tea

Wells Fargo’s former India realty investment team launching residential funds

Capitedge India Investment Advisory, a realty fund and asset management firm floated by six former members of Indian realty team of American banking giant Wells Fargo, is coming out with a residential properties-focused fund in India. This would mark its first fresh fundraising exercise after floating an independent investment advisory firm, which is also managing the remaining assets of Wells Fargo after it shut operations in the country last year. While the founding partners are closely associated in operations, Hiral Soni is driving the domestic fundraise and investment strategy, as per the company website. She was previously with Marvel Realtors and had later also set up a boutique investment banking […]



  • Banking and Finance
  • FDI
  • Real Estate India

tea

HARMAN’s Ultimate Team-Up: JBL, Brand Ambassadors and Little Kids Rock Commit to Supporting At-Home Education

All over the world, people and societies are adjusting to social distancing and a long-term work-from-home environment. Students and teachers too are now adapting to virtual classes, quickly mastering and equipping themselves with all tools necessary to...




tea

Bats can learn to copy sounds and it may teach us about human speech

Pale spear-nosed bats can learn to alter their calls to mimic different sounds – a rare skill that could help us understand the biology of human speech and language




tea

Antarctica team to search world's oldest ice for climate change clues

Scientists are setting out to drill for the world’s oldest ice, in a bid to shed light on a dramatic tipping point in the world’s climate 900,000 years ago




tea

Cannabis plant evolved super high (on the Tibetan Plateau)

An analysis of pollen suggests cannabis evolved on the Tibetan Plateau, not far from a cave that was frequented by our ancient Denisovan cousins




tea

U.S. women's soccer team file to appeal equal pay ruling

The U.S. women's soccer team have filed to appeal a district court decision handed down last week that dismissed their claims for equal pay, a spokesperson for the team said on Friday.




tea

HARMAN Teams Up with Leading OEMs to Bring Exceptional In-Car Audio Experiences to IAA 2019

HARMAN is gearing up to present its best-in-class audio technologies and solutions for many of the world’s foremost automotive OEMs at IAA 2019 from September 12-22 in Frankfurt/Main. Now in its 68th edition, IAA is the world’s largest motor show as well...




tea

Could vacuum airships go from steampunk fantasy to 21st century skies?

First imagined in the 17th century, blimps borne aloft by nothing but nothing are finally ready for lift off, carrying goods and even passengers in gondolas in the clouds




tea

Report: Teams getting OKs for asymptomatic testing

A handful of NBA teams are in the process of receiving permission from local government officials to test players and staff for coronavirus, even if they are asymptomatic, ESPN reported Friday.




tea

U.S. women's soccer team file to appeal equal pay ruling

The U.S. women's soccer team have filed to appeal a district court decision handed down last week that dismissed their claims for equal pay, a spokesperson for the team said on Friday.




tea

Green Tea May Ease Rheumatoid Arthritis

Title: Green Tea May Ease Rheumatoid Arthritis
Category: Health News
Created: 5/1/2007 2:00:00 AM
Last Editorial Review: 5/1/2007 12:00:00 AM




tea

Health Tip: Wear and Tear on the Knees

Title: Health Tip: Wear and Tear on the Knees
Category: Health News
Created: 4/29/2008 2:00:00 AM
Last Editorial Review: 4/29/2008 12:00:00 AM




tea

Drinking Green Tea May Protect Eyes

Title: Drinking Green Tea May Protect Eyes
Category: Health News
Created: 4/24/2010 10:10:00 AM
Last Editorial Review: 4/26/2010 12:00:00 AM




tea

Training Programs Protect Young Athletes From ACL Tears: Report

Title: Training Programs Protect Young Athletes From ACL Tears: Report
Category: Health News
Created: 4/28/2014 9:35:00 AM
Last Editorial Review: 4/28/2014 12:00:00 AM




tea

The Doctor Gap: In Areas of Greatest Need, Primary Care Is a Team Effort

Title: The Doctor Gap: In Areas of Greatest Need, Primary Care Is a Team Effort
Category: Health News
Created: 3/19/2020 12:00:00 AM
Last Editorial Review: 3/20/2020 12:00:00 AM




