test

Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules

Michael P. Fay, Michael A. Proschan

Source: Statist. Surv., Volume 4, 1--39.

Abstract:
In a mathematical approach to hypothesis tests, we start with a clearly defined set of hypotheses and choose the test with the best properties for those hypotheses. In practice, we often start with less precise hypotheses. For example, often a researcher wants to know which of two groups generally has the larger responses, and either a t-test or a Wilcoxon-Mann-Whitney (WMW) test could be acceptable. Although both t-tests and WMW tests are usually associated with quite different hypotheses, the decision rule and p-value from either test could be associated with many different sets of assumptions, which we call perspectives. It is useful to have many of the different perspectives to which a decision rule may be applied collected in one place, since each perspective allows a different interpretation of the associated p-value. Here we collect many such perspectives for the two-sample t-test, the WMW test and other related tests. We discuss validity and consistency under each perspective and discuss recommendations between the tests in light of these many different perspectives. Finally, we briefly discuss a decision rule for testing genetic neutrality where knowledge of the many perspectives is vital to the proper interpretation of the decision rule.




test

Strong Converse for Testing Against Independence over a Noisy channel. (arXiv:2004.00775v2 [cs.IT] UPDATED)

A distributed binary hypothesis testing (HT) problem over a noisy (discrete and memoryless) channel studied previously by the authors is investigated from the perspective of the strong converse property. It was shown by Ahlswede and Csisz'{a}r that a strong converse holds in the above setting when the channel is rate-limited and noiseless. Motivated by this observation, we show that the strong converse continues to hold in the noisy channel setting for a special case of HT known as testing against independence (TAI), under the assumption that the channel transition matrix has non-zero elements. The proof utilizes the blowing up lemma and the recent change of measure technique of Tyagi and Watanabe as the key tools.




test

An n-dimensional Rosenbrock Distribution for MCMC Testing. (arXiv:1903.09556v4 [stat.CO] UPDATED)

The Rosenbrock function is an ubiquitous benchmark problem for numerical optimisation, and variants have been proposed to test the performance of Markov Chain Monte Carlo algorithms. In this work we discuss the two-dimensional Rosenbrock density, its current $n$-dimensional extensions, and their advantages and limitations. We then propose a new extension to arbitrary dimensions called the Hybrid Rosenbrock distribution, which is composed of conditional normal kernels arranged in such a way that preserves the key features of the original kernel. Moreover, due to its structure, the Hybrid Rosenbrock distribution is analytically tractable and possesses several desirable properties, which make it an excellent test model for computational algorithms.




test

A comparison of group testing architectures for COVID-19 testing. (arXiv:2005.03051v1 [stat.ME])

An important component of every country's COVID-19 response is fast and efficient testing -- to identify and isolate cases, as well as for early detection of local hotspots. For many countries, producing a sufficient number of tests has been a serious limiting factor in their efforts to control COVID-19 infections. Group testing is a well-established mathematical tool, which can provide a serious and rapid improvement to this situation. In this note, we compare several well-established group testing schemes in the context of qPCR testing for COVID-19. We include example calculations, where we indicate which testing architectures yield the greatest efficiency gains in various settings. We find that for identification of individuals with COVID-19, array testing is usually the best choice, while for estimation of COVID-19 prevalence rates in the total population, Gibbs-Gower testing usually provides the most accurate estimates given a fixed and relatively small number of tests. This note is intended as a helpful handbook for labs implementing group testing methods.




test

Handbook of geotechnical testing : basic theory, procedures and comparison of standards

Li, Yanrong (Writer on geology), author.
0429323743 electronic book




test

Testing for principal component directions under weak identifiability

Davy Paindaveine, Julien Remy, Thomas Verdebout.

Source: The Annals of Statistics, Volume 48, Number 1, 324--345.

