relevant courses. The knowledge elicitation algorithm acquires student and academic characteristics from data provided, while the knowledge bonding algorithm fuses the newly acquired features with existing information in the database. The adaptive e-Advising algorithm provides recommended courses to students based on existing cognitive knowledge to overcome the issues associated with traditional knowledge representation methods. Contribution: The design and implementation of an adaptive e-Advising system are challenging because it relies on both academic and student traits. A model that incorporates the conceptual interaction between the various academic and student-specific components is needed to manage these challenges. While other e-Advising systems provide students with general advice, these earlier models are too rudimentary to take student characteristics (e.g., knowledge level, learning style, performance, demographics) into consideration. For the online systems that have replaced face-to-face academic advising to be effective, they need to take into consideration the dynamic nature of contemporary students and academic settings. Findings: The proposed algorithms can accommodate a highly diverse student body by providing information tailored to each student. The academic and student elements are represented as an Object-Attribute-Relationship (OAR) model. Recommendations for Practitioners: The model proposed here provides insight into the potential relationships between students’ characteristics and their academic standing. Furthermore, this novel e-Advising system provides large quantities of data and a platform through which to query students, which should enable developing more effective, knowledge-based approaches to academic advising. Recommendation for Researchers: The proposed model provides researches with a framework to incorporate various academic and student characteristics to determine the optimal advisory factors that affect a student’s performance. Impact on Society: The proposed model will benefit e-Advising system developers in implementing updateable algorithms that can be tested and improved to provide adaptive advice to students. The proposed approach can provide new insight to advisors on possible relationships between student’s characteristics and current academic settings. Thus, providing a means to develop new curriculums and approaches to learning. Future Research: In future studies, the proposed algorithms will be implemented, and the adaptive e-Advising model will be tested on real-world data and then further improved to cater to specific academic settings. The proposed model will benefit e-Advising system developers in implementing updateable algorithms that can be tested and improved to provide adaptive advisory to students. The approach proposed can provide new insight to advisors on possible relationships between student’s characteristics and current academic settings. Thus, providing a means to develop new curriculums and approaches to course recommendation.




ap

A Multicluster Approach to Selecting Initial Sets for Clustering of Categorical Data

Aim/Purpose: This article proposes a methodology for selecting the initial sets for clustering categorical data. The main idea is to combine all the different values of every single criterion or attribute, to form the first proposal of the so-called multiclusters, obtaining in this way the maximum number of clusters for the whole dataset. The multiclusters thus obtained, are themselves clustered in a second step, according to the desired final number of clusters. Background: Popular cluster methods for categorical data, such as the well-known K-Modes, usually select the initial sets by means of some random process. This fact introduces some randomness in the final results of the algorithms. We explore a different application of the clustering methodology for categorical data that overcomes the instability problems and ultimately provides a greater clustering efficiency. Methodology: For assessing the performance of the proposed algorithm and its comparison with K-Modes, we apply both of them to categorical databases where the response variable is known but not used in the analysis. In our examples, that response variable can be identified to the real clusters or classes to which the observations belong. With every data set, we perform a two-step analysis. In the first step we perform the clustering analysis on data where the response variable (the real clusters) has been omitted, and in the second step we use that omitted information to check the efficiency of the clustering algorithm (by comparing the real clusters to those given by the algorithm). Contribution: Simplicity, efficiency and stability are the main advantages of the multicluster method. Findings: The experimental results attained with real databases show that the multicluster algorithm has greater precision and a better grouping effect than the classical K-modes algorithm. Recommendations for Practitioners: The method can be useful for those researchers working with small and medium size datasets, allowing them to detect the underlying structure of the data in an intuitive and reasonable way. Recommendation for Researchers: The proposed algorithm is slower than K-Modes, since it devotes a lot of time to the calculation of the initial combinations of attributes. The reduction of the computing time is therefore an important research topic. Future Research: We are concerned with the scalability of the algorithm to large and complex data sets, as well as the application to mixed data sets with both quantitative and qualitative attributes.




ap

Enterprise Knowledge Generation Driven by Internet Integration Capability: A Mediated Moderation Model

Aim/Purpose: Drawing on theories of organizational learning, this study analyzes the mechanism of Internet integration capability affecting knowledge generation by 399 Chinese enterprises. This paper will further explore whether there is a moderating role of learning orientation in the mechanism of Internet integration capability affecting enterprise knowledge generation. Background: The Internet has gradually integrated into the enterprise innovation system and penetrated into all aspects of technological innovation, which has promoted the integration and optimization of resources inside and outside the organization. However, there is limited understanding of how the combination of the Internet and integration capability can drive enterprise knowledge generation. Methodology: The study uses survey data from 399 organizations in China. Through structural equation modeling, this study assesses the relationship between Internet integration capability, organizational learning, knowledge generation, and uses PROCESS macro program to test the mediated moderation effect of learning orientation. Contribution: First, this study provides empirical evidence for managers to better build Internet integration capability and ambidextrous learning to promote enterprise knowledge generation. Second, this study highlights the important moderating role of learning orientation in the mediating role of ambidextrous learning. Findings: First, the study confirms the mediating role of exploratory learning and exploitative learning in knowledge generation driven by Internet integration capability. Second, the results show that when organizations have a strong learning orientation, the indirect path of Internet integration capability influencing knowledge generation through exploratory learning will be enhanced. Recommendations for Practitioners: Enterprises should pay full attention to the improvement of internet integration capability and ambidextrous learning to promote knowledge generation. In addition, enterprises should establish a good learning atmosphere within the organization to strengthen the bridge role of exploratory learning between Internet integration capability and knowledge generation. Recommendation for Researchers: Researchers could collect data from countries with different levels of economic development to verify the universal applicability of the proposed theoretical model. Impact on Society: This study provides references for enterprises using Internet integration capability to promote their knowledge generation capability under the internet background. Future Research: Future research can compare the impact of Internet integration capability on knowledge generation in different industries.




ap

IDCUP Algorithm to Classifying Arbitrary Shapes and Densities for Center-based Clustering Performance Analysis