tea

Impact of Collaborative Leadership in Dental School Team Clinics

Dental students’ ability to critique team performance in dental school team clinics is a key component of dental education. The aim of this study was to determine if students’ perceptions of their team leaders’ openness of communication, cooperative decision making, and well-defined goals were positively related to the students’ improvement-oriented voice behavior and willingness to raise concerns in the clinical environment. This study used a voluntary 12-question survey, distributed via email to all 311 students at the University of Nevada, Las Vegas School of Dental Medicine after completion of the spring 2017 semester. Eighty-seven students responded, for a response rate of 28%. Responses were stratified by team, class year, and gender, and the quantitative distribution of answers to each question was correlated with each other. Team leader collaborative qualities, which included openness for communication, cooperative decision making, and well-defined goals, were found to have a significant positive relationship with students’ willingness to both raise concerns and make suggestions. Additionally, when measured by class year and gender, team differences in voice behavior assessment by students across the teams were found to be independent of class year, and no significant differences were found by gender. These results suggested that, to maintain high levels of communication, proper reporting of concerns, and a high standard of care, dental schools should encourage team leaders to enhance their capacity to present active collaborative behaviors in the school’s clinic. The study also highlighted potential opportunities for further study of faculty traits and development in the dental school team model.




tea

Examining the Case for Dental Hygienists Teaching Predoctoral Dental Students: A Two-Part Study

Dental students in North American dental schools are exposed to faculty members with various professional backgrounds. These faculty members may include dentists, dental hygienists, and scientists without clinical dental credentials. The practice of dental hygienists’ educating predoctoral dental students has not been well documented. The aims of this two-part study were to investigate the parameters of didactic, preclinical, and clinical instruction of dental students by dental hygienist faculty members in North American dental schools and to explore dental students’ perceptions of this form of teaching. In part one, a survey was sent electronically to the clinical or academic affairs deans of all 76 American Dental Education Association (ADEA) member dental schools in 2017. Twenty-nine responded, for a 38.2% response rate. In 76% of the responding schools, dental hygienists were teaching dental students. Most respondents reported that, in their schools, the minimum degree required to teach didactically was a master’s, while a bachelor’s degree was required for preclinical and clinical courses. There was no significant association between dental hygienists’ instructing dental students and having a dental hygiene educational program at the institution. In part two of the study, a questionnaire was completed by 102 graduating dental students (85% response rate) at one U.S. university to evaluate the impact of dental hygienist educators. Among the respondents, 87% reported feeling that dental hygienists were very effective educators. There were no significant differences in responses between traditional and advanced standing international dental students. This study found that dental hygienists were educating dental students in many North American dental schools and were doing so in curricular content beyond periodontics and that their educational contributions at a sample school were valued by the dental students there.




tea

Learning and Teaching Together to Advance Evidence-Based Clinical Education: A Faculty Learning Community

Clinical teaching is a cornerstone of health sciences education; it is also the most challenging aspect. The University of Pittsburgh Schools of Dental Medicine, Nursing, and Pharmacy developed a new evidence-based interprofessional course framed as a faculty learning community (FLC) around the principles of learning in a clinical environment. The aim of this study was to assess the overall effectiveness of this two-semester FLC at four health professions schools in academic year 2014-15. The assessment included anonymous participant surveys in each session and an anonymous end-of-course survey. Thirty-five faculty members from dental, health and rehabilitation sciences, nursing, and pharmacy enrolled in the FLC, with six to 32 enrollees attending each session. All attendees at each session completed the session evaluation surveys, but the attendance rate at each session ranged from 17.1% to 91.4%. Sixteen participants (46%) completed the end-of-course survey. The results showed overall positive responses to the FLC and changes in the participants’ self-reported knowledge. Session surveys showed that the participants found the FLC topics helpful and appreciated the opportunity to learn from each other and the interprofessional nature of the FLC. Responses to the end-of-course survey were in alignment with the individual session surveys and cited specific benefits as being the content, teaching materials, and structured discussions. In additional feedback, participants reported interest to continue as a cohort and to extend the peer-support system beyond the FLC. This outcomes assessment of the first round of the FLC confirmed that this cohort-based faculty development in an interprofessional setting was well received by its participants. Their feedback provided valuable insights for changes to future offerings.




tea

Avoiding Drug Resistance by Substrate Envelope-Guided Design: Toward Potent and Robust HCV NS3/4A Protease Inhibitors