Abstract:
We consider the problem of testing, on the basis of a $p$-variate Gaussian random sample, the null hypothesis $mathcal{H}_{0}:oldsymbol{ heta}_{1}=oldsymbol{ heta}_{1}^{0}$ against the alternative $mathcal{H}_{1}:oldsymbol{ heta}_{1} eq oldsymbol{ heta}_{1}^{0}$, where $oldsymbol{ heta}_{1}$ is the “first” eigenvector of the underlying covariance matrix and $oldsymbol{ heta}_{1}^{0}$ is a fixed unit $p$-vector. In the classical setup where eigenvalues $lambda_{1}>lambda_{2}geq cdots geq lambda_{p}$ are fixed, the Anderson ( Ann. Math. Stat. 34 (1963) 122–148) likelihood ratio test (LRT) and the Hallin, Paindaveine and Verdebout ( Ann. Statist. 38 (2010) 3245–3299) Le Cam optimal test for this problem are asymptotically equivalent under the null hypothesis, hence also under sequences of contiguous alternatives. We show that this equivalence does not survive asymptotic scenarios where $lambda_{n1}/lambda_{n2}=1+O(r_{n})$ with $r_{n}=O(1/sqrt{n})$. For such scenarios, the Le Cam optimal test still asymptotically meets the nominal level constraint, whereas the LRT severely overrejects the null hypothesis. Consequently, the former test should be favored over the latter one whenever the two largest sample eigenvalues are close to each other. By relying on the Le Cam’s asymptotic theory of statistical experiments, we study the non-null and optimality properties of the Le Cam optimal test in the aforementioned asymptotic scenarios and show that the null robustness of this test is not obtained at the expense of power. Our asymptotic investigation is extensive in the sense that it allows $r_{n}$ to converge to zero at an arbitrary rate. While we restrict to single-spiked spectra of the form $lambda_{n1}>lambda_{n2}=cdots =lambda_{np}$ to make our results as striking as possible, we extend our results to the more general elliptical case. Finally, we present an illustrative real data example.




test

On testing for high-dimensional white noise

Zeng Li, Clifford Lam, Jianfeng Yao, Qiwei Yao.

Source: The Annals of Statistics, Volume 47, Number 6, 3382--3412.

Abstract:
Testing for white noise is a classical yet important problem in statistics, especially for diagnostic checks in time series modeling and linear regression. For high-dimensional time series in the sense that the dimension $p$ is large in relation to the sample size $T$, the popular omnibus tests including the multivariate Hosking and Li–McLeod tests are extremely conservative, leading to substantial power loss. To develop more relevant tests for high-dimensional cases, we propose a portmanteau-type test statistic which is the sum of squared singular values of the first $q$ lagged sample autocovariance matrices. It, therefore, encapsulates all the serial correlations (up to the time lag $q$) within and across all component series. Using the tools from random matrix theory and assuming both $p$ and $T$ diverge to infinity, we derive the asymptotic normality of the test statistic under both the null and a specific VMA(1) alternative hypothesis. As the actual implementation of the test requires the knowledge of three characteristic constants of the population cross-sectional covariance matrix and the value of the fourth moment of the standardized innovations, nontrivial estimations are proposed for these parameters and their integration leads to a practically usable test. Extensive simulation confirms the excellent finite-sample performance of the new test with accurate size and satisfactory power for a large range of finite $(p,T)$ combinations, therefore, ensuring wide applicability in practice. In particular, the new tests are consistently superior to the traditional Hosking and Li–McLeod tests.




test

Hypothesis testing on linear structures of high-dimensional covariance matrix

Shurong Zheng, Zhao Chen, Hengjian Cui, Runze Li.

Source: The Annals of Statistics, Volume 47, Number 6, 3300--3334.

Abstract:
This paper is concerned with test of significance on high-dimensional covariance structures, and aims to develop a unified framework for testing commonly used linear covariance structures. We first construct a consistent estimator for parameters involved in the linear covariance structure, and then develop two tests for the linear covariance structures based on entropy loss and quadratic loss used for covariance matrix estimation. To study the asymptotic properties of the proposed tests, we study related high-dimensional random matrix theory, and establish several highly useful asymptotic results. With the aid of these asymptotic results, we derive the limiting distributions of these two tests under the null and alternative hypotheses. We further show that the quadratic loss based test is asymptotically unbiased. We conduct Monte Carlo simulation study to examine the finite sample performance of the two tests. Our simulation results show that the limiting null distributions approximate their null distributions quite well, and the corresponding asymptotic critical values keep Type I error rate very well. Our numerical comparison implies that the proposed tests outperform existing ones in terms of controlling Type I error rate and power. Our simulation indicates that the test based on quadratic loss seems to have better power than the test based on entropy loss.




test

Testing for independence of large dimensional vectors

Taras Bodnar, Holger Dette, Nestor Parolya.

