si Computing with bricks and mortar: Classification of waveforms with a doped concrete blocks. (arXiv:2005.03498v1 [cs.ET]) By arxiv.org Published On :: We present results showing the capability of concrete-based information processing substrate in the signal classification task in accordance with in materio computing paradigm. As the Reservoir Computing is a suitable model for describing embedded in materio computation, we propose that this type of presented basic construction unit can be used as a source for "reservoir of states" necessary for simple tuning of the readout layer. In that perspective, buildings constructed from computing concrete could function as a highly parallel information processor for smart architecture. We present an electrical characterization of the set of samples with different additive concentrations followed by a dynamical analysis of selected specimens showing fingerprints of memfractive properties. Moreover, on the basis of obtained parameters, classification of the signal waveform shapes can be performed in scenarios explicitly tuned for a given device terminal. Full Article
si Anonymized GCN: A Novel Robust Graph Embedding Method via Hiding Node Position in Noise. (arXiv:2005.03482v1 [cs.LG]) By arxiv.org Published On :: Graph convolution network (GCN) have achieved state-of-the-art performance in the task of node prediction in the graph structure. However, with the gradual various of graph attack methods, there are lack of research on the robustness of GCN. At this paper, we will design a robust GCN method for node prediction tasks. Considering the graph structure contains two types of information: node information and connection information, and attackers usually modify the connection information to complete the interference with the prediction results of the node, we first proposed a method to hide the connection information in the generator, named Anonymized GCN (AN-GCN). By hiding the connection information in the graph structure in the generator through adversarial training, the accurate node prediction can be completed only by the node number rather than its specific position in the graph. Specifically, we first demonstrated the key to determine the embedding of a specific node: the row corresponding to the node of the eigenmatrix of the Laplace matrix, by target it as the output of the generator, we designed a method to hide the node number in the noise. Take the corresponding noise as input, we will obtain the connection structure of the node instead of directly obtaining. Then the encoder and decoder are spliced both in discriminator, so that after adversarial training, the generator and discriminator can cooperate to complete the encoding and decoding of the graph, then complete the node prediction. Finally, All node positions can generated by noise at the same time, that is to say, the generator will hides all the connection information of the graph structure. The evaluation shows that we only need to obtain the initial features and node numbers of the nodes to complete the node prediction, and the accuracy did not decrease, but increased by 0.0293. Full Article
si Indexing Metric Spaces for Exact Similarity Search. (arXiv:2005.03468v1 [cs.DB]) By arxiv.org Published On :: With the continued digitalization of societal processes, we are seeing an explosion in available data. This is referred to as big data. In a research setting, three aspects of the data are often viewed as the main sources of challenges when attempting to enable value creation from big data: volume, velocity and variety. Many studies address volume or velocity, while much fewer studies concern the variety. Metric space is ideal for addressing variety because it can accommodate any type of data as long as its associated distance notion satisfies the triangle inequality. To accelerate search in metric space, a collection of indexing techniques for metric data have been proposed. However, existing surveys each offers only a narrow coverage, and no comprehensive empirical study of those techniques exists. We offer a survey of all the existing metric indexes that can support exact similarity search, by i) summarizing all the existing partitioning, pruning and validation techniques used for metric indexes, ii) providing the time and storage complexity analysis on the index construction, and iii) report on a comprehensive empirical comparison of their similarity query processing performance. Here, empirical comparisons are used to evaluate the index performance during search as it is hard to see the complexity analysis differences on the similarity query processing and the query performance depends on the pruning and validation abilities related to the data distribution. This article aims at revealing different strengths and weaknesses of different indexing techniques in order to offer guidance on selecting an appropriate indexing technique for a given setting, and directing the future research for metric indexes. Full Article
si High Performance Interference Suppression in Multi-User Massive MIMO Detector. (arXiv:2005.03466v1 [cs.OH]) By arxiv.org Published On :: In this paper, we propose a new nonlinear detector with improved interference suppression in Multi-User Multiple Input, Multiple Output (MU-MIMO) system. The proposed detector is a combination of the following parts: QR decomposition (QRD), low complexity users sorting before QRD, sorting-reduced (SR) K-best method and minimum mean square error (MMSE) pre-processing. Our method outperforms a linear interference rejection combining (IRC, i.e. MMSE naturally) method significantly in both strong interference and additive white noise scenarios with both ideal and real channel estimations. This result has wide application importance for scenarios with strong interference, i.e. when co-located users utilize the internet in stadium, highway, shopping center, etc. Simulation results are presented for the non-line of sight 3D-UMa model of 5G QuaDRiGa 2.0 channel for 16 highly correlated single-antenna users with QAM16 modulation in 64 antennas of Massive MIMO system. The performance was compared with MMSE and other detection approaches. Full Article
si How Can CNNs Use Image Position for Segmentation?. (arXiv:2005.03463v1 [eess.IV]) By arxiv.org Published On :: Convolution is an equivariant operation, and image position does not affect its result. A recent study shows that the zero-padding employed in convolutional layers of CNNs provides position information to the CNNs. The study further claims that the position information enables accurate inference for several tasks, such as object recognition, segmentation, etc. However, there is a technical issue with the design of the experiments of the study, and thus the correctness of the claim is yet to be verified. Moreover, the absolute image position may not be essential for the segmentation of natural images, in which target objects will appear at any image position. In this study, we investigate how positional information is and can be utilized for segmentation tasks. Toward this end, we consider {em positional encoding} (PE) that adds channels embedding image position to the input images and compare PE with several padding methods. Considering the above nature of natural images, we choose medical image segmentation tasks, in which the absolute position appears to be relatively important, as the same organs (of different patients) are captured in similar sizes and positions. We draw a mixed conclusion from the experimental results; the positional encoding certainly works in some cases, but the absolute image position may not be so important for segmentation tasks as we think. Full Article
si Successfully Applying the Stabilized Lottery Ticket Hypothesis to the Transformer Architecture. (arXiv:2005.03454v1 [cs.LG]) By arxiv.org Published On :: Sparse models require less memory for storage and enable a faster inference by reducing the necessary number of FLOPs. This is relevant both for time-critical and on-device computations using neural networks. The stabilized lottery ticket hypothesis states that networks can be pruned after none or few training iterations, using a mask computed based on the unpruned converged model. On the transformer architecture and the WMT 2014 English-to-German and English-to-French tasks, we show that stabilized lottery ticket pruning performs similar to magnitude pruning for sparsity levels of up to 85%, and propose a new combination of pruning techniques that outperforms all other techniques for even higher levels of sparsity. Furthermore, we confirm that the parameter's initial sign and not its specific value is the primary factor for successful training, and show that magnitude pruning cannot be used to find winning lottery tickets. Full Article