ABSTRACT

Hepatitis C virus (HCV) infects millions of people worldwide, causing chronic liver disease that can lead to cirrhosis, hepatocellular carcinoma, and liver transplant. In the last several years, the advent of direct-acting antivirals, including NS3/4A protease inhibitors (PIs), has remarkably improved treatment outcomes of HCV-infected patients. However, selection of resistance-associated substitutions and polymorphisms among genotypes can lead to drug resistance and in some cases treatment failure. A proactive strategy to combat resistance is to constrain PIs within evolutionarily conserved regions in the protease active site. Designing PIs using the substrate envelope is a rational strategy to decrease the susceptibility to resistance by using the constraints of substrate recognition. We successfully designed two series of HCV NS3/4A PIs to leverage unexploited areas in the substrate envelope to improve potency, specifically against resistance-associated substitutions at D168. Our design strategy achieved better resistance profiles over both the FDA-approved NS3/4A PI grazoprevir and the parent compound against the clinically relevant D168A substitution. Crystallographic structural analysis and inhibition assays confirmed that optimally filling the substrate envelope is critical to improve inhibitor potency while avoiding resistance. Specifically, inhibitors that enhanced hydrophobic packing in the S4 pocket and avoided an energetically frustrated pocket performed the best. Thus, the HCV substrate envelope proved to be a powerful tool to design robust PIs, offering a strategy that can be translated to other targets for rational design of inhibitors with improved potency and resistance profiles.

IMPORTANCE Despite significant progress, hepatitis C virus (HCV) continues to be a major health problem with millions of people infected worldwide and thousands dying annually due to resulting complications. Recent antiviral combinations can achieve >95% cure, but late diagnosis, low access to treatment, and treatment failure due to drug resistance continue to be roadblocks against eradication of the virus. We report the rational design of two series of HCV NS3/4A protease inhibitors with improved resistance profiles by exploiting evolutionarily constrained regions of the active site using the substrate envelope model. Optimally filling the S4 pocket is critical to avoid resistance and improve potency. Our results provide drug design strategies to avoid resistance that are applicable to other quickly evolving viral drug targets.




tea

YejM Modulates Activity of the YciM/FtsH Protease Complex To Prevent Lethal Accumulation of Lipopolysaccharide

ABSTRACT

Lipopolysaccharide (LPS) is an essential glycolipid present in the outer membrane (OM) of many Gram-negative bacteria. Balanced biosynthesis of LPS is critical for cell viability; too little LPS weakens the OM, while too much LPS is lethal. In Escherichia coli, this balance is maintained by the YciM/FtsH protease complex, which adjusts LPS levels by degrading the LPS biosynthesis enzyme LpxC. Here, we provide evidence that activity of the YciM/FtsH protease complex is inhibited by the essential protein YejM. Using strains in which LpxC activity is reduced, we show that yciM is epistatic to yejM, demonstrating that YejM acts upstream of YciM to prevent toxic overproduction of LPS. Previous studies have shown that this toxicity can be suppressed by deleting lpp, which codes for a highly abundant OM lipoprotein. It was assumed that deletion of lpp restores lipid balance by increasing the number of acyl chains available for glycerophospholipid biosynthesis. We show that this is not the case. Rather, our data suggest that preventing attachment of lpp to the peptidoglycan sacculus allows excess LPS to be shed in vesicles. We propose that this loss of OM material allows continued transport of LPS to the OM, thus preventing lethal accumulation of LPS within the inner membrane. Overall, our data justify the commitment of three essential inner membrane proteins to avoid toxic over- or underproduction of LPS.

IMPORTANCE Gram-negative bacteria are encapsulated by an outer membrane (OM) that is impermeable to large and hydrophobic molecules. As such, these bacteria are intrinsically resistant to several clinically relevant antibiotics. To better understand how the OM is established or maintained, we sought to clarify the function of the essential protein YejM in Escherichia coli. Here, we show that YejM inhibits activity of the YciM/FtsH protease complex, which regulates synthesis of the essential OM glycolipid lipopolysaccharide (LPS). Our data suggest that disrupting proper communication between LPS synthesis and transport to the OM leads to accumulation of LPS within the inner membrane (IM). The lethality associated with this event can be suppressed by increasing OM vesiculation. Our research has identified a completely novel signaling pathway that we propose coordinates LPS synthesis and transport.




tea

Coping with COVID: How a Research Team Learned To Stay Engaged in This Time of Physical Distancing