Source: The Annals of Statistics, Volume 47, Number 5, 2977--3008.

Abstract:
In this paper, new tests for the independence of two high-dimensional vectors are investigated. We consider the case where the dimension of the vectors increases with the sample size and propose multivariate analysis of variance-type statistics for the hypothesis of a block diagonal covariance matrix. The asymptotic properties of the new test statistics are investigated under the null hypothesis and the alternative hypothesis using random matrix theory. For this purpose, we study the weak convergence of linear spectral statistics of central and (conditionally) noncentral Fisher matrices. In particular, a central limit theorem for linear spectral statistics of large dimensional (conditionally) noncentral Fisher matrices is derived which is then used to analyse the power of the tests under the alternative. The theoretical results are illustrated by means of a simulation study where we also compare the new tests with several alternative, in particular with the commonly used corrected likelihood ratio test. It is demonstrated that the latter test does not keep its nominal level, if the dimension of one sub-vector is relatively small compared to the dimension of the other sub-vector. On the other hand, the tests proposed in this paper provide a reasonable approximation of the nominal level in such situations. Moreover, we observe that one of the proposed tests is most powerful under a variety of correlation scenarios.




test

Test for high-dimensional correlation matrices

Shurong Zheng, Guanghui Cheng, Jianhua Guo, Hongtu Zhu.

Source: The Annals of Statistics, Volume 47, Number 5, 2887--2921.

Abstract:
Testing correlation structures has attracted extensive attention in the literature due to both its importance in real applications and several major theoretical challenges. The aim of this paper is to develop a general framework of testing correlation structures for the one , two and multiple sample testing problems under a high-dimensional setting when both the sample size and data dimension go to infinity. Our test statistics are designed to deal with both the dense and sparse alternatives. We systematically investigate the asymptotic null distribution, power function and unbiasedness of each test statistic. Theoretically, we make great efforts to deal with the nonindependency of all random matrices of the sample correlation matrices. We use simulation studies and real data analysis to illustrate the versatility and practicability of our test statistics.




test

A unified treatment of multiple testing with prior knowledge using the p-filter

Aaditya K. Ramdas, Rina F. Barber, Martin J. Wainwright, Michael I. Jordan.

Source: The Annals of Statistics, Volume 47, Number 5, 2790--2821.

Abstract:
There is a significant literature on methods for incorporating knowledge into multiple testing procedures so as to improve their power and precision. Some common forms of prior knowledge include (a) beliefs about which hypotheses are null, modeled by nonuniform prior weights; (b) differing importances of hypotheses, modeled by differing penalties for false discoveries; (c) multiple arbitrary partitions of the hypotheses into (possibly overlapping) groups and (d) knowledge of independence, positive or arbitrary dependence between hypotheses or groups, suggesting the use of more aggressive or conservative procedures. We present a unified algorithmic framework called p-filter for global null testing and false discovery rate (FDR) control that allows the scientist to incorporate all four types of prior knowledge (a)–(d) simultaneously, recovering a variety of known algorithms as special cases.




test

Linear hypothesis testing for high dimensional generalized linear models

Chengchun Shi, Rui Song, Zhao Chen, Runze Li.

Source: The Annals of Statistics, Volume 47, Number 5, 2671--2703.