si Lifted Regression/Reconstruction Networks. (arXiv:2005.03452v1 [cs.LG]) By arxiv.org Published On :: In this work we propose lifted regression/reconstruction networks (LRRNs), which combine lifted neural networks with a guaranteed Lipschitz continuity property for the output layer. Lifted neural networks explicitly optimize an energy model to infer the unit activations and therefore---in contrast to standard feed-forward neural networks---allow bidirectional feedback between layers. So far lifted neural networks have been modelled around standard feed-forward architectures. We propose to take further advantage of the feedback property by letting the layers simultaneously perform regression and reconstruction. The resulting lifted network architecture allows to control the desired amount of Lipschitz continuity, which is an important feature to obtain adversarially robust regression and classification methods. We analyse and numerically demonstrate applications for unsupervised and supervised learning. Full Article
si Fine-Grained Analysis of Cross-Linguistic Syntactic Divergences. (arXiv:2005.03436v1 [cs.CL]) By arxiv.org Published On :: The patterns in which the syntax of different languages converges and diverges are often used to inform work on cross-lingual transfer. Nevertheless, little empirical work has been done on quantifying the prevalence of different syntactic divergences across language pairs. We propose a framework for extracting divergence patterns for any language pair from a parallel corpus, building on Universal Dependencies. We show that our framework provides a detailed picture of cross-language divergences, generalizes previous approaches, and lends itself to full automation. We further present a novel dataset, a manually word-aligned subset of the Parallel UD corpus in five languages, and use it to perform a detailed corpus study. We demonstrate the usefulness of the resulting analysis by showing that it can help account for performance patterns of a cross-lingual parser. Full Article
si Dirichlet spectral-Galerkin approximation method for the simply supported vibrating plate eigenvalues. (arXiv:2005.03433v1 [math.NA]) By arxiv.org Published On :: In this paper, we analyze and implement the Dirichlet spectral-Galerkin method for approximating simply supported vibrating plate eigenvalues with variable coefficients. This is a Galerkin approximation that uses the approximation space that is the span of finitely many Dirichlet eigenfunctions for the Laplacian. Convergence and error analysis for this method is presented for two and three dimensions. Here we will assume that the domain has either a smooth or Lipschitz boundary with no reentrant corners. An important component of the error analysis is Weyl's law for the Dirichlet eigenvalues. Numerical examples for computing the simply supported vibrating plate eigenvalues for the unit disk and square are presented. In order to test the accuracy of the approximation, we compare the spectral-Galerkin method to the separation of variables for the unit disk. Whereas for the unit square we will numerically test the convergence rate for a variable coefficient problem. Full Article
si Joint Prediction and Time Estimation of COVID-19 Developing Severe Symptoms using Chest CT Scan. (arXiv:2005.03405v1 [eess.IV]) By arxiv.org Published On :: With the rapidly worldwide spread of Coronavirus disease (COVID-19), it is of great importance to conduct early diagnosis of COVID-19 and predict the time that patients might convert to the severe stage, for designing effective treatment plan and reducing the clinicians' workloads. In this study, we propose a joint classification and regression method to determine whether the patient would develop severe symptoms in the later time, and if yes, predict the possible conversion time that the patient would spend to convert to the severe stage. To do this, the proposed method takes into account 1) the weight for each sample to reduce the outliers' influence and explore the problem of imbalance classification, and 2) the weight for each feature via a sparsity regularization term to remove the redundant features of high-dimensional data and learn the shared information across the classification task and the regression task. To our knowledge, this study is the first work to predict the disease progression and the conversion time, which could help clinicians to deal with the potential severe cases in time or even save the patients' lives. Experimental analysis was conducted on a real data set from two hospitals with 422 chest computed tomography (CT) scans, where 52 cases were converted to severe on average 5.64 days and 34 cases were severe at admission. Results show that our method achieves the best classification (e.g., 85.91% of accuracy) and regression (e.g., 0.462 of the correlation coefficient) performance, compared to all comparison methods. Moreover, our proposed method yields 76.97% of accuracy for predicting the severe cases, 0.524 of the correlation coefficient, and 0.55 days difference for the converted time. Full Article
si Simultaneous topology and fastener layout optimization of assemblies considering joint failure. (arXiv:2005.03398v1 [cs.CE]) By arxiv.org Published On :: This paper provides a method for the simultaneous topology optimization of parts and their corresponding joint locations in an assembly. Therein, the joint locations are not discrete and predefined, but continuously movable. The underlying coupling equations allow for connecting dissimilar meshes and avoid the need for remeshing when joint locations change. The presented method models the force transfer at a joint location not only by using single spring elements but accounts for the size and type of the joints. When considering riveted or bolted joints, the local part geometry at the joint location consists of holes that are surrounded by material. For spot welds, the joint locations are filled with material and may be smaller than for bolts. The presented method incorporates these material and clearance zones into the simultaneously running topology optimization of the parts. Furthermore, failure of joints may be taken into account at the optimization stage, yielding assemblies connected in a fail-safe manner. Full Article
si Scheduling with a processing time oracle. (arXiv:2005.03394v1 [cs.DS]) By arxiv.org Published On :: In this paper we study a single machine scheduling problem on a set of independent jobs whose execution time is not known, but guaranteed to be either short or long, for two given processing times. At every time step, the scheduler has the possibility either to test a job, by querying a processing time oracle, which reveals its processing time, and occupies one time unit on the schedule. Or the scheduler can execute a job, might it be previously tested or not. The objective value is the total completion time over all jobs, and is compared with the objective value of an optimal schedule, which does not need to test. The resulting competitive ratio measures the price of hidden processing time. Two models are studied in this paper. In the non-adaptive model, the algorithm needs to decide before hand which jobs to test, and which jobs to execute untested. However in the adaptive model, the algorithm can make these decisions adaptively to the outcomes of the job tests. In both models we provide optimal polynomial time two-phase algorithms, which consist of a first phase where jobs are tested, and a second phase where jobs are executed untested. Experiments give strong evidence that optimal algorithms have this structure. Proving this property is left as an open problem. Full Article