ABSTRACT

Physical distancing imposed by the COVID-19 pandemic has led to alterations in routines and new responsibilities for much of the research community. We provide some tips for how research teams can cope with physical distancing, some of which require a change in how we define productivity. Importantly, we need to maintain and strengthen social connections in this time when we can’t be physically together.




tea

The Proteasome Governs Fungal Morphogenesis via Functional Connections with Hsp90 and cAMP-Protein Kinase A Signaling

ABSTRACT

Protein homeostasis is critical for proliferation and viability of all organisms. For Candida albicans, protein homeostasis also modulates the transition between yeast and filamentous forms, which is critical for virulence. A key regulator of morphogenesis is the molecular chaperone Hsp90, which mediates proteostasis under physiological and stress conditions. Hsp90 regulates morphogenesis by repressing cyclic AMP-protein kinase A (cAMP-PKA) signaling, such that inhibition of Hsp90 causes filamentation in the absence of an inducing cue. We explored the effect of perturbation of another facet of protein homeostasis and discovered that morphogenesis is also regulated by the proteasome, a large 33-subunit protein complex consisting of a 20S catalytic core and two 19S regulatory particles, which controls degradation of intracellular proteins. We identified a conserved role of the proteasome in morphogenesis as pharmacological inhibition of the proteasome induced filamentation of C. albicans and the related species Candida dubliniensis, Candida tropicalis, Candida krusei, and Candida parapsilosis. For C. albicans, genetic depletion of any of 29 subunits of the 19S or 20S particle induced filamentation. Filaments induced by inhibition of either the proteasome or Hsp90 have shared structural characteristics, such as aberrant nuclear content, and shared genetic dependencies, such as intact cAMP-PKA signaling. Consistent with a functional connection between these facets of protein homeostasis that modulate morphogenesis, we observed that proteasome inhibition results in an accumulation of ubiquitinated proteins that overwhelm Hsp90 function, relieving Hsp90-mediated repression of morphogenesis. Together, our findings provide a mechanism whereby interconnected facets of proteostasis regulate C. albicans morphogenesis.

IMPORTANCE Fungi cause life-threatening infections and pose a serious threat to human health as there are very few effective antifungal drugs. Candida albicans is a major human fungal pathogen and cause of morbidity and mortality in immunocompromised individuals. A key trait that enables C. albicans virulence is its ability to transition between yeast and filamentous forms. Understanding the mechanisms regulating this virulence trait can facilitate the development of much-needed, novel therapeutic strategies. A key regulator of morphogenesis is the molecular chaperone Hsp90, which is crucial for proteostasis. Here, we expanded our understanding of how proteostasis regulates fungal morphogenesis and identified the proteasome as a repressor of filamentation in C. albicans and related species. Our work suggests that proteasome inhibition overwhelms Hsp90 function, thereby inducing morphogenesis. This work provides a foundation for understanding the role of the proteasome in fungal virulence and offers potential for targeting the proteasome to disarm fungal pathogens.




tea

Expanding the public health team: a cross-sector workforce

I’ve been talking a lot lately about the importance of working across sectors for public health — of not going it alone to tackle the imposing challenges before us. The ideal public health team is broad and includes not only public health professionals representing the essential services, but also professionals from other disciplines, the general public and students of all stripes.




tea

Team conflict and the neurologist

Collaboration within a complicated organization is inherently challenging and can be fraught with discord. Recent emphasis on interdisciplinary and collaborative teamwork in neurology has brought this issue to the forefront of daily practice. The health care system can be complex and opaque, and the stakes—human life—are high. Medical team conflict has been associated with decreased subjective effectiveness, less job satisfaction, and increase in errors. As specialists, neurologists are necessarily embedded within a network of providers and must be adept in the understanding and management of conflictual situations. For the practicing neurologist, it is important to understand team conflict dynamics. Here, management strategies are provided that illustrate how individual neurologists can serve as effective leaders who mitigate harmful effects and capitalize on benefits of team conflict on performance.




tea

Crystal Structure of African Swine Fever Virus pS273R Protease and Implications for Inhibitor Design [Structure and Assembly]