Aim/Purpose: The clustering techniques are normally considered to determine the significant and meaningful subclasses purposed in datasets. It is an unsupervised type of Machine Learning (ML) where the objective is to form groups from objects based on their similarity and used to determine the implicit relationships between the different features of the data. Cluster Analysis is considered a significant problem area in data exploration when dealing with arbitrary shape problems in different datasets. Clustering on large data sets has the following challenges: (1) clusters with arbitrary shapes; (2) less knowledge discovery process to decide the possible input features; (3) scalability for large data sizes. Density-based clustering has been known as a dominant method for determining the arbitrary-shape clusters. Background: Existing density-based clustering methods commonly cited in the literature have been examined in terms of their behavior with data sets that contain nested clusters of varying density. The existing methods are not enough or ideal for such data sets, because they typically partition the data into clusters that cannot be nested. Methodology: A density-based approach on traditional center-based clustering is introduced that assigns a weight to each cluster. The weights are then utilized in calculating the distances from data vectors to centroids by multiplying the distance by the centroid weight. Contribution: In this paper, we have examined different density-based clustering methods for data sets with nested clusters of varying density. Two such data sets were used to evaluate some of the commonly cited algorithms found in the literature. Nested clusters were found to be challenging for the existing algorithms. In utmost cases, the targeted algorithms either did not detect the largest clusters or simply divided large clusters into non-overlapping regions. But, it may be possible to detect all clusters by doing multiple runs of the algorithm with different inputs and then combining the results. This work considered three challenges of clustering methods. Findings: As a result, a center with a low weight will attract objects from further away than a centroid with higher weight. This allows dense clusters inside larger clusters to be recognized. The methods are tested experimentally using the K-means, DBSCAN, TURN*, and IDCUP algorithms. The experimental results with different data sets showed that IDCUP is more robust and produces better clusters than DBSCAN, TURN*, and K-means. Finally, we compare K-means, DBSCAN, TURN*, and to deal with arbitrary shapes problems at different datasets. IDCUP shows better scalability compared to TURN*. Future Research: As future recommendations of this research, we are concerned with the exploration of further available challenges of the knowledge discovery process in clustering along with complex data sets with more time. A hybrid approach based on density-based and model-based clustering algorithms needs to compare to achieve maximum performance accuracy and avoid the arbitrary shapes related problems including optimization. It is anticipated that the comparable kind of the future suggested process will attain improved performance with analogous precision in identification of clustering shapes.




ap

The Challenge of Evaluating Virtual Communities of Practice: A Systematic Mapping Study

Aim/Purpose: This paper presents a study of Virtual Communities of Practice (VCoP) evaluation methods that aims to identify their current status and impact on knowledge sharing. The purposes of the study are as follows: (i) to identify trends and research gaps in VCoP evaluation methods; and, (ii) to assist researchers to position new research activities in this domain. Background: VCoP have become a popular knowledge sharing mechanism for both individuals and organizations. Their evaluation process is complex; however, it is recognized as an essential means to provide evidences of community effectiveness. Moreover, VCoP have introduced additional features to face to face Communities of Practice (CoP) that need to be taken into account in evaluation processes, such as geographical dispersion. The fact that VCoP rely on Information and Communication Technologies (ICT) to execute their practices as well as storing artifacts virtually makes more consistent data analysis possible; thus, the evaluation process can apply automatic data gathering and analysis. Methodology: A systematic mapping study, based on five research questions, was carried out in order to analyze existing studies about VCoP evaluation methods and frameworks. The mapping included searching five research databases resulting in the selection of 1,417 papers over which a formal analysis process was applied. This process led to the preliminary selection of 39 primary studies for complete reading. After reading them, we select 28 relevant primary studies from which data was extracted and synthesized to answer the proposed research questions. Contribution: The authors of the primary studies analyzed along this systematic mapping propose a set of methods and strategies for evaluating VCoP, such as frameworks, processes and maturity models. Our main contribution is the identification of some research gaps present in the body of studies, in order to stimulate projects that can improve VCoP evaluation methods and support its important role in social learning. Findings: The systematic mapping led to the conclusion that most of the approaches for VCoP evaluation do not consider the combination of data structured and unstructured metrics. In addition, there is a lack of guidelines to support community operators’ actions based on evaluation metrics.




ap

Students’ Continuance Intention to Use Moodle: An Expectation-Confirmation Model Approach

Aim/Purpose: This study aims at investigating the factors that influence students’ continuous intention to use Moodle, as an exemplar of learning management systems (LMSs), in the post-adoption phase. Background: Higher education institutions (HEIs) have invested heavily in learning management systems (LMSs), such as Moodle and BlackBoard, as these systems enhance students’ learning and improve their interactions with the educational systems. While most studies on LMSs have focused on the pre-adoption or acceptance phases of this technology, the determinant factors that influence students’ continuance intention to use LMSs have received less attention in the information systems (IS) literature. Methodology: The theoretical model for this study was primarily drawn from the expectation-confirmation model (ECM). A total of 387 Kuwaiti students, from a private American University in the State of Kuwait, participated in this study. Partial least squares (PLS) was employed to analyze the data. Contribution: This study contributes to the existing scientific knowledge in different ways. First, this study extends the expectation confirmation model (ECM) by integrating factors that are important to students’ continuous intention to use LMSs, including system interactivity, effort expectancy, attitude, computer anxiety, self-efficacy, subjective norms, and facilitating conditions. Second, this study adds on a Kuwaiti literature context by focusing on the continuous intention to use LMSs, which is, to the best of our knowledge, the first study that extends and empirically assesses the applicability of the ECM in the LMSs context in a developing country – Kuwait. Third, this study conceptually and empirically differentiates between satisfaction and attitude, as two separate affect constructs, which were taken as interchangeable factors in ECM, and were disregarded by a large number of prior ECM studies concerned with continuous use intention. Finally, this study aims to assist HEIs, faculty members, and systems’ developers in understanding the main factors that influence students’ continuance use intention of LMSs. Findings: While subjective norms were not significant, the results mainly showed that students’ continuous intention to use Moodle is significantly influenced by performance expectancy, effort expectancy, attitude, satisfaction, self-efficacy and facilitating conditions. The study’s results also confirmed that satisfaction and attitude are two conceptually and empirically different constructs, conflicting with the views that these constructs can be taken as interchangeable factors in the ECM. Recommendations for Practitioners: This study offers several useful practical implications. First, given the significant influence of system interactivity on performance expectancy and satisfaction, faculty members should modify their teaching approach by enabling communication and interaction among instructors, students, and peers using the LMS. Second, given the significant influence of performance expectancy, satisfaction, and attitude on continuous intention to use the LMS, HEIs should conduct training programs for students on the effective use of the LMS. This would increase students’ awareness regarding the usefulness of the LMS, enhance their attitude towards the LMS, and improve their satisfaction with the system. Third, given the significant role of effort expectancy in influencing performance expectancy, attitude, and students’ continuous intention to use Moodle, developers and system programmers should design the LMS with easy to use, high quality, and customizable user interface. This, in turn, will not only motivate students’ performance expectancy, but will also influence their attitude and continuous intention to use the system. Recommendation for Researchers: This study conceptually and empirically differentiates between satisfaction and attitude, as two separate affect constructs, which were taken as interchangeable factors in ECM and were disregarded by a large number of prior ECM studies concerned with continuous use intention. Hence, it is recommended that researchers include these two constructs in their research models when investigating continuous intention to use a technology. Impact on Society: This study could be used in other countries to compare and verify the results. Additionally, the research model of this study could also be used to investigate other LMSs, such as Blackboard. Future Research: This study focused on how different factors affected students’ continuous intention to use Moodle but did not consider all determinants of successful system, such as system quality, information quality, and instructional as well as course content quality. Thus, future research should devote attention to the effects of these quality characteristics of LMS.




ap

China’s Halal Food Industry: The Link Between Knowledge Management Capacity, Supply Chain Practices, and Company Performance