si Semantic Signatures for Large-scale Visual Localization. (arXiv:2005.03388v1 [cs.CV]) By arxiv.org Published On :: Visual localization is a useful alternative to standard localization techniques. It works by utilizing cameras. In a typical scenario, features are extracted from captured images and compared with geo-referenced databases. Location information is then inferred from the matching results. Conventional schemes mainly use low-level visual features. These approaches offer good accuracy but suffer from scalability issues. In order to assist localization in large urban areas, this work explores a different path by utilizing high-level semantic information. It is found that object information in a street view can facilitate localization. A novel descriptor scheme called "semantic signature" is proposed to summarize this information. A semantic signature consists of type and angle information of visible objects at a spatial location. Several metrics and protocols are proposed for signature comparison and retrieval. They illustrate different trade-offs between accuracy and complexity. Extensive simulation results confirm the potential of the proposed scheme in large-scale applications. This paper is an extended version of a conference paper in CBMI'18. A more efficient retrieval protocol is presented with additional experiment results. Full Article
si WSMN: An optimized multipurpose blind watermarking in Shearlet domain using MLP and NSGA-II. (arXiv:2005.03382v1 [cs.CR]) By arxiv.org Published On :: Digital watermarking is a remarkable issue in the field of information security to avoid the misuse of images in multimedia networks. Although access to unauthorized persons can be prevented through cryptography, it cannot be simultaneously used for copyright protection or content authentication with the preservation of image integrity. Hence, this paper presents an optimized multipurpose blind watermarking in Shearlet domain with the help of smart algorithms including MLP and NSGA-II. In this method, four copies of the robust copyright logo are embedded in the approximate coefficients of Shearlet by using an effective quantization technique. Furthermore, an embedded random sequence as a semi-fragile authentication mark is effectively extracted from details by the neural network. Due to performing an effective optimization algorithm for selecting optimum embedding thresholds, and also distinguishing the texture of blocks, the imperceptibility and robustness have been preserved. The experimental results reveal the superiority of the scheme with regard to the quality of watermarked images and robustness against hybrid attacks over other state-of-the-art schemes. The average PSNR and SSIM of the dual watermarked images are 38 dB and 0.95, respectively; Besides, it can effectively extract the copyright logo and locates forgery regions under severe attacks with satisfactory accuracy. Full Article
si 2kenize: Tying Subword Sequences for Chinese Script Conversion. (arXiv:2005.03375v1 [cs.CL]) By arxiv.org Published On :: Simplified Chinese to Traditional Chinese character conversion is a common preprocessing step in Chinese NLP. Despite this, current approaches have poor performance because they do not take into account that a simplified Chinese character can correspond to multiple traditional characters. Here, we propose a model that can disambiguate between mappings and convert between the two scripts. The model is based on subword segmentation, two language models, as well as a method for mapping between subword sequences. We further construct benchmark datasets for topic classification and script conversion. Our proposed method outperforms previous Chinese Character conversion approaches by 6 points in accuracy. These results are further confirmed in a downstream application, where 2kenize is used to convert pretraining dataset for topic classification. An error analysis reveals that our method's particular strengths are in dealing with code-mixing and named entities. Full Article
si Accessibility in 360-degree video players. (arXiv:2005.03373v1 [cs.MM]) By arxiv.org Published On :: Any media experience must be fully inclusive and accessible to all users regardless of their ability. With the current trend towards immersive experiences, such as Virtual Reality (VR) and 360-degree video, it becomes key that these environments are adapted to be fully accessible. However, until recently the focus has been mostly on adapting the existing techniques to fit immersive displays, rather than considering new approaches for accessibility designed specifically for these increasingly relevant media experiences. This paper surveys a wide range of 360-degree video players and examines the features they include for dealing with accessibility, such as Subtitles, Audio Description, Sign Language, User Interfaces, and other interaction features, like voice control and support for multi-screen scenarios. These features have been chosen based on guidelines from standardization contributions, like in the World Wide Web Consortium (W3C) and the International Communication Union (ITU), and from research contributions for making 360-degree video consumption experiences accessible. The in-depth analysis has been part of a research effort towards the development of a fully inclusive and accessible 360-degree video player. The paper concludes by discussing how the newly developed player has gone above and beyond the existing solutions and guidelines, by providing accessibility features that meet the expectations for a widely used immersive medium, like 360-degree video. Full Article
si Vid2Curve: Simultaneously Camera Motion Estimation and Thin Structure Reconstruction from an RGB Video. (arXiv:2005.03372v1 [cs.GR]) By arxiv.org Published On :: Thin structures, such as wire-frame sculptures, fences, cables, power lines, and tree branches, are common in the real world. It is extremely challenging to acquire their 3D digital models using traditional image-based or depth-based reconstruction methods because thin structures often lack distinct point features and have severe self-occlusion. We propose the first approach that simultaneously estimates camera motion and reconstructs the geometry of complex 3D thin structures in high quality from a color video captured by a handheld camera. Specifically, we present a new curve-based approach to estimate accurate camera poses by establishing correspondences between featureless thin objects in the foreground in consecutive video frames, without requiring visual texture in the background scene to lock on. Enabled by this effective curve-based camera pose estimation strategy, we develop an iterative optimization method with tailored measures on geometry, topology as well as self-occlusion handling for reconstructing 3D thin structures. Extensive validations on a variety of thin structures show that our method achieves accurate camera pose estimation and faithful reconstruction of 3D thin structures with complex shape and topology at a level that has not been attained by other existing reconstruction methods. Full Article
si Energy-efficient topology to enhance the wireless sensor network lifetime using connectivity control. (arXiv:2005.03370v1 [cs.NI]) By arxiv.org Published On :: Wireless sensor networks have attracted much attention because of many applications in the fields of industry, military, medicine, agriculture, and education. In addition, the vast majority of researches has been done to expand its applications and improve its efficiency. However, there are still many challenges for increasing the efficiency in different parts of this network. One of the most important parts is to improve the network lifetime in the wireless sensor network. Since the sensor nodes are generally powered by batteries, the most important issue to consider in these types of networks is to reduce the power consumption of the nodes in such a way as to increase the network lifetime to an acceptable level. The contribution of this paper is using topology control, the threshold for the remaining energy in nodes, and two of the meta-algorithms include SA (Simulated annealing) and VNS (Variable Neighbourhood Search) to increase the energy remaining in the sensors. Moreover, using a low-cost spanning tree, an appropriate connectivity control among nodes is created in the network in order to increase the network lifetime. The results of simulations show that the proposed method improves the sensor lifetime and reduces the energy consumed. Full Article
si Scoring Root Necrosis in Cassava Using Semantic Segmentation. (arXiv:2005.03367v1 [eess.IV]) By arxiv.org Published On :: Cassava a major food crop in many parts of Africa, has majorly been affected by Cassava Brown Streak Disease (CBSD). The disease affects tuberous roots and presents symptoms that include a yellow/brown, dry, corky necrosis within the starch-bearing tissues. Cassava breeders currently depend on visual inspection to score necrosis in roots based on a qualitative score which is quite subjective. In this paper we present an approach to automate root necrosis scoring using deep convolutional neural networks with semantic segmentation. Our experiments show that the UNet model performs this task with high accuracy achieving a mean Intersection over Union (IoU) of 0.90 on the test set. This method provides a means to use a quantitative measure for necrosis scoring on root cross-sections. This is done by segmentation and classifying the necrotized and non-necrotized pixels of cassava root cross-sections without any additional feature engineering. Full Article