Abstract:
This paper is concerned with testing linear hypotheses in high dimensional generalized linear models. To deal with linear hypotheses, we first propose the constrained partial regularization method and study its statistical properties. We further introduce an algorithm for solving regularization problems with folded-concave penalty functions and linear constraints. To test linear hypotheses, we propose a partial penalized likelihood ratio test, a partial penalized score test and a partial penalized Wald test. We show that the limiting null distributions of these three test statistics are $chi^{2}$ distribution with the same degrees of freedom, and under local alternatives, they asymptotically follow noncentral $chi^{2}$ distributions with the same degrees of freedom and noncentral parameter, provided the number of parameters involved in the test hypothesis grows to $infty$ at a certain rate. Simulation studies are conducted to examine the finite sample performance of the proposed tests. Empirical analysis of a real data example is used to illustrate the proposed testing procedures.




test

Semiparametrically point-optimal hybrid rank tests for unit roots

Bo Zhou, Ramon van den Akker, Bas J. M. Werker.

Source: The Annals of Statistics, Volume 47, Number 5, 2601--2638.

Abstract:
We propose a new class of unit root tests that exploits invariance properties in the Locally Asymptotically Brownian Functional limit experiment associated to the unit root model. The invariance structures naturally suggest tests that are based on the ranks of the increments of the observations, their average and an assumed reference density for the innovations. The tests are semiparametric in the sense that they are valid, that is, have the correct (asymptotic) size, irrespective of the true innovation density. For a correctly specified reference density, our test is point-optimal and nearly efficient. For arbitrary reference densities, we establish a Chernoff–Savage-type result, that is, our test performs as well as commonly used tests under Gaussian innovations but has improved power under other, for example, fat-tailed or skewed, innovation distributions. To avoid nonparametric estimation, we propose a simplified version of our test that exhibits the same asymptotic properties, except for the Chernoff–Savage result that we are only able to demonstrate by means of simulations.




test

Property testing in high-dimensional Ising models

Matey Neykov, Han Liu.

Source: The Annals of Statistics, Volume 47, Number 5, 2472--2503.

Abstract:
This paper explores the information-theoretic limitations of graph property testing in zero-field Ising models. Instead of learning the entire graph structure, sometimes testing a basic graph property such as connectivity, cycle presence or maximum clique size is a more relevant and attainable objective. Since property testing is more fundamental than graph recovery, any necessary conditions for property testing imply corresponding conditions for graph recovery, while custom property tests can be statistically and/or computationally more efficient than graph recovery based algorithms. Understanding the statistical complexity of property testing requires the distinction of ferromagnetic (i.e., positive interactions only) and general Ising models. Using combinatorial constructs such as graph packing and strong monotonicity, we characterize how target properties affect the corresponding minimax upper and lower bounds within the realm of ferromagnets. On the other hand, by studying the detection of an antiferromagnetic (i.e., negative interactions only) Curie–Weiss model buried in Rademacher noise, we show that property testing is strictly more challenging over general Ising models. In terms of methodological development, we propose two types of correlation based tests: computationally efficient screening for ferromagnets, and score type tests for general models, including a fast cycle presence test. Our correlation screening tests match the information-theoretic bounds for property testing in ferromagnets in certain regimes.




test

On testing conditional qualitative treatment effects

Chengchun Shi, Rui Song, Wenbin Lu.

Source: The Annals of Statistics, Volume 47, Number 4, 2348--2377.

Abstract:
Precision medicine is an emerging medical paradigm that focuses on finding the most effective treatment strategy tailored for individual patients. In the literature, most of the existing works focused on estimating the optimal treatment regime. However, there has been less attention devoted to hypothesis testing regarding the optimal treatment regime. In this paper, we first introduce the notion of conditional qualitative treatment effects (CQTE) of a set of variables given another set of variables and provide a class of equivalent representations for the null hypothesis of no CQTE. The proposed definition of CQTE does not assume any parametric form for the optimal treatment rule and plays an important role for assessing the incremental value of a set of new variables in optimal treatment decision making conditional on an existing set of prescriptive variables. We then propose novel testing procedures for no CQTE based on kernel estimation of the conditional contrast functions. We show that our test statistics have asymptotically correct size and nonnegligible power against some nonstandard local alternatives. The empirical performance of the proposed tests are evaluated by simulations and an application to an AIDS data set.




test

Modifying the Chi-square and the CMH test for population genetic inference: Adapting to overdispersion

Kerstin Spitzer, Marta Pelizzola, Andreas Futschik.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 202--220.