African swine fever (ASF) is a highly contagious hemorrhagic viral disease of domestic and wild pigs that is responsible for serious economic and production losses. It is caused by the African swine fever virus (ASFV), a large and complex icosahedral DNA virus of the Asfarviridae family. Currently, there is no effective treatment or approved vaccine against the ASFV. pS273R, a specific SUMO-1 cysteine protease, catalyzes the maturation of the pp220 and pp62 polyprotein precursors into core-shell proteins. Here, we present the crystal structure of the ASFV pS273R protease at a resolution of 2.3 Å. The overall structure of the pS273R protease is represented by two domains named the "core domain" and the N-terminal "arm domain." The "arm domain" contains the residues from M1 to N83, and the "core domain" contains the residues from N84 to A273. A structure analysis reveals that the "core domain" shares a high degree of structural similarity with chlamydial deubiquitinating enzyme, sentrin-specific protease, and adenovirus protease, while the "arm domain" is unique to ASFV. Further, experiments indicated that the "arm domain" plays an important role in maintaining the enzyme activity of ASFV pS273R. Moreover, based on the structural information of pS273R, we designed and synthesized several peptidomimetic aldehyde compounds at a submolar 50% inhibitory concentration, which paves the way for the design of inhibitors to target this severe pathogen.

IMPORTANCE African swine fever virus, a large and complex icosahedral DNA virus, causes a deadly infection in domestic pigs. In addition to Africa and Europe, countries in Asia, including China, Vietnam, and Mongolia, were negatively affected by the hazards posed by ASFV outbreaks in 2018 and 2019, at which time more than 30 million pigs were culled. Until now, there has been no vaccine for protection against ASFV infection or effective treatments to cure ASF. Here, we solved the high-resolution crystal structure of the ASFV pS273R protease. The pS273R protease has a two-domain structure that distinguishes it from other members of the SUMO protease family, while the unique "arm domain" has been proven to be essential for its hydrolytic activity. Moreover, the peptidomimetic aldehyde compounds designed to target the substrate binding pocket exert prominent inhibitory effects and can thus be used in a potential lead for anti-ASFV drug development.




tea

The Transcriptional Cofactor VGLL1 Drives Transcription of Human Papillomavirus Early Genes via TEAD1 [Genome Replication and Regulation of Viral Gene Expression]

The TEAD family of transcription factors requires associating cofactors to induce gene expression. TEAD1 is known to activate the early promoter of human papillomavirus (HPV), but the precise mechanisms of TEAD1-mediated transactivation of the HPV promoter, including its relevant cofactors, remain unexplored. Here, we reveal that VGLL1, a TEAD-interacting cofactor, contributes to HPV early gene expression. Knockdown of VGLL1 and/or TEAD1 led to a decrease in viral early gene expression in human cervical keratinocytes and cervical cancer cell lines. We identified 11 TEAD1 target sites in the HPV16 long control region (LCR) by in vitro DNA pulldown assays; 8 of these sites contributed to the transcriptional activation of the early promoter in luciferase reporter assays. VGLL1 bound to the HPV16 LCR via its interaction with TEAD1 both in vitro and in vivo. Furthermore, introducing HPV16 and HPV18 whole genomes into primary human keratinocytes led to increased levels of VGLL1, due in part to the upregulation of TEADs. These results suggest that multiple VGLL1/TEAD1 complexes are recruited to the LCR to support the efficient transcription of HPV early genes.

IMPORTANCE Although a number of transcription factors have been reported to be involved in HPV gene expression, little is known about the cofactors that support HPV transcription. In this study, we demonstrate that the transcriptional cofactor VGLL1 plays a prominent role in HPV early gene expression, dependent on its association with the transcription factor TEAD1. Whereas TEAD1 is ubiquitously expressed in a variety of tissues, VGLL1 displays tissue-specific expression and is implicated in the development and differentiation of epithelial lineage tissues, where HPV gene expression occurs. Our results suggest that VGLL1 may contribute to the epithelial specificity of HPV gene expression, providing new insights into the mechanisms that regulate HPV infection. Further, VGLL1 is also critical for the growth of cervical cancer cells and may represent a novel therapeutic target for HPV-associated cancers.




tea

Asking young children to “do science” instead of “be scientists” increases science engagement in a randomized field experiment [Psychological and Cognitive Sciences]

Subtle features of common language can imply to young children that scientists are a special and distinct kind of person—a way of thinking that can interfere with the development of children’s own engagement with science. We conducted a large field experiment (involving 45 prekindergarten schools, 130 teachers, and over 1,100...




tea

NRF3-POMP-20S Proteasome Assembly Axis Promotes Cancer Development via Ubiquitin-Independent Proteolysis of p53 and Retinoblastoma Protein [Research Article]