si Soft Interference Cancellation for Random Coding in Massive Gaussian Multiple-Access. (arXiv:2005.03364v1 [cs.IT]) By arxiv.org Published On :: We utilize recent results on the exact block error probability of Gaussian random codes in additive white Gaussian noise to analyze Gaussian random coding for massive multiple-access at finite message length. Soft iterative interference cancellation is found to closely approach the performance bounds recently found in [1]. The existence of two fundamentally different regimes in the trade-off between power and bandwidth efficiency reported in [2] is related to much older results in [3] on power optimization by linear programming. Furthermore, we tighten the achievability bounds of [1] in the low power regime and show that orthogonal constellations are very close to the theoretical limits for message lengths around 100 and above. Full Article
si Probabilistic Hyperproperties of Markov Decision Processes. (arXiv:2005.03362v1 [cs.LO]) By arxiv.org Published On :: We study the specification and verification of hyperproperties for probabilistic systems represented as Markov decision processes (MDPs). Hyperproperties are system properties that describe the correctness of a system as a relation between multiple executions. Hyperproperties generalize trace properties and include information-flow security requirements, like noninterference, as well as requirements like symmetry, partial observation, robustness, and fault tolerance. We introduce the temporal logic PHL, which extends classic probabilistic logics with quantification over schedulers and traces. PHL can express a wide range of hyperproperties for probabilistic systems, including both classical applications, such as differential privacy, and novel applications in areas such as robotics and planning. While the model checking problem for PHL is in general undecidable, we provide methods both for proving and for refuting a class of probabilistic hyperproperties for MDPs. Full Article
si Estimating Blood Pressure from Photoplethysmogram Signal and Demographic Features using Machine Learning Techniques. (arXiv:2005.03357v1 [eess.SP]) By arxiv.org Published On :: Hypertension is a potentially unsafe health ailment, which can be indicated directly from the Blood pressure (BP). Hypertension always leads to other health complications. Continuous monitoring of BP is very important; however, cuff-based BP measurements are discrete and uncomfortable to the user. To address this need, a cuff-less, continuous and a non-invasive BP measurement system is proposed using Photoplethysmogram (PPG) signal and demographic features using machine learning (ML) algorithms. PPG signals were acquired from 219 subjects, which undergo pre-processing and feature extraction steps. Time, frequency and time-frequency domain features were extracted from the PPG and their derivative signals. Feature selection techniques were used to reduce the computational complexity and to decrease the chance of over-fitting the ML algorithms. The features were then used to train and evaluate ML algorithms. The best regression models were selected for Systolic BP (SBP) and Diastolic BP (DBP) estimation individually. Gaussian Process Regression (GPR) along with ReliefF feature selection algorithm outperforms other algorithms in estimating SBP and DBP with a root-mean-square error (RMSE) of 6.74 and 3.59 respectively. This ML model can be implemented in hardware systems to continuously monitor BP and avoid any critical health conditions due to sudden changes. Full Article
si Regression Forest-Based Atlas Localization and Direction Specific Atlas Generation for Pancreas Segmentation. (arXiv:2005.03345v1 [cs.CV]) By arxiv.org Published On :: This paper proposes a fully automated atlas-based pancreas segmentation method from CT volumes utilizing atlas localization by regression forest and atlas generation using blood vessel information. Previous probabilistic atlas-based pancreas segmentation methods cannot deal with spatial variations that are commonly found in the pancreas well. Also, shape variations are not represented by an averaged atlas. We propose a fully automated pancreas segmentation method that deals with two types of variations mentioned above. The position and size of the pancreas is estimated using a regression forest technique. After localization, a patient-specific probabilistic atlas is generated based on a new image similarity that reflects the blood vessel position and direction information around the pancreas. We segment it using the EM algorithm with the atlas as prior followed by the graph-cut. In evaluation results using 147 CT volumes, the Jaccard index and the Dice overlap of the proposed method were 62.1% and 75.1%, respectively. Although we automated all of the segmentation processes, segmentation results were superior to the other state-of-the-art methods in the Dice overlap. Full Article
si Arranging Test Tubes in Racks Using Combined Task and Motion Planning. (arXiv:2005.03342v1 [cs.RO]) By arxiv.org Published On :: The paper develops a robotic manipulation system to treat the pressing needs for handling a large number of test tubes in clinical examination and replace or reduce human labor. It presents the technical details of the system, which separates and arranges test tubes in racks with the help of 3D vision and artificial intelligence (AI) reasoning/planning. The developed system only requires a person to put a rack with mixed and non-arranged tubes in front of a robot. The robot autonomously performs recognition, reasoning, planning, manipulation, etc., and returns a rack with separated and arranged tubes. The system is simple-to-use, and there are no requests for expert knowledge in robotics. We expect such a system to play an important role in helping managing public health and hope similar systems could be extended to other clinical manipulation like handling mixers and pipettes in the future. Full Article
si Wavelet Integrated CNNs for Noise-Robust Image Classification. (arXiv:2005.03337v1 [cs.CV]) By arxiv.org Published On :: Convolutional Neural Networks (CNNs) are generally prone to noise interruptions, i.e., small image noise can cause drastic changes in the output. To suppress the noise effect to the final predication, we enhance CNNs by replacing max-pooling, strided-convolution, and average-pooling with Discrete Wavelet Transform (DWT). We present general DWT and Inverse DWT (IDWT) layers applicable to various wavelets like Haar, Daubechies, and Cohen, etc., and design wavelet integrated CNNs (WaveCNets) using these layers for image classification. In WaveCNets, feature maps are decomposed into the low-frequency and high-frequency components during the down-sampling. The low-frequency component stores main information including the basic object structures, which is transmitted into the subsequent layers to extract robust high-level features. The high-frequency components, containing most of the data noise, are dropped during inference to improve the noise-robustness of the WaveCNets. Our experimental results on ImageNet and ImageNet-C (the noisy version of ImageNet) show that WaveCNets, the wavelet integrated versions of VGG, ResNets, and DenseNet, achieve higher accuracy and better noise-robustness than their vanilla versions. Full Article
si Causal Paths in Temporal Networks of Face-to-Face Human Interactions. (arXiv:2005.03333v1 [cs.SI]) By arxiv.org Published On :: In a temporal network causal paths are characterized by the fact that links from a source to a target must respect the chronological order. In this article we study the causal paths structure in temporal networks of human face to face interactions in different social contexts. In a static network paths are transitive i.e. the existence of a link from $a$ to $b$ and from $b$ to $c$ implies the existence of a path from $a$ to $c$ via $b$. In a temporal network the chronological constraint introduces time correlations that affects transitivity. A probabilistic model based on higher order Markov chains shows that correlations that can invalidate transitivity are present only when the time gap between consecutive events is larger than the average value and are negligible below such a value. The comparison between the densities of the temporal and static accessibility matrices shows that the static representation can be used with good approximation. Moreover, we quantify the extent of the causally connected region of the networks over time. Full Article