Abstract:
Evolve and resequence studies provide a popular approach to simulate evolution in the lab and explore its genetic basis. In this context, Pearson’s chi-square test, Fisher’s exact test as well as the Cochran–Mantel–Haenszel test are commonly used to infer genomic positions affected by selection from temporal changes in allele frequency. However, the null model associated with these tests does not match the null hypothesis of actual interest. Indeed, due to genetic drift and possibly other additional noise components such as pool sequencing, the null variance in the data can be substantially larger than accounted for by these common test statistics. This leads to $p$-values that are systematically too small and, therefore, a huge number of false positive results. Even, if the ranking rather than the actual $p$-values is of interest, a naive application of the mentioned tests will give misleading results, as the amount of overdispersion varies from locus to locus. We therefore propose adjusted statistics that take the overdispersion into account while keeping the formulas simple. This is particularly useful in genome-wide applications, where millions of SNPs can be handled with little computational effort. We then apply the adapted test statistics to real data from Drosophila and investigate how information from intermediate generations can be included when available. We also discuss further applications such as genome-wide association studies based on pool sequencing data and tests for local adaptation.




test

A nonparametric spatial test to identify factors that shape a microbiome

Susheela P. Singh, Ana-Maria Staicu, Robert R. Dunn, Noah Fierer, Brian J. Reich.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2341--2362.

Abstract:
The advent of high-throughput sequencing technologies has made data from DNA material readily available, leading to a surge of microbiome-related research establishing links between markers of microbiome health and specific outcomes. However, to harness the power of microbial communities we must understand not only how they affect us, but also how they can be influenced to improve outcomes. This area has been dominated by methods that reduce community composition to summary metrics, which can fail to fully exploit the complexity of community data. Recently, methods have been developed to model the abundance of taxa in a community, but they can be computationally intensive and do not account for spatial effects underlying microbial settlement. These spatial effects are particularly relevant in the microbiome setting because we expect communities that are close together to be more similar than those that are far apart. In this paper, we propose a flexible Bayesian spike-and-slab variable selection model for presence-absence indicators that accounts for spatial dependence and cross-dependence between taxa while reducing dimensionality in both directions. We show by simulation that in the presence of spatial dependence, popular distance-based hypothesis testing methods fail to preserve their advertised size, and the proposed method improves variable selection. Finally, we present an application of our method to an indoor fungal community found within homes across the contiguous United States.




test

Fire seasonality identification with multimodality tests

Jose Ameijeiras-Alonso, Akli Benali, Rosa M. Crujeiras, Alberto Rodríguez-Casal, José M. C. Pereira.

Source: The Annals of Applied Statistics, Volume 13, Number 4, 2120--2139.

Abstract:
Understanding the role of vegetation fires in the Earth system is an important environmental problem. Although fire occurrence is influenced by natural factors, human activity related to land use and management has altered the temporal patterns of fire in several regions of the world. Hence, for a better insight into fires regimes it is of special interest to analyze where human activity has altered fire seasonality. For doing so, multimodality tests are a useful tool for determining the number of annual fire peaks. The periodicity of fires and their complex distributional features motivate the use of nonparametric circular statistics. The unsatisfactory performance of previous circular nonparametric proposals for testing multimodality justifies the introduction of a new approach, considering an adapted version of the excess mass statistic, jointly with a bootstrap calibration algorithm. A systematic application of the test on the Russia–Kazakhstan area is presented in order to determine how many fire peaks can be identified in this region. A False Discovery Rate correction, accounting for the spatial dependence of the data, is also required.




test

Wavelet spectral testing: Application to nonstationary circadian rhythms

Jessica K. Hargreaves, Marina I. Knight, Jon W. Pitchford, Rachael J. Oakenfull, Sangeeta Chawla, Jack Munns, Seth J. Davis.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1817--1846.