Aim/Purpose: The study attempts to analyse the influences of knowledge management capacity on company performance and supply chain practices. It also examines whether supply chain practices significantly and positively impact company performance. Background: Knowledge management capacity is an essential tactical resource that enables the integration and coordination among supply chain stakeholders, but research examining the link between knowledge management capacity and supply chain practices and their impacts on company performance remains scarce. Methodology: The study uses correlation analysis and factor analysis to confirm the theoretical framework’s validity and structural equation modelling to test hypotheses. The data are obtained from 115 halal food firms in China (with a response rate of 82.7%). Contribution: This study’s findings contribute to the Social Capital Theory by presenting the impacts of different supply chain practices on company performance. The findings also suggest the impact of intangible resources on enhancing company performance, contributing to the Resource-based View Theory. These results are a crucial contribution to both academicians and corporate managers working in the Halal food industry. Managers can apply these findings to discover and adopt knowledge management capacity with practical anticipation that these concepts will align with their company strategies. Also, the research motivates managers to concentrate their knowledge management on enhancing companies’ supply chain practices to achieve improved company performance. Findings: This study is an initial effort that provides empirical evidence regarding the relationships among supply chain, knowledge management, and company performance from the perspective of China’s halal food industry. The results prove that knowledge management capacity is the supply chains’ primary success determinant and influencer. Besides, knowledge management capacity positively influences company performance, and supply chain practices directly influence company performance. Recommendations for Practitioners: Managers can apply these study findings to determine and increase knowledge management capacity with practical anticipation that these concepts will align with their company strategies. Also, the research motivates managers to concentrate their knowledge management on enhancing companies’ supply chain practices to achieve improved company performance. Recommendation for Researchers: The study presents a new theoretical framework and empirical evidence for surveying halal food businesses in China. Impact on Society: These results are a significant contribution to the research field and industry focusing on halal foods. Future Research: First, this research focuses only on halal food businesses in China; thus, it is essential to re-examine the hypothesized relations between the constructs in other Chinese business segments and regions. Next, the effect of variables and practices on the theorized framework should be taken into account and examined in other industries and nations.




ap

The Roles of Knowledge Management and Cooperation in Determining Company Innovation Capability: A Literature Review

Aim/Purpose: The aim of this study is to develop a research model derived from relevant literature to guide empirical efforts. Background: Companies struggle to innovate, which is essential for improving their performance, surviving in competition, and growing. A number of studies have discussed company innovation capability, stating that innovation capability is influenced by several variables such as cooperation and knowledge management. Therefore, further research is necessary to identify factors playing a role in enhancing innovation capability. Methodology: This study is based on systematic literature review. The stages are: (1) research scope review, (2) comprehensive online research, (3) journal quality assessment, (4) data extraction from journals, (5) journal synthesis, and (6) comprehensive report. The online research used Google Scholar database, by browsing titles, abstracts, and keywords to locate empirical research studies in peer-reviewed journals published in 2010-2020. Furthermore, 62 related articles were found, of which 38 articles were excluded from further analysis and 24 articles were selected because they were more related to the topic. Contribution: The results of this study enrich the research in the field of knowledge management, cooperation, and innovation capability by developing a conceptual framework of innovation capability. The proposed theoretical model may be fundamental in addressing the need of a research model to guide further empirical efforts. Findings: This study provides a research model derived from systematically reviewing relevant literature. The proposed theoretical model was done by incorporating the aspects of knowledge management, cooperation, and innovation capability. The model shows that knowledge management and cooperation are essential aspects of innovation capability. Furthermore, this study also provides the dimensions and sub dimensions of each variable that was established after synthesizing the literature review. Recommendations for Practitioners: Business practitioners can use the identified predictors of innovation capability and the dimensions of each variable to explore their company’s innovation capability. They can also take the relevant variables into consideration when making policies regarding innovation. Recommendation for Researchers: The theoretical model proposed in this study needs validation with further empirical investigation. Impact on Society: Readers of this paper can obtain an understanding that knowledge management and cooperation are essential aspects to consider in enhancing innovation capability. Future Research: Future studies should explore other dimensions of knowledge management and cooperation through alternative approaches and perspectives.




ap

The Effect of Visual Appeal, Social Interaction, Enjoyment, and Competition on Mobile Esports Acceptance by Urban Citizens

Aim/Purpose: This study investigated a model of mobile esports acceptance among urban citizens based on an extended Technology Acceptance Model (TAM). Background: Currently, esports are increasingly popular and in demand by the public. Supported by the widespread development of mobile devices, it has become an interactive market trend to play games in a new model, mobile esports. Methodology: This study collected data from 400 respondents and analyzed it using partial least squares-structural equation modeling (PLS-SEM). Contribution: This study addresses two research gaps. The first gap is limited esports information systems studies, particularly in mobile esports acceptance studies. The second gap is limited exploration of external variables in online gaming acceptance studies. Thus, this study proposed a TAM extended model by integrating the TAM native variables with other external variables such as visual appeal, enjoyment, social interaction, and competition to explore mobile esports acceptance by urban citizens. Findings: Nine hypotheses were accepted, and four were rejected. The visual appeal did not affect the acceptance. Meanwhile, social interaction and enjoyment significantly affected both perceived ease of use and usefulness. However, perceived ease of use surprisingly had an insignificant effect on attitude toward using mobile esports. Moreover, competition significantly affected the acceptance, particularly on perceived usefulness. Recommendations for Practitioners: Fresh and innovative features, such as new game items or themes, should be frequently introduced to enhance players’ continued enjoyment. Moreover, mobile esports providers should offer a solid platform to excite players’ interactions to increase the likelihood that users feel content. On the other hand, the national sports ministry/agency or responsible authorities should organize many esports competitions, big or small, to search for new talents. Recommendation for Researchers: Visual appeal in this study did not influence the perceived ease of use or usefulness. However, it could affect enjoyment. Thus, it would be worth revisiting the relationship between visual appeal and enjoyment. At the same time, perceived ease of use is a strong driver for the continued use of most online games, but not in this study. It could indicate significant differences between mobile esports and typical online games, one of which is the different purposes. Users might play online games for recreational intention, but players would use mobile esports to compete, win, or even get monetary rewards. Therefore, although users might find mobile esports challenging and hard to use, they tend to keep playing it. Thus, monetary rewards could be considered a determinant of the continuation of use. Impact on Society: Nowadays, users are being paid for playing games. It also would be an excel-lent job if they become professional esports athletes. This study investigated factors that could affect the continued use of mobile esports. Like other jobs, playing games professionally in the long term could make the players tedious and tired. Therefore, responsible parties, like mobile esports providers or governments, could use the recommendations of this study to promote positive behavior among the players. They will not feel like working and still con-sider playing mobile esports a hobby if they happily do the job. In the long run, the players could also make a nation’s society proud if they can be a champion in prestigious competitions. Future Research: A larger sample size will be needed to generalize the results, such as for a nation. It is also preferable if the sample is randomized systematically. Future works should also investigate whether the same results are acquired in other mobile esports. Furthermore, to extend our knowledge and deepen our understanding of the variables that influence mobile esports adoption, the subsequent research could look at other mobile esports acceptability based on characteristics of system functionality and moderator effects. Finally, longitudinal data-collecting approaches are suggested for future studies since behavior can change over time.




ap

The View of IT-Consuming Firms on the Key Digital Service Capabilities of IT-Producing Firms