si Crop Aggregating for short utterances speaker verification using raw waveforms. (arXiv:2005.03329v1 [eess.AS]) By arxiv.org Published On :: Most studies on speaker verification systems focus on long-duration utterances, which are composed of sufficient phonetic information. However, the performances of these systems are known to degrade when short-duration utterances are inputted due to the lack of phonetic information as compared to the long utterances. In this paper, we propose a method that compensates for the performance degradation of speaker verification for short utterances, referred to as "crop aggregating". The proposed method adopts an ensemble-based design to improve the stability and accuracy of speaker verification systems. The proposed method segments an input utterance into several short utterances and then aggregates the segment embeddings extracted from the segmented inputs to compose a speaker embedding. Then, this method simultaneously trains the segment embeddings and the aggregated speaker embedding. In addition, we also modified the teacher-student learning method for the proposed method. Experimental results on different input duration using the VoxCeleb1 test set demonstrate that the proposed technique improves speaker verification performance by about 45.37% relatively compared to the baseline system with 1-second test utterance condition. Full Article
si Bitvector-aware Query Optimization for Decision Support Queries (extended version). (arXiv:2005.03328v1 [cs.DB]) By arxiv.org Published On :: Bitvector filtering is an important query processing technique that can significantly reduce the cost of execution, especially for complex decision support queries with multiple joins. Despite its wide application, however, its implication to query optimization is not well understood. In this work, we study how bitvector filters impact query optimization. We show that incorporating bitvector filters into query optimization straightforwardly can increase the plan space complexity by an exponential factor in the number of relations in the query. We analyze the plans with bitvector filters for star and snowflake queries in the plan space of right deep trees without cross products. Surprisingly, with some simplifying assumptions, we prove that, the plan of the minimal cost with bitvector filters can be found from a linear number of plans in the number of relations in the query. This greatly reduces the plan space complexity for such queries from exponential to linear. Motivated by our analysis, we propose an algorithm that accounts for the impact of bitvector filters in query optimization. Our algorithm optimizes the join order for an arbitrary decision support query by choosing from a linear number of candidate plans in the number of relations in the query. We implement our algorithm in Microsoft SQL Server as a transformation rule. Our evaluation on both industry standard benchmarks and customer workload shows that, compared with the original Microsoft SQL Server, our technique reduces the total CPU execution time by 22%-64% for the workloads, with up to two orders of magnitude reduction in CPU execution time for individual queries. Full Article
si Global Distribution of Google Scholar Citations: A Size-independent Institution-based Analysis. (arXiv:2005.03324v1 [cs.DL]) By arxiv.org Published On :: Most currently available schemes for performance based ranking of Universities or Research organizations, such as, Quacarelli Symonds (QS), Times Higher Education (THE), Shanghai University based All Research of World Universities (ARWU) use a variety of criteria that include productivity, citations, awards, reputation, etc., while Leiden and Scimago use only bibliometric indicators. The research performance evaluation in the aforesaid cases is based on bibliometric data from Web of Science or Scopus, which are commercially available priced databases. The coverage includes peer reviewed journals and conference proceedings. Google Scholar (GS) on the other hand, provides a free and open alternative to obtaining citations of papers available on the net, (though it is not clear exactly which journals are covered.) Citations are collected automatically from the net and also added to self created individual author profiles under Google Scholar Citations (GSC). This data was used by Webometrics Lab, Spain to create a ranked list of 4000+ institutions in 2016, based on citations from only the top 10 individual GSC profiles in each organization. (GSC excludes the top paper for reasons explained in the text; the simple selection procedure makes the ranked list size-independent as claimed by the Cybermetrics Lab). Using this data (Transparent Ranking TR, 2016), we find the regional and country wise distribution of GS-TR Citations. The size independent ranked list is subdivided into deciles of 400 institutions each and the number of institutions and citations of each country obtained for each decile. We test for correlation between institutional ranks between GS TR and the other ranking schemes for the top 20 institutions. Full Article
si Database Traffic Interception for Graybox Detection of Stored and Context-Sensitive XSS. (arXiv:2005.03322v1 [cs.CR]) By arxiv.org Published On :: XSS is a security vulnerability that permits injecting malicious code into the client side of a web application. In the simplest situations, XSS vulnerabilities arise when a web application includes the user input in the web output without due sanitization. Such simple XSS vulnerabilities can be detected fairly reliably with blackbox scanners, which inject malicious payload into sensitive parts of HTTP requests and look for the reflected values in the web output. Contemporary blackbox scanners are not effective against stored XSS vulnerabilities, where the malicious payload in an HTTP response originates from the database storage of the web application, rather than from the associated HTTP request. Similarly, many blackbox scanners do not systematically handle context-sensitive XSS vulnerabilities, where the user input is included in the web output after a transformation that prevents the scanner from recognizing the original value, but does not sanitize the value sufficiently. Among the combination of two basic data sources (stored vs reflected) and two basic vulnerability patterns (context sensitive vs not so), only one is therefore tested systematically by state-of-the-art blackbox scanners. Our work focuses on systematic coverage of the three remaining combinations. We present a graybox mechanism that extends a general purpose database to cooperate with our XSS scanner, reporting and injecting the test inputs at the boundary between the database and the web application. Furthermore, we design a mechanism for identifying the injected inputs in the web output even after encoding by the web application, and check whether the encoding sanitizes the injected inputs correctly in the respective browser context. We evaluate our approach on eight mature and technologically diverse web applications, discovering previously unknown and exploitable XSS flaws in each of those applications. Full Article
si Specification and Automated Analysis of Inter-Parameter Dependencies in Web APIs. (arXiv:2005.03320v1 [cs.SE]) By arxiv.org Published On :: Web services often impose inter-parameter dependencies that restrict the way in which two or more input parameters can be combined to form valid calls to the service. Unfortunately, current specification languages for web services like the OpenAPI Specification (OAS) provide no support for the formal description of such dependencies, which makes it hardly possible to automatically discover and interact with services without human intervention. In this article, we present an approach for the specification and automated analysis of inter-parameter dependencies in web APIs. We first present a domain-specific language, called Inter-parameter Dependency Language (IDL), for the specification of dependencies among input parameters in web services. Then, we propose a mapping to translate an IDL document into a constraint satisfaction problem (CSP), enabling the automated analysis of IDL specifications using standard CSP-based reasoning operations. Specifically, we present a catalogue of nine analysis operations on IDL documents allowing to compute, for example, whether a given request satisfies all the dependencies of the service. Finally, we present a tool suite including an editor, a parser, an OAS extension, a constraint programming-aided library, and a test suite supporting IDL specifications and their analyses. Together, these contributions pave the way for a new range of specification-driven applications in areas such as code generation and testing. Full Article