Abstract:
Rhythmic data are ubiquitous in the life sciences. Biologists need reliable statistical tests to identify whether a particular experimental treatment has caused a significant change in a rhythmic signal. When these signals display nonstationary behaviour, as is common in many biological systems, the established methodologies may be misleading. Therefore, there is a real need for new methodology that enables the formal comparison of nonstationary processes. As circadian behaviour is best understood in the spectral domain, here we develop novel hypothesis testing procedures in the (wavelet) spectral domain, embedding replicate information when available. The data are modelled as realisations of locally stationary wavelet processes, allowing us to define and rigorously estimate their evolutionary wavelet spectra. Motivated by three complementary applications in circadian biology, our new methodology allows the identification of three specific types of spectral difference. We demonstrate the advantages of our methodology over alternative approaches, by means of a comprehensive simulation study and real data applications, using both published and newly generated circadian datasets. In contrast to the current standard methodologies, our method successfully identifies differences within the motivating circadian datasets, and facilitates wider ranging analyses of rhythmic biological data in general.




test

The classification permutation test: A flexible approach to testing for covariate imbalance in observational studies

Johann Gagnon-Bartsch, Yotam Shem-Tov.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1464--1483.

Abstract:
The gold standard for identifying causal relationships is a randomized controlled experiment. In many applications in the social sciences and medicine, the researcher does not control the assignment mechanism and instead may rely upon natural experiments or matching methods as a substitute to experimental randomization. The standard testable implication of random assignment is covariate balance between the treated and control units. Covariate balance is commonly used to validate the claim of as good as random assignment. We propose a new nonparametric test of covariate balance. Our Classification Permutation Test (CPT) is based on a combination of classification methods (e.g., random forests) with Fisherian permutation inference. We revisit four real data examples and present Monte Carlo power simulations to demonstrate the applicability of the CPT relative to other nonparametric tests of equality of multivariate distributions.




test

On Sobolev tests of uniformity on the circle with an extension to the sphere

Sreenivasa Rao Jammalamadaka, Simos Meintanis, Thomas Verdebout.

Source: Bernoulli, Volume 26, Number 3, 2226--2252.

Abstract:
Circular and spherical data arise in many applications, especially in biology, Earth sciences and astronomy. In dealing with such data, one of the preliminary steps before any further inference, is to test if such data is isotropic, that is, uniformly distributed around the circle or the sphere. In view of its importance, there is a considerable literature on the topic. In the present work, we provide new tests of uniformity on the circle based on original asymptotic results. Our tests are motivated by the shape of locally and asymptotically maximin tests of uniformity against generalized von Mises distributions. We show that they are uniformly consistent. Empirical power comparisons with several competing procedures are presented via simulations. The new tests detect particularly well multimodal alternatives such as mixtures of von Mises distributions. A practically-oriented combination of the new tests with already existing Sobolev tests is proposed. An extension to testing uniformity on the sphere, along with some simulations, is included. The procedures are illustrated on a real dataset.




test

Discover Protestant nonconformity in England and Wales / Paul Blake.

Dissenters, Religious -- Great Britain.




test

How States, Assessment Companies Can Work Together Amid Coronavirus Testing Cancellations

Scott Marion, who consults states on testing, talks about why it's important for vendors and public officials to work cooperatively in renegotiating contracts amid assessment cancellations caused by COVID-19.

The post How States, Assessment Companies Can Work Together Amid Coronavirus Testing Cancellations appeared first on Market Brief.




test

Pence staffer who tested positive for coronavirus is Stephen Miller's wife

The staffer of Vice President Mike Pence who tested positive for coronavirus is apparently his press secretary and the wife of White House senior adviser Stephen Miller.Reports emerged on Friday that a member of Pence's staff had tested positive for COVID-19, creating a delay in his flight to Iowa amid concern over who may have been exposed. Later in the day, Trump said the staffer is a "press person" named Katie.Politico reported he was referring to Katie Miller, Pence's press secretary and the wife of Stephen Miller. This report noted this raises the risk that "a large swath of the West Wing's senior aides may also have been exposed." She confirmed her positive diagnosis to NBC News, saying she does not have symptoms.Trump spilled the beans to reporters, saying Katie Miller "hasn't come into contact with me" but has "spent some time with the vice president." This news comes one day after a personal valet to Trump tested positive for COVID-19, which reportedly made the president "lava level mad." Pence and Trump are being tested for COVID-19 every day.Asked Friday if he's concerned about the potential spread of coronavirus in the White House, Trump said "I'm not worried, no," adding that "we've taken very strong precautions."More stories from theweek.com Outed CIA agent Valerie Plame is running for Congress, and her launch video looks like a spy movie trailer 7 scathing cartoons about America's rush to reopen Trump says he couldn't have exposed WWII vets to COVID-19 because the wind was blowing the wrong way





test

Pence press secretary tests positive for coronavirus

The news comes shortly after a valet who served meals to President Trump also tested positive for the virus.