Aim/Purpose: This study focuses on the connection between IT-producing firms’ digital service capabilities and the digital service performance of IT-consuming firms, especially online shop operators. Background: The acquisition and integration of knowledge regarding digital service capabilities and performance can increase the level at which employees assimilate information, organize with IT-consuming firms, and cooperate with them to develop the delivery of services and customize services to fill their needs. Exploring capabilities that may enable this process is a prerequisite for all businesses offering digital services and, thus, an engrossing and ongoing interest of practitioners and scholars. However, there is a lack of research on the relationship between IT-producing firms’ digital service capabilities and the digital service performance of IT-consuming firms in the business-to-business (B2B) context. Methodology: The study builds on a survey conducted among small firms that have an online shop in use and are located in Finland. Contribution: The study offers empirical evidence for the capabilities valued by IT-consuming firms, providing a model for IT-producing firms to use when deciding on a future focus. The study was executed in a B2B setting from the viewpoint of online shop operators, presenting a novel understanding of influential digital service capabilities. Findings: Adaptability, determined by capabilities related to utilizing information gained via the integration of a digital product into other digital tools (e.g., marketing, personalization, and analytics), statistically significantly affects all three aspects of an IT-consuming firm’s digital service performance (financial, operational, and sales). Another product capability, availability, which includes aspects such as security, different aspects of functioning, and mobile adaptation, affects one aspect of digital performance, namely operational. The results also suggest that the role of service process-related capabilities in determining service comprehensiveness significantly influences two aspects of IT-consuming firms’ digital service performance: financial (negative effect) and operational (positive effect). The results show that the capabilities associated with the relationship between the producing firm and the consuming firm do not affect IT-consuming firms’ performance to the same extent. Recommendations for Practitioners: The study results suggest that IT-producing firms should concentrate on leveraging service comprehensiveness, as there has been a shift in the B2B context from merely selling a digital product and associated services. It seems that usability-related issues are now taken for granted, and the emphasis is on features that support the use of information to create value. Recommendation for Researchers: The results contribute to the capabilities literature by showing that the shift in focus from technical product-related capabilities to relationship-related capabilities is not yet evident among small online store operators. Impact on Society: In addition to offering tools with different integration possibilities, supporting IT-consuming firms in making the most of the possibilities would be very helpful. Future Research: The comprehension of the relationship between digital service capabilities and digital service performance would benefit from future research that takes into account additional control variables. The theoretical model of this study can be further studied by using other performance measures, such as market performance, as dependent variables.




ap

Adoption of Telecommuting in the Banking Industry: A Technology Acceptance Model Approach

Aim/Purpose: Currently, the world faces unprecedented challenges due to COVID-19, particularly concerning individuals’ health and livelihood and organizations and industrial performance. Indeed, the pandemic has caused rapid intensifying socio-economic effects. For instance, organizations are shifting from traditional working patterns toward telecommuting. By adopting remote working, organizations might mitigate the impact of COVID-19 on their workforce, explicitly concerning their safety, wellbeing, mobility, work-life balance, and self-efficiency. From this perceptive, this study examines the factors that influence employees’ behavioral intention to adopt telecommuting in the banking industry. Background: The study’s relevance stems from the fact that telecommuting and its benefits have been assumed rather than demonstrated in the banking sector. However, the pandemic has driven the implementation of remote working, thereby revealing possible advantages of working from home in the banking industry. The study investigated the effect of COVID-19 in driving organizations to shift from traditional working patterns toward telecommuting. Thereby, the study investigates the banking sector employees’ behavioral intention to adopt telecommuting. Methodology: The study employed a survey-based questionnaire, which entails gathering data from employees of twelve banks in Jordan, as the banking sector in Jordan was the first to transform from traditional working to telecommuting. The sample for this research was 675 respondents; convenience sampling was employed as a sampling technique. Subsequently, the data were analyzed with the partial least square structural equation modeling (PLS-SEM) to statistically test the research model. Contribution: Firstly, this study provides a deep examination and understanding of facilitators of telecommuting in a single comprehensive model. Secondly, the study pro-vides a deeper insight into the factors affecting behavioral intention towards telecommuting from the employees’ perspective in the banking sector. Finally, this study is the first to examine telecommuting in the emerging market of Jordan. Thereby, this study provides critical recommendations for managers to facilitate the implementation of telecommuting. Findings: Using the Technology Acceptance Model (TAM), this study highlights significant relationships between telecommuting systems, quality, organizational support, and the perceived usefulness and ease of use in telecommuting. Employees who perceive telecommuting systems to be easy and receive supervision and training for using these systems are likely to adopt this work scheme. The results present critical theoretical and managerial implications regarding employees’ behavioral intentions toward telecommuting. Recommendations for Practitioners: This study suggests the importance of work-life balance for employees when telecommuting. Working from home while managing household duties can create complications for employees, particularly parents. Therefore, flexibility in terms of working hours is needed to increase employees’ acceptance of telecommuting as they will have more control over their life. These increase employees’ perceived self-efficacy with telecommuting, which smooths the transition toward remote working in the future. In addition, training will allow employees to solve technical issues that can arise from using online systems. Recommendation for Researchers: This study focused on the context of the banking sector. The sensitivity of data and transactions in this sector may influence employers’ and employees’ willingness to work remotely. In addition, the job descriptions of employees in banks moderate specific factors outlined in this model, including work-life balance. For instance, executive managers may have a higher overload in banks in contrast to front-line employees. Thus, future studies should explore different contexts, including manufacturing and consultation, to understand the industry’s effect on remote working. Similarly, future research should concentrate on the influence of job descriptions on employees’ intentions toward telecommuting. Impact on Society: The COVID-19 pandemic created a sudden shift towards telecommuting, which made employees struggle to adopt new work schemes. Therefore, managers had to provide training for their employees to be well prepared and increase their acceptance of telecommuting. Furthermore, telecommuting has a positive effect on work-life balance, it provides employees with the flexibility to organize their daily schedule into more activities. Along the same line, the study highlighted the correlation between work-life balance and telecommuting. Such a relationship provides further evidence for the need to understand employees’ lifestyles in facilitating the adoption of telecommuting. Moreover, the study extends the stream of literature by outlining critical factors affecting employees’ acceptance of telecommuting. Future Research: Future studies should explore different contexts, including manufacturing and consultation, to understand the industry’s effect on remote working. Similarly, future research should concentrate on the influence of job descriptions on employees’ intentions toward telecommuting. Furthermore, the research team conducted the study by surveying 12 banks. Future research recommends surveying the whole banking industry to add more validation to the model.