si A Review of Computer Vision Methods in Network Security. (arXiv:2005.03318v1 [cs.NI]) By arxiv.org Published On :: Network security has become an area of significant importance more than ever as highlighted by the eye-opening numbers of data breaches, attacks on critical infrastructure, and malware/ransomware/cryptojacker attacks that are reported almost every day. Increasingly, we are relying on networked infrastructure and with the advent of IoT, billions of devices will be connected to the internet, providing attackers with more opportunities to exploit. Traditional machine learning methods have been frequently used in the context of network security. However, such methods are more based on statistical features extracted from sources such as binaries, emails, and packet flows. On the other hand, recent years witnessed a phenomenal growth in computer vision mainly driven by the advances in the area of convolutional neural networks. At a glance, it is not trivial to see how computer vision methods are related to network security. Nonetheless, there is a significant amount of work that highlighted how methods from computer vision can be applied in network security for detecting attacks or building security solutions. In this paper, we provide a comprehensive survey of such work under three topics; i) phishing attempt detection, ii) malware detection, and iii) traffic anomaly detection. Next, we review a set of such commercial products for which public information is available and explore how computer vision methods are effectively used in those products. Finally, we discuss existing research gaps and future research directions, especially focusing on how network security research community and the industry can leverage the exponential growth of computer vision methods to build much secure networked systems. Full Article
si Boosting Cloud Data Analytics using Multi-Objective Optimization. (arXiv:2005.03314v1 [cs.DB]) By arxiv.org Published On :: Data analytics in the cloud has become an integral part of enterprise businesses. Big data analytics systems, however, still lack the ability to take user performance goals and budgetary constraints for a task, collectively referred to as task objectives, and automatically configure an analytic job to achieve these objectives. This paper presents a data analytics optimizer that can automatically determine a cluster configuration with a suitable number of cores as well as other system parameters that best meet the task objectives. At a core of our work is a principled multi-objective optimization (MOO) approach that computes a Pareto optimal set of job configurations to reveal tradeoffs between different user objectives, recommends a new job configuration that best explores such tradeoffs, and employs novel optimizations to enable such recommendations within a few seconds. We present efficient incremental algorithms based on the notion of a Progressive Frontier for realizing our MOO approach and implement them into a Spark-based prototype. Detailed experiments using benchmark workloads show that our MOO techniques provide a 2-50x speedup over existing MOO methods, while offering good coverage of the Pareto frontier. When compared to Ottertune, a state-of-the-art performance tuning system, our approach recommends configurations that yield 26\%-49\% reduction of running time of the TPCx-BB benchmark while adapting to different application preferences on multiple objectives. Full Article
si Nakdan: Professional Hebrew Diacritizer. (arXiv:2005.03312v1 [cs.CL]) By arxiv.org Published On :: We present a system for automatic diacritization of Hebrew text. The system combines modern neural models with carefully curated declarative linguistic knowledge and comprehensive manually constructed tables and dictionaries. Besides providing state of the art diacritization accuracy, the system also supports an interface for manual editing and correction of the automatic output, and has several features which make it particularly useful for preparation of scientific editions of Hebrew texts. The system supports Modern Hebrew, Rabbinic Hebrew and Poetic Hebrew. The system is freely accessible for all use at this http URL Full Article
si Interval type-2 fuzzy logic system based similarity evaluation for image steganography. (arXiv:2005.03310v1 [cs.MM]) By arxiv.org Published On :: Similarity measure, also called information measure, is a concept used to distinguish different objects. It has been studied from different contexts by employing mathematical, psychological, and fuzzy approaches. Image steganography is the art of hiding secret data into an image in such a way that it cannot be detected by an intruder. In image steganography, hiding secret data in the plain or non-edge regions of the image is significant due to the high similarity and redundancy of the pixels in their neighborhood. However, the similarity measure of the neighboring pixels, i.e., their proximity in color space, is perceptual rather than mathematical. This paper proposes an interval type 2 fuzzy logic system (IT2 FLS) to determine the similarity between the neighboring pixels by involving an instinctive human perception through a rule-based approach. The pixels of the image having high similarity values, calculated using the proposed IT2 FLS similarity measure, are selected for embedding via the least significant bit (LSB) method. We term the proposed procedure of steganography as IT2 FLS LSB method. Moreover, we have developed two more methods, namely, type 1 fuzzy logic system based least significant bits (T1FLS LSB) and Euclidean distance based similarity measures for least significant bit (SM LSB) steganographic methods. Experimental simulations were conducted for a collection of images and quality index metrics, such as PSNR, UQI, and SSIM are used. All the three steganographic methods are applied on datasets and the quality metrics are calculated. The obtained stego images and results are shown and thoroughly compared to determine the efficacy of the IT2 FLS LSB method. Finally, we have done a comparative analysis of the proposed approach with the existing well-known steganographic methods to show the effectiveness of our proposed steganographic method. Full Article
si Adaptive Dialog Policy Learning with Hindsight and User Modeling. (arXiv:2005.03299v1 [cs.AI]) By arxiv.org Published On :: Reinforcement learning methods have been used to compute dialog policies from language-based interaction experiences. Efficiency is of particular importance in dialog policy learning, because of the considerable cost of interacting with people, and the very poor user experience from low-quality conversations. Aiming at improving the efficiency of dialog policy learning, we develop algorithm LHUA (Learning with Hindsight, User modeling, and Adaptation) that, for the first time, enables dialog agents to adaptively learn with hindsight from both simulated and real users. Simulation and hindsight provide the dialog agent with more experience and more (positive) reinforcements respectively. Experimental results suggest that, in success rate and policy quality, LHUA outperforms competitive baselines from the literature, including its no-simulation, no-adaptation, and no-hindsight counterparts. Full Article
si Cotatron: Transcription-Guided Speech Encoder for Any-to-Many Voice Conversion without Parallel Data. (arXiv:2005.03295v1 [eess.AS]) By arxiv.org Published On :: We propose Cotatron, a transcription-guided speech encoder for speaker-independent linguistic representation. Cotatron is based on the multispeaker TTS architecture and can be trained with conventional TTS datasets. We train a voice conversion system to reconstruct speech with Cotatron features, which is similar to the previous methods based on Phonetic Posteriorgram (PPG). By training and evaluating our system with 108 speakers from the VCTK dataset, we outperform the previous method in terms of both naturalness and speaker similarity. Our system can also convert speech from speakers that are unseen during training, and utilize ASR to automate the transcription with minimal reduction of the performance. Audio samples are available at https://mindslab-ai.github.io/cotatron, and the code with a pre-trained model will be made available soon. Full Article