test

A Bayesian Nonparametric Multiple Testing Procedure for Comparing Several Treatments Against a Control

Luis Gutiérrez, Andrés F. Barrientos, Jorge González, Daniel Taylor-Rodríguez.

Source: Bayesian Analysis, Volume 14, Number 2, 649--675.

Abstract:
We propose a Bayesian nonparametric strategy to test for differences between a control group and several treatment regimes. Most of the existing tests for this type of comparison are based on the differences between location parameters. In contrast, our approach identifies differences across the entire distribution, avoids strong modeling assumptions over the distributions for each treatment, and accounts for multiple testing through the prior distribution on the space of hypotheses. The proposal is compared to other commonly used hypothesis testing procedures under simulated scenarios. Two real applications are also analyzed with the proposed methodology.




test

Bayes Factor Testing of Multiple Intraclass Correlations

Joris Mulder, Jean-Paul Fox.

Source: Bayesian Analysis, Volume 14, Number 2, 521--552.

Abstract:
The intraclass correlation plays a central role in modeling hierarchically structured data, such as educational data, panel data, or group-randomized trial data. It represents relevant information concerning the between-group and within-group variation. Methods for Bayesian hypothesis tests concerning the intraclass correlation are proposed to improve decision making in hierarchical data analysis and to assess the grouping effect across different group categories. Estimation and testing methods for the intraclass correlation coefficient are proposed under a marginal modeling framework where the random effects are integrated out. A class of stretched beta priors is proposed on the intraclass correlations, which is equivalent to shifted $F$ priors for the between groups variances. Through a parameter expansion it is shown that this prior is conditionally conjugate under the marginal model yielding efficient posterior computation. A special improper case results in accurate coverage rates of the credible intervals even for minimal sample size and when the true intraclass correlation equals zero. Bayes factor tests are proposed for testing multiple precise and order hypotheses on intraclass correlations. These tests can be used when prior information about the intraclass correlations is available or absent. For the noninformative case, a generalized fractional Bayes approach is developed. The method enables testing the presence and strength of grouped data structures without introducing random effects. The methodology is applied to a large-scale survey study on international mathematics achievement at fourth grade to test the heterogeneity in the clustering of students in schools across countries and assessment cycles.




test

Katie Holmes’s Affordable Sneakers Are the Star of Her Latest Outfit

Meghan Markle is also a fan of the comfy shoes.




test

Rassegna trimestrale BRI settembre 2017: Le prospettive positive in un contesto di bassa inflazione alimentano l'assunzione di rischio

Italian translation of the BIS press release about the BIS Quarterly Review, September 2017




test

Le Communiqué de Bâle finalise les principes relatifs aux tests de résistance, passe en revue les moyens pour mettre fin aux comportements d'arbitrage réglementaire, s'accorde sur la liste annuelle des G-SIB et discute du ratio

French translation of press release - the Basel Committee on Banking Supervision is finalising stress-testing principles, reviews ways to stop regulatory arbitrage behaviour, agrees on annual G-SIB list, discusses leverage ratio, crypto-assets, market risk framework and implementation, 20 September 2018.




test

Mike Leigh cancels Israel visit to protest loyalty oath




test

Field tests under way for new hunger-measuring tool

FAO has begun field tests for a new approach to measuring hunger and food insecurity – part of a collaboration with polling specialists Gallup, Inc. The project – known as Voices of the Hungry – is based on a “food insecurity experience scale,” with annual data collected using eight interview questions about people’s experiences of food insecurity over the preceding [...]