Proteasomes are essential protease complexes that maintain cellular homeostasis, and aberrant proteasomal activity supports cancer development. The regulatory mechanisms and biological function of the ubiquitin-26S proteasome have been studied extensively, while those of the ubiquitin-independent 20S proteasome system remain obscure. Here, we show that the cap ’n’ collar (CNC) family transcription factor NRF3 specifically enhances 20S proteasome assembly in cancer cells and that 20S proteasomes contribute to colorectal cancer development through ubiquitin-independent proteolysis of the tumor suppressor p53 and retinoblastoma (Rb) proteins. The NRF3 gene is highly expressed in many cancer tissues and cell lines and is important for cancer cell growth. In cancer cells, NRF3 upregulates the assembly of the 20S proteasome by directly inducing the gene expression of the 20S proteasome maturation protein POMP. Interestingly, NRF3 knockdown not only increases p53 and Rb protein levels but also increases p53 activities for tumor suppression, including cell cycle arrest and induction of apoptosis. Furthermore, protein stability and cell viability assays using two distinct proteasome inhibitor anticancer drugs, the 20S proteasome inhibitor bortezomib and the ubiquitin-activating enzyme E1 inhibitor TAK-243, show that the upregulation of the NRF3-POMP axis leads to ubiquitin-independent proteolysis of p53 and Rb and to impaired sensitivity to bortezomib but not TAK-243. More importantly, the NRF3-POMP axis supports tumorigenesis and metastasis, with higher NRF3/POMP expression levels correlating with poor prognoses in patients with colorectal or rectal adenocarcinoma. These results suggest that the NRF3-POMP-20S proteasome assembly axis is significant for cancer development via ubiquitin-independent proteolysis of tumor suppressor proteins.




tea

Re: Primary Care Practices Implementation of Patient-Team Partnership: Findings from EvidenceNOW Southwest




tea

Use of Human Induced Pluripotent Stem Cells and Kidney Organoids To Develop a Cysteamine/mTOR Inhibition Combination Therapy for Cystinosis

Background

Mutations in CTNS—a gene encoding the cystine transporter cystinosin—cause the rare, autosomal, recessive, lysosomal-storage disease cystinosis. Research has also implicated cystinosin in modulating the mTORC1 pathway, which serves as a core regulator of cellular metabolism, proliferation, survival, and autophagy. In its severest form, cystinosis is characterized by cystine accumulation, renal proximal tubule dysfunction, and kidney failure. Because treatment with the cystine-depleting drug cysteamine only slows disease progression, there is an urgent need for better treatments.

Methods

To address a lack of good human-based cell culture models for studying cystinosis, we generated the first human induced pluripotent stem cell (iPSC) and kidney organoid models of the disorder. We used a variety of techniques to examine hallmarks of cystinosis—including cystine accumulation, lysosome size, the autophagy pathway, and apoptosis—and performed RNA sequencing on isogenic lines to identify differentially expressed genes in the cystinosis models compared with controls.

Results

Compared with controls, these cystinosis models exhibit elevated cystine levels, increased apoptosis, and defective basal autophagy. Cysteamine treatment ameliorates this phenotype, except for abnormalities in apoptosis and basal autophagy. We found that treatment with everolimus, an inhibitor of the mTOR pathway, reduces the number of large lysosomes, decreases apoptosis, and activates autophagy, but it does not rescue the defect in cystine loading. However, dual treatment of cystinotic iPSCs or kidney organoids with cysteamine and everolimus corrects all of the observed phenotypic abnormalities.

Conclusions

These observations suggest that combination therapy with a cystine-depleting drug such as cysteamine and an mTOR pathway inhibitor such as everolimus has potential to improve treatment of cystinosis.




tea

Polarization of protease-activated receptor 2 (PAR-2) signaling is altered during airway epithelial remodeling and deciliation [Immunology]