ap

Impact of Text Diversity on Review Helpfulness: A Topic Modeling Approach

Aim/Purpose: In this study, we aim to investigate the impact of an important characteristic of textual reviews – the diversity of the review content on review helpfulness. Background: Consumer-generated reviews are an essential format of online Word-of-Month that help customers reduce uncertainty and information asymmetry. However, not all reviews are equally helpful as reflected by the varying number of helpfulness votes received by reviews. From consumers’ perspective, what kind of content is more effective and useful for making purchase decisions is unclear. Methodology: We use a data set consisting of consumer reviews for laptop products on Amazon from 2014 to 2018. A topic modeling technique is implemented to unveil the hidden topics embedded in the reviews. Based on the extracted topics, we compute the text diversity score of each review. The diversity score measures how diverse the content in a review is compared to other reviews. Contribution: In the literature, studies have examined various factors that can influence review helpfulness. However, studies that emphasized the information value of textual reviews are limited. Our study contributes to the extant literature of online word-of-mouth by establishing the connection between the diversity of the review content and consumer perceived helpfulness. Findings: Empirical results show that text diversity plays an important role in consumers’ evaluation of whether the review is helpful. Reviews that contain more diverse content tend to be more helpful to consumers. Moreover, we find a negative interaction effect between text diversity and the text depth. This result suggests that text depth and text diversity have a substitution effect. When a review contains more in-depth content, the impact of text diversity is weakened. Recommendations for Practitioners: For consumers to quickly find the informative reviews, platforms should incorporate measures such as text diversity in the ranking algorithms to rank consumer reviews. Future Research: Future study can extend the current research by examine the impact of text diversity for experienced goods and compare the results with search goods.




ap

The Segmentation of Mobile Application Users in The Hotel Booking Journey

Aim/Purpose: This study aims to create customer segmentation who use Online Travel Agent (OTA) mobile applications in Indonesia throughout their hotel booking journey. Background: In the context of mobile hotel booking applications, research analyzing the customer experience at each customer journey stage is scarce. However, literature increasingly acknowledges the significance of this stage in comprehending customer behavior and revenue streams. Methodology: This study employs a mixed-method and exploratory approach by doing in-depth interviews with 20 participants and questionnaires from 207 participants. Interview data are analyzed using thematic analysis, while the questionnaires are analyzed using descriptive statistics. Contribution: This study enriches knowledge in understanding customer behavior that considers the usage of mobile apps as a segmentation criterion in the hotel booking journey. Findings: We developed four user personas (no sweat player, spotless seeker, social squad, and bargain hunter) that show customer segmentation based on the purpose, motivation, and actions in each journey stage (inspiration, consideration, reservation, and experience). Recommendations for Practitioners: The resulting customer segmentation enables hospitality firms to improve their current services by adapting to the needs of various segments and avoiding unanticipated customer pain points, such as incomplete information, price changes, no social proof, and limited payment options. Recommendation for Researchers: The quality and robustness of the customer segment produced in this study can be further tested based on the criteria of homogeneity, size, potential benefits, segment stability, segment accessibility, segment compatibility, and segment actionability. Impact on Society: This study has enriched the existing literature by establishing a correlation between user characteristics and how they use smartphones for tourism planning, focusing on hotel booking in mobile applications. Future Research: For future research, each customer segment’s demographic and behavioral factors can be explored further.




ap

Unveiling Roadblocks and Mapping Solutions for Blockchain Adoption by Governments: A Systematic Literature Review

Aim/Purpose: Blockchain technology (BCT) has emerged as a potential catalyst for transforming government institutions and services, yet the adoption of blockchain in governments faces various challenges, for which previous studies have yet to provide practical solutions. Background: This study aims to identify and analyse barriers, potential solutions, and their relations in implementing BC for governments through a systematic literature review (SLR). The authors grouped the challenges based on the Technology-Organisation-Environment (TOE) framework while exercising a thematic grouping for the solutions, followed by a comprehensive mapping to unveil the relationship between challenges and solutions. Methodology: This study employs the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 methodology, combined with the tollgate method, to improve the quality of selected articles. The authors further administer a three-level approach (open coding, axial coding, and selective coding) to analyse the challenges and solutions from the articles. Contribution: The authors argue that this study enriches the existing literature on BC adoption, particularly in the government context, by providing a comprehensive framework to analyse and address the unique challenges and solutions, thus contributing to the development of new theories and models for future research in BC adoption in government settings and fostering deeper exploration in the field. Findings: The authors have unveiled 40 adoption challenges categorised using the TOE framework. The most prevalent technological challenges include security concerns and integration & interoperability, while cultural resistance, lack of support and involvement, and employees’ capability hinder adoption at the organisational level. Notably, the environmental dimension lacks legal and standard frameworks. The study further unveils 28 potential solutions, encompassing legal frameworks, security and privacy measures, collaboration and governance, technological readiness and infrastructure, and strategic planning and adoption. The authors of the study have further mapped the solutions to the identified challenges, revealing that the establishment of legal frameworks stands out as the most comprehensive solution. Recommendations for Practitioners: Our findings provide a big picture regarding BC adoption for governments around the globe. This study charts the problems commonly encountered by government agencies and presents proven solutions in their wake. The authors endeavour practitioners, particularly those in governments, to embrace our findings as the cornerstone of BC/BCT adoption. These insights can aid practitioners in identifying existing or potential obstacles in adopting BC, pinpointing success factors, and formulating strategies tailored to their organisations. Recommendation for Researchers: Researchers could extend this study by making an in-depth analysis of challenges or solutions in specific types of countries, such as developed and developing countries, as the authors believe this approach would yield more insights. Researchers could also test, validate, and verify the mapping in this study to improve the quality of the study further and thus can be a great aid for governments to adopt BC/BCT fully. Impact on Society: This study provides a comprehensive exploration of BC adoption in the government context, offering detailed explanations and valuable insights that hold significant value for government policymakers and decision-makers, serving as a bedrock for successful implementation by addressing roadblocks and emphasising the importance of establishing a supportive culture and structure, engaging stakeholders, and addressing security and privacy concerns, ultimately enhancing the efficiency and effectiveness of BC adoption in government institutions and services. Future Research: Future research should address the limitations identified in this study by expanding the scope of the literature search to include previously inaccessible sources and exploring alternative frameworks to capture dynamic changes and contextual factors in BC adoption. Additionally, rigorous scrutiny, review, and testing are essential to establish the practical and theoretical validity of the identified solutions, while in-depth analyses of country-specific and regional challenges will provide valuable insights into the unique considerations faced by different governments.




ap

Factors Affecting Individuals’ Behavioral Intention to Use Online Capital Market Investment Platforms in Indonesia