test

5 critical things we learned from the latest IPCC report on climate change

Today leading international experts on climate change, the IPCC, presented their latest report on the impacts of climate change on humanity, and what we can do about it. It’s a lengthy report, so we’ve shrunk it down to Oxfam's five key takeaways on climate change and hunger. 1. Climate change: the impacts on crops are worse than we thought Climate change has [...]




test

This is a test do not deleteme

This is a test do not deleteme




test

Water Scarcity – One of the greatest challenges of our time

Water is essential for agricultural production and food security.  It is the lifeblood of ecosystems, including forests, lakes and wetlands, on which the food and nutritional security of present and future generations depends on. Yet, our freshwater resources are dwindling at an alarming rate. Growing water scarcity is now one of the leading challenges for sustainable development.  This challenge will [...]




test

http://digg.com/submit?url=http://www.edge.org/conversation/-quotthe-man-who-runs-the-world-39s-smartest-website-quot-in-the-observer




test

April’s Super 'Pink' Moon Will Be the Brightest Full Moon of 2020

Despite the name, moon won’t have a rosy hue. The name alludes to flowers that bloom in April




test

Researchers Calculated a Whale Shark’s Age Based on Cold War-Era Bomb Tests

Nuclear bomb tests caused a spike in a radioactive form of carbon that accumulated in living things




test

A Tiger in the Bronx Zoo Tested Positive for COVID-19

Nadia, a four-year-old Malayan tiger, is the first known animal to test positive for coronavirus in the United States




test

Astronomers Spy Brightest Supernova Ever Seen

A star 100-times more massive than the sun exploded with 10-times more energy than a normal-sized supernova




test

These Are the Winning Photos of Smithsonian Magazine's 17th Annual Photo Contest

From Vietnam to Antarctica, this year's winners bring you amazing glimpses of a changing world—and the indefatigable human spirit




test

The 'Hard Hat Riot' of 1970 Pitted Construction Workers Against Anti-War Protesters

The Kent State shootings further widened the chasm among a citizenry divided over the Vietnam War




test

Former champ Lance Mackey wiped from 2020 Iditarod standings over failed drug test

Veteran musher Lance Mackey has had his 21st place finish in this year's Iditarod Trail Sled Dog Race vacated because of a failed drug test, race officials announced Thursday.



  • News/Canada/North

test

Group looking for test case to challenge Higgs decision to close N.B. borders



  • News/Canada/New Brunswick

test

Higher rate of testing accomplished than provincial average, says Northwestern Health Unit

It's been more than a week since there were any new or active cases of COVID-19 in the catchment area for the Northwestern Health Unit (NWHU), and staff can not focus increasing testing.



  • News/Canada/Thunder Bay

test

Comment on Song Contest: Raab und Engelke sollen Eurovision-Finale moderieren by Deutschland News

<span class="topsy_trackback_comment"><span class="topsy_twitter_username"><span class="topsy_trackback_content">RT @imconair Song Contest: Raab und Engelke sollen Eurovision-Finale moderieren http://bit.ly/fsr6gD #IMCRadio.net: Song Contest: Raa...</span></span>




test

3 long-term residents in Sault Ste. Marie test positive for COVID-19

Three residents at a long-term care facility in Sault Ste. Marie have tested positive for COVID-19, prompting officials to declare an outbreak at Extendicare Maple View.



  • News/Canada/Sudbury

test

1 resident at Iroquois Falls long-term care home tests positive for COVID-19

The Porcupine Health Unit is declaring a COVID-19 outbreak at a long-term care home in Iroquois Falls.



  • News/Canada/Sudbury

test

COVID-19 testing results in Timmins leave long-term care staff 'perplexed'

The City of Timmins says a COVID-19 outbreak remains in place at a long-term care home in the city, even after the one affected resident has now tested negative — twice.



  • News/Canada/Sudbury

test

A resident of a nursing home in Wikwemikong has tested positive for COVID-19

Provincial surveillance testing has returned a positive case of COVID-19 in a resident of Wikwemikong Nursing Home on Manitoulin Island. Ogimaa Duke Peltier says every staff member and resident underwent tests Tuesday and Wednesday of this week and the results are starting to come in.



  • News/Canada/Sudbury