si Expressing Accountability Patterns using Structural Causal Models. (arXiv:2005.03294v1 [cs.SE]) By arxiv.org Published On :: While the exact definition and implementation of accountability depend on the specific context, at its core accountability describes a mechanism that will make decisions transparent and often provides means to sanction "bad" decisions. As such, accountability is specifically relevant for Cyber-Physical Systems, such as robots or drones, that embed themselves into a human society, take decisions and might cause lasting harm. Without a notion of accountability, such systems could behave with impunity and would not fit into society. Despite its relevance, there is currently no agreement on its meaning and, more importantly, no way to express accountability properties for these systems. As a solution we propose to express the accountability properties of systems using Structural Causal Models. They can be represented as human-readable graphical models while also offering mathematical tools to analyze and reason over them. Our central contribution is to show how Structural Causal Models can be used to express and analyze the accountability properties of systems and that this approach allows us to identify accountability patterns. These accountability patterns can be catalogued and used to improve systems and their architectures. Full Article
si YANG2UML: Bijective Transformation and Simplification of YANG to UML. (arXiv:2005.03292v1 [cs.SE]) By arxiv.org Published On :: Software Defined Networking is currently revolutionizing computer networking by decoupling the network control (control plane) from the forwarding functions (data plane) enabling the network control to become directly programmable and the underlying infrastructure to be abstracted for applications and network services. Next to the well-known OpenFlow protocol, the XML-based NETCONF protocol is also an important means for exchanging configuration information from a management platform and is nowadays even part of OpenFlow. In combination with NETCONF, YANG is the corresponding protocol that defines the associated data structures supporting virtually all network configuration protocols. YANG itself is a semantically rich language, which -- in order to facilitate familiarization with the relevant subject -- is often visualized to involve other experts or developers and to support them by their daily work (writing applications which make use of YANG). In order to support this process, this paper presents an novel approach to optimize and simplify YANG data models to assist further discussions with the management and implementations (especially of interfaces) to reduce complexity. Therefore, we have defined a bidirectional mapping of YANG to UML and developed a tool that renders the created UML diagrams. This combines the benefits to use the formal language YANG with automatically maintained UML diagrams to involve other experts or developers, closing the gap between technically improved data models and their human readability. Full Article
si Multi-view data capture using edge-synchronised mobiles. (arXiv:2005.03286v1 [cs.MM]) By arxiv.org Published On :: Multi-view data capture permits free-viewpoint video (FVV) content creation. To this end, several users must capture video streams, calibrated in both time and pose, framing the same object/scene, from different viewpoints. New-generation network architectures (e.g. 5G) promise lower latency and larger bandwidth connections supported by powerful edge computing, properties that seem ideal for reliable FVV capture. We have explored this possibility, aiming to remove the need for bespoke synchronisation hardware when capturing a scene from multiple viewpoints, making it possible through off-the-shelf mobiles. We propose a novel and scalable data capture architecture that exploits edge resources to synchronise and harvest frame captures. We have designed an edge computing unit that supervises the relaying of timing triggers to and from multiple mobiles, in addition to synchronising frame harvesting. We empirically show the benefits of our edge computing unit by analysing latencies and show the quality of 3D reconstruction outputs against an alternative and popular centralised solution based on Unity3D. Full Article
si Adaptive Feature Selection Guided Deep Forest for COVID-19 Classification with Chest CT. (arXiv:2005.03264v1 [eess.IV]) By arxiv.org Published On :: Chest computed tomography (CT) becomes an effective tool to assist the diagnosis of coronavirus disease-19 (COVID-19). Due to the outbreak of COVID-19 worldwide, using the computed-aided diagnosis technique for COVID-19 classification based on CT images could largely alleviate the burden of clinicians. In this paper, we propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images. Specifically, we first extract location-specific features from CT images. Then, in order to capture the high-level representation of these features with the relatively small-scale data, we leverage a deep forest model to learn high-level representation of the features. Moreover, we propose a feature selection method based on the trained deep forest model to reduce the redundancy of features, where the feature selection could be adaptively incorporated with the COVID-19 classification model. We evaluated our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP). The accuracy (ACC), sensitivity (SEN), specificity (SPE) and AUC achieved by our method are 91.79%, 93.05%, 89.95% and 96.35%, respectively. Experimental results on the COVID-19 dataset suggest that the proposed AFS-DF achieves superior performance in COVID-19 vs. CAP classification, compared with 4 widely used machine learning methods. Full Article
si Critique of Boyu Sima's Proof that ${ m P} eq{ m NP}$. (arXiv:2005.03256v1 [cs.CC]) By arxiv.org Published On :: We review and critique Boyu Sima's paper, "A solution of the P versus NP problem based on specific property of clique function," (arXiv:1911.00722) which claims to prove that ${ m P} eq{ m NP}$ by way of removing the gap between the nonmonotone circuit complexity and the monotone circuit complexity of the clique function. We first describe Sima's argument, and then we describe where and why it fails. Finally, we present a simple example that clearly demonstrates the failure. Full Article
si Structured inversion of the Bernstein-Vandermonde Matrix. (arXiv:2005.03251v1 [math.NA]) By arxiv.org Published On :: Bernstein polynomials, long a staple of approximation theory and computational geometry, have also increasingly become of interest in finite element methods. Many fundamental problems in interpolation and approximation give rise to interesting linear algebra questions. When attempting to find a polynomial approximation of boundary or initial data, one encounters the Bernstein-Vandermonde matrix, which is found to be highly ill-conditioned. Previously, we used the relationship between monomial Bezout matrices and the inverse of Hankel matrices to obtain a decomposition of the inverse of the Bernstein mass matrix in terms of Hankel, Toeplitz, and diagonal matrices. In this paper, we use properties of the Bernstein-Bezout matrix to factor the inverse of the Bernstein-Vandermonde matrix into a difference of products of Hankel, Toeplitz, and diagonal matrices. We also use a nonstandard matrix norm to study the conditioning of the Bernstein-Vandermonde matrix, showing that the conditioning in this case is better than in the standard 2-norm. Additionally, we use properties of multivariate Bernstein polynomials to derive a block $LU$ decomposition of the Bernstein-Vandermonde matrix corresponding to equispaced nodes on the $d$-simplex. Full Article