Aim/Purpose: This study aims to examine the ten factors from the Technology Acceptance Model (TAM), Theory of Planned Behavior (TPB), and Unified Theory of Acceptance and Use of Technology (UTAUT) theories in order to analyze behavioral intentions to use the Indonesian online capital market investment platforms and the effect of behavioral intentions on actual usage. Background: The potential growth of capital market investors in Indonesia is large, and the low use of the Internet for investment purposes makes it necessary for stakeholders to understand the factors that affect people’s intentions to invest, especially through online platforms. Several previous studies have explained the intention to use online investment platforms using the TAM and TPB theories. This study tries to combine TAM, TPB, and UTAUT theories in analyzing behavioral intentions to use an online capital market investment platform in Indonesia. Methodology: The research approach employed is a mixed method, particularly explanatory research, which employs quantitative methods first, followed by qualitative methods. Data were collected by conducting interviews and sending online surveys. This study was successful in collecting information on the users of online capital market investment platforms in Indonesia from 1074 respondents, which was then processed and analyzed using Covariance-Based Structural Equation Modeling (CB-SEM) with the IBM AMOS 26.0 application. Contribution: This study complements earlier theories like TAM, TPB, and UTAUT by looking at the intention to use online capital market investment platforms from technological, human, and environmental viewpoints. This study looks at the intention to use the online capital market investing platform as a whole rather than separately depending on investment instruments. This study also assists practitioners including regulators, the government, developers, and investors by offering knowledge of the phenomena and factors that can increase the capital market’s investment intention in Indonesia. Findings: Attitudes, perceived ease of use, perceived behavioral control, subjective norm, and national pride were found to be significant predictors of the intention to use online investment platforms in Indonesia, whereas perceived usefulness, perceived risk, perceived trust, perceived privacy, and price value were not. Recommendations for Practitioners: All practitioners must be able to take steps and strategies that focus on factors that have a significant impact on increasing usage intentions. The government can enact legislation that emphasizes the simplicity and convenience of investment, as well as launch campaigns that encourage people to participate in economic recovery by investing in the capital market. Meanwhile, the developers are concentrating on facilitating the flow of investment transactions through the platform, increasing education and awareness of the benefits of investing in the capital market, and providing content that raises awareness that investing in the capital market can help to restore the national economy. Recommendation for Researchers: Further research is intended to include other variables such as perceived benefits and perceived security, as well as other frameworks such as TRA, to better explain individuals’ behavioral intentions to use online capital investment platforms. Impact on Society: This study can help all stakeholders understand what factors can increase Indonesians’ interest in investing in the capital market, particularly through online investment platforms. This understanding is expected to increase the number of capital market participants and, as a result, have an impact on economic recovery following the COVID-19 pandemic. Future Research: Future research is expected to investigate additional factors that can influence individuals’ behavioral intention to use an online capital market investment platform, such as perceived benefits and perceived security, as well as the addition of control variables such as age, gender, education, and income. International research across nations is also required to build a larger sample size in order to examine the behavior of investors in developing and developed countries and acquire a more thorough understanding of the online capital market investment platform.




ap

Use of Mobile Health Applications by Lay Users in Kuwait

Aim/Purpose: This study aims to explore the use of mobile health applications (mHealth apps) by lay users in Kuwait. Specifically, it seeks to: (i) identify and highlight the impact of factors that contribute to their use of mHealth apps and (ii) validate a model of these users’ usage of mHealth apps. Background: The advancement of information technologies has paved the way for efficiency and effectiveness in healthcare sectors in developed countries. Kuwait has attempted to revolutionise healthcare systems through mobile applications of information technology solutions to educate users on better methods of receiving customised health services. However, end-user usage of mHealth apps remains in the infancy in developing countries, including Kuwait. Lay users are often vulnerable and frequently overlooked by researchers and health technology providers. Methodology: A cross-sectional study was conducted among 225 lay users of mHealth apps in Kuwait using an online questionnaire to achieve the study objectives. A purposive sampling method utilising convenience and snowballing sampling techniques was used in which all the respondents were lay users. Descriptive statistics, Pearson correlation, and regression analyses were employed to analyse the collected data. Contribution: The study contributes to the extant literature on health informatics and mHealth by providing a comprehensive understanding of how technological, social, and functional factors are related to mHealth apps in the context of developing countries. It identifies key drivers of mHealth app use, suggests expanding the TAM model, and facilitates comparisons with developed countries, addressing gaps in mHealth research. Findings: Four factors (i.e., perceived trust (PT), perceived ease of use (PEU) and behaviour control (PBC), perceived usefulness (PU), and subjective norms (SN)) were identified that influence the use of mHealth apps. These four identified factors also contributed to lay users’ use of these mHealth apps. Among these four factors, perceived trust (PT) was the main contributor to lay users’ use of these mHealth apps. Recommendations for Practitioners: Based on the empirical results, this study provides feasible recommendations for the government, healthcare providers, and developers of mHealth apps. The findings urge developers to enhance app functionality by prioritising privacy and security to build user trust while outlining guidelines for future development focused on user-centric design and compliance with data privacy regulations. Additionally, the government should establish supportive policies and funding, ensure regulatory oversight, and promote public awareness to foster trust. Healthcare providers should integrate mHealth apps into their services, train staff for practical use, gather users’ feedback, and collaborate with developers to create tailored healthcare solutions. Future Research: Additional research is required to apply probability sampling techniques and increase the sample size to generate more reliable and generalisable findings. Additionally, the young age segment must be considered here, and research must be extended to consider the moderating role of demographic factors like age, gender, and educational levels to better understand the adoption of mHealth apps.




ap

A Learn-to-Rank Approach to Medicine Selection for Patient Treatments

Aim/Purpose: This research utilized a learn-to-rank algorithm to provide medical recommendations to prescribers. The algorithm has been utilized in other domains, such as information retrieval and recommender systems. Background: Ranking the possible medical treatments according to diagnoses of the medical cases is very beneficial for doctors, especially during the coding process. Methodology: We developed two deep learning pointwise learn-to-rank models within one prediction pipeline: one for predicting the top possible active ingredients from disease features, the other for ranking actual medicines codes from diseases and the ingredients features. Contribution: A new learn-to-rank deep learning model has been developed to rank medical procedures based on datasets collected from insurance companies. Findings: We ran 18 cross-validation trials on a confidential dataset from an insurance company. We obtained an average normalized discounted cumulative gain (NDCG@8) of 74% with a 5% standard deviation as a result of all 18 experiments. Our approach outperformed a known approach used in the information retrieval domain in which data is represented in LibSVM format. Then, we ran the same trials using three learn-to-rank models – pointwise, pairwise, and listwise – which yielded average NDCG@8 of 71%, 72%, and 72%, respectively. Recommendations for Practitioners: The proposed model provides an insightful approach to helping to manage the patient’s treatment process. Recommendation for Researchers: This research lays the groundwork for exploring various applications of data science techniques and machine learning algorithms in the medical field. Future studies should focus on the significant potential of learn-to-rank algorithms across different medical domains, including their use in cost-effectiveness models. Emphasizing these algorithms could enhance decision-making processes and optimize resource allocation in healthcare settings. Impact on Society: This will help insurance companies and end users reduce the cost associated with patient treatment. It also helps doctors to choose the best procedure and medicines for their patients. Future Research: Future research is required to investigate the impact of medicine data at a granular level.




ap

Enhancing Waste Management Decisions: A Group DSS Approach Using SSM and AHP in Indonesia