Protease-activated receptor 2 (PAR-2) is activated by secreted proteases from immune cells or fungi. PAR-2 is normally expressed basolaterally in differentiated nasal ciliated cells. We hypothesized that epithelial remodeling during diseases characterized by cilial loss and squamous metaplasia may alter PAR-2 polarization. Here, using a fluorescent arrestin assay, we confirmed that the common fungal airway pathogen Aspergillus fumigatus activates heterologously-expressed PAR-2. Endogenous PAR-2 activation in submerged airway RPMI 2650 or NCI–H520 squamous cells increased intracellular calcium levels and granulocyte macrophage–colony-stimulating factor, tumor necrosis factor α, and interleukin (IL)-6 secretion. RPMI 2650 cells cultured at an air–liquid interface (ALI) responded to apically or basolaterally applied PAR-2 agonists. However, well-differentiated primary nasal epithelial ALIs responded only to basolateral PAR-2 stimulation, indicated by calcium elevation, increased cilia beat frequency, and increased fluid and cytokine secretion. We exposed primary cells to disease-related modifiers that alter epithelial morphology, including IL-13, cigarette smoke condensate, and retinoic acid deficiency, at concentrations and times that altered epithelial morphology without causing breakdown of the epithelial barrier to model early disease states. These altered primary cultures responded to both apical and basolateral PAR-2 stimulation. Imaging nasal polyps and control middle turbinate explants, we found that nasal polyps, but not turbinates, exhibit apical calcium responses to PAR-2 stimulation. However, isolated ciliated cells from both polyps and turbinates maintained basolateral PAR-2 polarization, suggesting that the calcium responses originated from nonciliated cells. Altered PAR-2 polarization in disease-remodeled epithelia may enhance apical responses and increase sensitivity to inhaled proteases.




tea

ADAM10 and ADAM17 proteases mediate proinflammatory cytokine-induced and constitutive cleavage of endomucin from the endothelial surface [Membrane Biology]

Contact between inflammatory cells and endothelial cells (ECs) is a crucial step in vascular inflammation. Recently, we demonstrated that the cell-surface level of endomucin (EMCN), a heavily O-glycosylated single-transmembrane sialomucin, interferes with the interactions between inflammatory cells and ECs. We have also shown that, in response to an inflammatory stimulus, EMCN is cleared from the cell surface by an unknown mechanism. In this study, using adenovirus-mediated overexpression of a tagged EMCN in human umbilical vein ECs, we found that treatment with tumor necrosis factor α (TNF-α) or the strong oxidant pervanadate leads to loss of cell-surface EMCN and increases the levels of the C-terminal fragment of EMCN 3- to 4-fold. Furthermore, treatment with the broad-spectrum matrix metalloproteinase inhibitor batimastat (BB94) or inhibition of ADAM metallopeptidase domain 10 (ADAM10) and ADAM17 with two small-molecule inhibitors, GW280264X and GI254023X, or with siRNA significantly reduced basal and TNFα-induced cell-surface EMCN cleavage. Release of the C-terminal fragment of EMCN by TNF-α treatment was blocked by chemical inhibition of ADAM10 alone or in combination with ADAM17. These results indicate that cell-surface EMCN undergoes constitutive cleavage and that TNF-α treatment dramatically increases this cleavage, which is mediated predominantly by ADAM10 and ADAM17. As endothelial cell-surface EMCN attenuates leukocyte–EC interactions during inflammation, we propose that EMCN is a potential therapeutic target to manage vascular inflammation.




tea

Regenerative responses following DNA damage - {beta}-catenin mediates head regrowth in the planarian Schmidtea mediterranea [RESEARCH ARTICLE]

Annelies Wouters, Jan-Pieter Ploem, Sabine A. S. Langie, Tom Artois, Aziz Aboobaker, and Karen Smeets

Pluripotent stem cells hold great potential for regenerative medicine. Increased replication and division, such is the case during regeneration, concomitantly increases the risk of adverse outcomes through the acquisition of mutations. Seeking for driving mechanisms of such outcomes, we challenged a pluripotent stem cell system during the tightly controlled regeneration process in the planarian Schmidtea mediterranea. Exposure to the genotoxic compound methyl methanesulfonate (MMS) revealed that despite a similar DNA-damaging effect along the anteroposterior axis of intact animals, responses differed between anterior and posterior fragments after amputation. Stem cell proliferation and differentiation proceeded successfully in the amputated heads, leading to regeneration of missing tissues. Stem cells in the amputated tails showed decreased proliferation and differentiation capacity. As a result, tails could not regenerate. Interference with the body-axis-associated component β-catenin-1 increased regenerative success in tail fragments by stimulating proliferation at an early time point. Our results suggest that differences in the Wnt signalling gradient along the body axis modulate stem cell responses to MMS.




tea

Proteasome Inhibitors Bortezomib and Carfilzomib Stimulate the Transport Activity of Human Organic Anion Transporter 1 [Articles]