si Enhancing Software Development Process Using Automated Adaptation of Object Ensembles. (arXiv:2005.03241v1 [cs.SE]) By arxiv.org Published On :: Software development has been changing rapidly. This development process can be influenced through changing developer friendly approaches. We can save time consumption and accelerate the development process if we can automatically guide programmer during software development. There are some approaches that recommended relevant code snippets and APIitems to the developer. Some approaches apply general code, searching techniques and some approaches use an online based repository mining strategies. But it gets quite difficult to help programmers when they need particular type conversion problems. More specifically when they want to adapt existing interfaces according to their expectation. One of the familiar triumph to guide developers in such situation is adapting collections and arrays through automated adaptation of object ensembles. But how does it help to a novice developer in real time software development that is not explicitly specified? In this paper, we have developed a system that works as a plugin-tool integrated with a particular Data Mining Integrated environment (DMIE) to recommend relevant interface while they seek for a type conversion situation. We have a mined repository of respective adapter classes and related APIs from where developer, search their query and get their result using the relevant transformer classes. The system that recommends developers titled automated objective ensembles (AOE plugin).From the investigation as we have ever made, we can see that our approach much better than some of the existing approaches. Full Article
si Multi-Target Deep Learning for Algal Detection and Classification. (arXiv:2005.03232v1 [cs.CV]) By arxiv.org Published On :: Water quality has a direct impact on industry, agriculture, and public health. Algae species are common indicators of water quality. It is because algal communities are sensitive to changes in their habitats, giving valuable knowledge on variations in water quality. However, water quality analysis requires professional inspection of algal detection and classification under microscopes, which is very time-consuming and tedious. In this paper, we propose a novel multi-target deep learning framework for algal detection and classification. Extensive experiments were carried out on a large-scale colored microscopic algal dataset. Experimental results demonstrate that the proposed method leads to the promising performance on algal detection, class identification and genus identification. Full Article
si Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent Multi-View Representation Learning. (arXiv:2005.03227v1 [eess.IV]) By arxiv.org Published On :: Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world. Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed, and could largely reduce the efforts of clinicians and accelerate the diagnosis process. Chest computed tomography (CT) has been recognized as an informative tool for diagnosis of the disease. In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images. To fully explore multiple features describing CT images from different views, a unified latent representation is learned which can completely encode information from different aspects of features and is endowed with promising class structure for separability. Specifically, the completeness is guaranteed with a group of backward neural networks (each for one type of features), while by using class labels the representation is enforced to be compact within COVID-19/community-acquired pneumonia (CAP) and also a large margin is guaranteed between different types of pneumonia. In this way, our model can well avoid overfitting compared to the case of directly projecting highdimensional features into classes. Extensive experimental results show that the proposed method outperforms all comparison methods, and rather stable performances are observed when varying the numbers of training data. Full Article
si Multi-dimensional Avikainen's estimates. (arXiv:2005.03219v1 [math.PR]) By arxiv.org Published On :: Avikainen proved the estimate $mathbb{E}[|f(X)-f(widehat{X})|^{q}] leq C(p,q) mathbb{E}[|X-widehat{X}|^{p}]^{frac{1}{p+1}} $ for $p,q in [1,infty)$, one-dimensional random variables $X$ with the bounded density function and $widehat{X}$, and a function $f$ of bounded variation in $mathbb{R}$. In this article, we will provide multi-dimensional analogues of this estimate for functions of bounded variation in $mathbb{R}^{d}$, Orlicz-Sobolev spaces, Sobolev spaces with variable exponents and fractional Sobolev spaces. The main idea of our arguments is to use Hardy-Littlewood maximal estimates and pointwise characterizations of these function spaces. We will apply main statements to numerical analysis on irregular functionals of a solution to stochastic differential equations based on the Euler-Maruyama scheme and the multilevel Monte Carlo method, and to estimates of the $L^{2}$-time regularity of decoupled forward-backward stochastic differential equations with irregular terminal conditions. Full Article
si Distributed Stabilization by Probability Control for Deterministic-Stochastic Large Scale Systems : Dissipativity Approach. (arXiv:2005.03193v1 [eess.SY]) By arxiv.org Published On :: By using dissipativity approach, we establish the stability condition for the feedback connection of a deterministic dynamical system $Sigma$ and a stochastic memoryless map $Psi$. After that, we extend the result to the class of large scale systems in which: $Sigma$ consists of many sub-systems; and $Psi$ consists of many "stochastic actuators" and "probability controllers" that control the actuator's output events. We will demonstrate the proposed approach by showing the design procedures to globally stabilize the manufacturing systems while locally balance the stock levels in any production process. Full Article
si Lattice-based public key encryption with equality test in standard model, revisited. (arXiv:2005.03178v1 [cs.CR]) By arxiv.org Published On :: Public key encryption with equality test (PKEET) allows testing whether two ciphertexts are generated by the same message or not. PKEET is a potential candidate for many practical applications like efficient data management on encrypted databases. Potential applicability of PKEET leads to intensive research from its first instantiation by Yang et al. (CT-RSA 2010). Most of the followup constructions are secure in the random oracle model. Moreover, the security of all the concrete constructions is based on number-theoretic hardness assumptions which are vulnerable in the post-quantum era. Recently, Lee et al. (ePrint 2016) proposed a generic construction of PKEET schemes in the standard model and hence it is possible to yield the first instantiation of PKEET schemes based on lattices. Their method is to use a $2$-level hierarchical identity-based encryption (HIBE) scheme together with a one-time signature scheme. In this paper, we propose, for the first time, a direct construction of a PKEET scheme based on the hardness assumption of lattices in the standard model. More specifically, the security of the proposed scheme is reduces to the hardness of the Learning With Errors problem. Full Article
si Nonlinear model reduction: a comparison between POD-Galerkin and POD-DEIM methods. (arXiv:2005.03173v1 [physics.comp-ph]) By arxiv.org Published On :: Several nonlinear model reduction techniques are compared for the three cases of the non-parallel version of the Kuramoto-Sivashinsky equation, the transient regime of flow past a cylinder at $Re=100$ and fully developed flow past a cylinder at the same Reynolds number. The linear terms of the governing equations are reduced by Galerkin projection onto a POD basis of the flow state, while the reduced nonlinear convection terms are obtained either by a Galerkin projection onto the same state basis, by a Galerkin projection onto a POD basis representing the nonlinearities or by applying the Discrete Empirical Interpolation Method (DEIM) to a POD basis of the nonlinearities. The quality of the reduced order models is assessed as to their stability, accuracy and robustness, and appropriate quantitative measures are introduced and compared. In particular, the properties of the reduced linear terms are compared to those of the full-scale terms, and the structure of the nonlinear quadratic terms is analyzed as to the conservation of kinetic energy. It is shown that all three reduction techniques provide excellent and similar results for the cases of the Kuramoto-Sivashinsky equation and the limit-cycle cylinder flow. For the case of the transient regime of flow past a cylinder, only the pure Galerkin techniques are successful, while the DEIM technique produces reduced-order models that diverge in finite time. Full Article