Aim/Purpose: This research aims to design a website-based group decision support system (DSS) user interface to support an integrated and sustainable waste management plan in Jagatera. The main focus of this research is to design a group DSS to help Jagatera prioritize several waste alternatives to be managed so that Jagatera can make the right decisions to serve the community. Background: The Indonesian government and various stakeholders are trying to solve the waste problem. Jagatera, as a waste recycling company, plays a role as a stakeholder in managing waste. In 2024, Jagatera plans to accept all waste types, which impacts the possibility of increasing waste management costs. If Jagatera does not have a waste management plan, this will impact reducing waste management services in the community. To solve this problem, the group DSS assists Jagatera in prioritizing waste based on aspects of waste management cost. Methodology: Jagatera, an Indonesian waste recycling company, is implementing a group DSS using the soft system methodology (SSM) method. The SSM process involves seven stages, including problem identification, problem explanation using rich pictures, system design, conceptual model design, real-life comparison, changes, and improvement steps. The final result is a prototype user interface design addressing the relationship between actors and the group DSS. The analytical hierarchy process (AHP) method prioritized waste based on management costs. This research obtained primary data from interviews with Jagatera management, a literature review regarding the group DSS, and questionnaires to determine the type of waste and evaluate user interface design. Contribution: This research focuses on determining waste handling priorities based on their management. It contributes the DSS, which uses a decision-making approach based on management groups developed using the SSM and AHP methods focused on waste management decisions. It also contributes to the availability of a user interface design from the DSS group that explains the interactions between actors. The implications of the availability of DSS groups in waste recycling companies can help management understand waste prioritization problems in a structured manner, increase decision-making efficiency, and impact better-quality waste management. Combining qualitative approaches from SSM to comprehend issues from different actor perspectives and AHP to assist quantitative methods in prioritizing decisions can yield theoretical implications when using the SSM and AHP methods together. Findings: This research produces a website-based group DSS user interface design that can facilitate decision-making using AHP techniques. The user interface design from the DSS group was developed using the SSM approach to identify complex problems at waste recycling companies in Indonesia. This study also evaluated the group DSS user interface design, which resulted in a score of 91.67%. This value means that the user interface design has met user expectations, which include functional, appearance, and comfort needs. These results also show that group DSS can enhance waste recycling companies’ decision-making process. The results of the AHP technique using all waste process information show that furniture waste, according to the CEO, is given more priority, and textile waste, according to the Managing Director. Group DSS developed using the AHP method allows user actors to provide decisions based on their perspectives and authority. Recommendations for Practitioners: This research shows that the availability of a group DSS is one of the digital transformation efforts that waste recycling companies can carry out to support the determination of a sustainable waste management plan. Managers benefit from DSS groups by providing a digital decision-making process to determine which types of waste should be prioritized based on management costs. Timely and complete information in the group DSS is helpful in the decision-making process and increases organizational knowledge based on the chosen strategy. Recommendation for Researchers: Developing a group DSS for waste recycling companies can encourage strategic decision-making processes. This research integrates SSM and AHP to support a comprehensive group DSS because SSM encourages a deeper and more detailed understanding of waste recycling companies with complex problems. At the same time, AHP provides a structured approach for recycling companies to make decisions. The group DSS that will be developed can be used to identify other more relevant criteria, such as environmental impact, waste management regulations, and technological capabilities. Apart from more varied criteria, the group DSS can be encouraged to provide various alternatives such as waste paper, metal, or glass. In addition to evaluating the group DSS’s user interface design, waste recycling companies need to consider training or support for users to increase system adoption. Impact on Society: The waste problem requires the role of various stakeholders, one of which is a waste recycling company. The availability of a group DSS design can guide waste recycling companies in providing efficient and effective services so that they can respond more quickly to the waste management needs of the community. The community also gets transparent information regarding their waste management. The impact of good group DSS is reducing the amount of waste in society. Future Research: Future research could identify various other types of waste used as alternatives in the decision-making process to illustrate the complexity of the prioritization process. Future research could also identify other criteria, such as environmental impact, social aspects of community involvement, or policy compliance. Future research could involve decision-makers from other parties, such as the government, who play an essential role in the waste industry.




ap

Recommendation System for an Online Shopping Pay-Later System Using a Multistage Approach: A Case Study from Indonesia

Aim/Purpose: In this study, we developed a recommendation system model designed to support decision-makers in identifying consumers eligible for pay-later options via consensus-based decision-making. This approach was chosen due to the high and complex risks involved, such as delayed payments, challenges in reaching consumers, and issues of bad credit. Background: The “pay-later” option, which allows consumers to postpone payment for e-commerce purchases, offers convenience and flexibility but also introduces several challenges: (i) by enabling payment deferral, merchants face financial risks, including potential delays or defaults in payment, adversely affecting their cash flow and profitability; and (ii) this payment delay can also heighten the risk of fraud, including identity theft and unauthorized transactions. Methodology: This study initiated a risk analysis utilizing the ROAD process. Considering contemporary economic developments and advancements in neural networks, integrating these networks into risk assessment has become crucial. Consequently, model development involved the amalgamation of three deep learning methods – CNN (Convolutional Neural Networks), RNN (Recurrent Neural Networks), and LSTM (Long Short-Term Memory) – to address various risk alternatives and facilitate multi-stage decision-making recommendations. Contribution: Our primary contribution is threefold. First, our study identified potential consumers by prioritizing those with the smallest associated problem consequence values. Second, we achieved an optimal recall value using a candidate generator. Last, we categorized consumers to assess their eligibility for pay-later rights. Findings: The findings from this study indicate that our multi-stage recommendation model is effective in minimizing the risk associated with consumer debt repayment. This method of consumer selection empowers policymakers to make informed decisions regarding which consumers should be granted pay-later privileges. Recommendations for Practitioners: This recommendation system is proposed to several key parties involved in the development, implementation, and use of pay-later systems. These parties include E-commerce Executive Management for financial analysis and risk evaluation, the Risk Management Team to assess and manage risks related to users utilizing Pay-Later services, and Sales Managers to integrate Pay-Later services into sales strategies. Recommendation for Researchers: Advanced fraud detection mechanisms were implemented to prevent unauthorized transactions effectively. The goal was to cultivate user confidence in the safety of their financial data by ensuring secure payment processing. Impact on Society: Ensuring consumers understand the terms and conditions of pay-later arrangements, including interest rates, repayment schedules, and potential fees, is crucial. Providing clear and transparent information, along with educating consumers about their financial responsibilities, helps prevent misunderstandings and disputes. Future Research: Our future development plans involve the ongoing assessment of the system’s performance to enhance prediction accuracy. This includes updating models and criteria based on feedback and changes in economic or market conditions. Upholding compliance with security and data privacy regulations necessitates the implementation of protective measures to safeguard consumer information. The implementation of such a system requires careful consideration to ensure fairness and adherence to legal standards. Additionally, it is important to acknowledge that algorithms and models may evolve over time through the incorporation of additional data and continuous evaluations.




ap

Continuous Use of Mobile Banking Applications: The Role of Process Virtualizability, Anthropomorphism and Virtual Process Failure Risk

Aim/Purpose: The research aims to investigate the factors that influence the continuous use of mobile banking applications to complete banking monetary transactions. Background: Despite a significant increase in the use of mobile banking applications, particularly during the COVID-19 pandemic, new evidence indicates that the use rate of mobile banking applications for operating banking monetary transactions has declined. Methodology: The study proposed an integrated model based mainly on the process virtualization theory (PVT) with other novel factors such as mobile banking application anthropomorphism and virtual process failure risk. The study model was empirically validated using structural equation modeling analysis on quantitative data from 484 mobile banking application users from Jordan. Contribution: The study focuses on continuing use or post-adoption behavior rather than pre-adoption behavior. This is important since the maximum and long-term viability, as well as the financial investment in mobile banking applications, depend on regular usage rather than first-time use or initial experience. Findings: The results indicate that process virtualizable and anthropomorphism have a strong positive impact on bank customers’ decisions to continue using mobile banking applications to complete banking monetary transactions. Meanwhile, the negative impact of virtualization process failure risk on continuous use has been discovered. The found factors explain 67.5% of the variance in continuous use. Recommendations for Practitioners: The study identified novel, significant factors that affect bank customers’ decisions to use mobile banking applications frequently, and these factors should be examined, matched, satisfied, or addressed when redesigning or upgrading mobile applications. Banks should provide users with clear directions, processes, or tutorials on how to complete monetary transactions effectively. They should also embrace Artificial Intelligence (AI) technology to improve their applications and products with anthropomorphic features like speech synthesizers, Chatbots, and AI-powered virtual bank assistants. This is expected to help bank customers conduct various banking services conveniently and securely, just as if interacting with real people. The study further recommends that banks create and publish clear norms and procedures, as well as promote tolerance and protect consumers’ rights when the process fails or mistakes occur. Recommendation for Researchers: The study provides measurement items that were specifically built for the context of mobile banking applications based on PVT notions. Researchers are invited to reuse, test, and modify existing measurement items, as well as submit new ones if necessary. The study model does not consider psychological aspects like trust and satisfaction, which would provide additional insight into factors affecting continuing use. Researchers could potentially take a different approach by focusing on user resistance and non-adoption. Impact on Society: Financial inclusion is problematic, particularly in underdeveloped nations. According to financial inclusion research, Jordanians rarely utilize mobile banking apps. Continuous usage of mobile banking applications will be extremely beneficial in closing the financial inclusion gap, particularly among women. Furthermore, it could help the country’s efforts to transition to a digital society. Future Research: The majority of study participants are from urban areas. Future studies should focus on consumers who live in rural areas. It was also suggested that the elderly be targeted because they may have different views/perspectives on the continued use of mobile banking applications.




ap

Using Social Media Applications for Accessing Health-related Information: Evidence from Jordan

Aim/Purpose: This study examined the use of Social Media Applications (SMAs) for accessing health-related information within a heterogeneous population in Jordan. The objective of this study was therefore threefold: (i) to investigate the usage of SMAs, including WhatsApp, Twitter, YouTube, Snapchat, Instagram, and Facebook, for accessing health-related information; (ii) to examine potential variations in the use of SMAs based on demographic and behavioral characteristics; and (iii) to identify the factors that can predict the use of SMAs. Background: There has been limited focus on investigating the behavior of laypeople in Jordan when it comes to seeking health information from SMAs. Methodology: A cross-sectional study was conducted among the general population in Jordan using an online questionnaire administered to 207 users. A purposive sampling technique was employed, wherein all the participants actively sought online health information. Descriptive statistics, t-tests, and regression analyses were utilized to analyze the collected data. Contribution: This study adds to the existing body of research on health information seeking from SMAs in developing countries, with a specific focus on Jordan. Moreover, laypeople, often disregarded by researchers and health information providers, are the most vulnerable individuals who warrant greater attention. Findings: The findings indicated that individuals often utilized YouTube as a platform to acquire health-related information, whereas their usage of Facebook for this purpose was less frequent. Participants rarely utilized Instagram and WhatsApp to obtain health information, while Twitter and Snapchat were very seldom used for this purpose. The variable of sex demonstrated a notable positive correlation with the utilization of YouTube and Twitter for the purpose of finding health-related information. Conversely, the variable of nationality exhibited a substantial positive correlation with the utilization of Facebook, Instagram, and Twitter. Consulting medical professionals regarding information obtained from the Internet was a strong indicator of using Instagram to search for health-related information. Recommendations for Practitioners: Based on the empirical results, this study provides feasible recommendations for the government, healthcare providers, and developers of SMAs. Recommendation for Researchers: Researchers should conduct separate investigations for each application specifically pertaining to the acquisition of health-related information. Additionally, it is advisable to investigate additional variables that may serve as predictors for the utilization of SMAs. Impact on Society: The objective of this study is to enhance the inclination of the general public in Jordan to utilize SMAs for health-related information while also maximizing the societal benefits of these applications. Future Research: Additional research is required to examine social media’s usability (regarding ease of use) and utility (comparing advantages to risks) in facilitating effective positive change and impact in healthcare.




ap

International Journal of Bioinformatics Research and Applications




ap

Hybrid encryption of Fernet and initialisation vector with attribute-based encryption: a secure and flexible approach for data protection

With the continuous growth and importance of data, the need for strong data protection becomes crucial. Encryption plays a vital role in preserving the confidentiality of data, and attribute-based encryption (ABE) offers a meticulous access control system based on attributes. This study investigates the integration of Fernet encryption with initialisation vector (IV) and ABE, resulting in a hybrid encryption approach that enhances both security and flexibility. By combining the advantages of Fernet encryption and IV-based encryption, the hybrid encryption scheme establishes an effective and robust mechanism for safeguarding data. Fernet encryption, renowned for its simplicity and efficiency, provides authenticated encryption, guaranteeing both the confidentiality and integrity of the data. The incorporation of an initialisation vector (IV) introduces an element of randomness into the encryption process, thereby strengthening the overall security measures. This research paper discusses the advantages and drawbacks of the hybrid encryption of Fernet and IV with ABE.




ap

On large automata processing: towards a high level distributed graph language

Large graphs or automata have their data that cannot fit in a single machine, or may take unreasonable time to be processed. We implement with MapReduce and Giraph two algorithms for intersecting and minimising large and distributed automata. We provide some comparative analysis, and the experiment results are depicted in figures. Our work experimentally validates our propositions as long as it shows that our choice, in comparison with MapReduce one, is not only more suitable for graph-oriented algorithms, but also speeds the executions up. This work is one of the first steps of a long-term goal that consists in a high level distributed graph processing language.




ap

Map reduce-based scalable Lempel-Ziv and application in route prediction

Prediction of route based on historical trip observation of users is widely employed in location-based services. This work concentrates on building a route prediction system using Lempel-Ziv technique applied to a historical corpus of user travel data. Huge continuous logs of historical GPS traces representing the user's location in past are decomposed into smaller logical units known as trips. User trips are converted into sequences of road network edges using a process known as map matching. Lempel-Ziv is applied on road network edges to build the prediction model that captures the user's travel pattern in the past. A two-phased model is proposed using a map reduce framework without losing accuracy and efficiency. Model is then used to predict the user's end-to-end route given a partial route travelled by the user at any point in time. The objective of the proposed work is to build a Route Prediction system in which model building and prediction both are horizontally scalable.




ap

Modeling the Organizational Aspects of Learning Objects in Semantic Web Approaches to Information Systems




ap

Decoupling the Information Application from the Information Creation: Video as Learning Objects in Three-Tier Architecture




ap

Addressing the eLearning Contradiction: A Collaborative Approach for Developing a Conceptual Framework Learning Object




ap

Learning Objects: Adaptive Retrieval through Learning Styles




ap

Meta-Data Application in Development, Exchange and Delivery of Digital Reusable Learning Content