Organic anion transporter 1 (OAT1), expressed at the basolateral membrane of renal proximal tubule epithelial cells, mediates the renal excretion of many clinically important drugs. Previous study in our laboratory demonstrated that ubiquitin conjugation to OAT1 leads to OAT1 internalization from the cell surface and subsequent degradation. The current study showed that the ubiquitinated OAT1 accumulated in the presence of the proteasomal inhibitors MG132 and ALLN rather than the lysosomal inhibitors leupeptin and pepstatin A, suggesting that ubiquitinated OAT1 degrades through proteasomes. Anticancer drugs bortezomib and carfilzomib target the ubiquitin-proteasome pathway. We therefore investigate the roles of bortezomib and carfilzomib in reversing the ubiquitination-induced downregulation of OAT1 expression and transport activity. We showed that bortezomib and carfilzomib extremely increased the ubiquitinated OAT1, which correlated well with an enhanced OAT1-mediated transport of p-aminohippuric acid and an enhanced OAT1 surface expression. The augmented OAT1 expression and transport activity after the treatment with bortezomib and carfilzomib resulted from a reduced rate of OAT1 degradation. Consistent with this, we found decreased 20S proteasomal activity in cells that were exposed to bortezomib and carfilzomib. In conclusion, this study identified the pathway in which ubiquitinated OAT1 degrades and unveiled a novel role of anticancer drugs bortezomib and carfilzomib in their regulation of OAT1 expression and transport activity.

SIGNIFICANCE STATEMENT

Bortezomib and carfilzomib are two Food and Drug Administration–approved anticancer drugs, and proteasome is the drug target. In this study, we unveiled a new role of bortezomib and carfilzomib in enhancing OAT1 expression and transport activity by preventing the degradation of ubiquitinated OAT1 in proteasomes. This finding provides a new strategy in regulating OAT1 function that can be used to accelerate the clearance of drugs, metabolites, or toxins and reverse the decreased expression under disease conditions.




tea

The contact system proteases play disparate roles in streptococcal sepsis

Sepsis causes an activation of the human contact system, an inflammatory response mechanism against foreign surfaces, proteins and pathogens. The serine proteases of the contact system, factor XII and plasma kallikrein, are decreased in plasma of septic patients, which was previously associated with an unfavorable outcome. However, the precise mechanisms and roles of contact system factors in bacterial sepsis are poorly understood. We, therefore, studied the physiological relevance of factor XII and plasma kallikrein in a mouse model of experimental sepsis. We show that decreased plasma kallikrein concentration in septic mice is a result of reduced mRNA expression plasma prekallikrein gene, indicating that plasma kallikrein belong to negative acute phase proteins. Investigations regarding the pathophysiological function of contact system proteases during sepsis revealed different roles for factor XII and plasma kallikrein. In vitro, factor XII decelerated bacteria induced fibrinolysis, whereas plasma kallikrein supported it. Remarkably, depletion of plasma kallikrein (but not factor XII) by treatment with antisense-oligonucleotides, dampens bacterial dissemination and growth in multiple organs in the mouse sepsis model. These findings identify plasma kallikrein as a novel host pathogenicity factor in Streptococcus pyogenes sepsis.




tea

Association of physician payment model and team-based care with timely access in primary care: a population-based cross-sectional study

Background:

It is unclear how patient-reported access to primary care differs by physician payment model and participation in team-based care. We examined the association between timely and after-hours access to primary care and physician payment model and participation in team-based care, and sought to assess how access varied by patient characteristics.

Methods:

We conducted a cross-sectional analysis of adult (age ≥ 16 yr) Ontarians who responded to the Ontario Health Care Experience Survey between January 2013 and September 2015, reported having a primary care provider and agreed to have their responses linked to health administrative data. Access measures included the proportion of respondents who reported same-day or next-day access when sick, satisfaction with time to appointment when sick, telephone access and knowledge of an after-hours clinic. We tested the association between practice model and measures of access using logistic regression after stratifying for rurality.

Results:

A total of 33 665 respondents met our inclusion criteria. In big cities, respondents in team and nonteam capitation models were less likely to report same-day or next-day access when sick than respondents in enhanced fee-for-service models (team capitation 43%, adjusted odds ratio [OR] 0.88, 95% confidence interval [CI] 0.79–0.98; nonteam capitation 39%, adjusted OR 0.78, 95% CI 0.70–0.87; enhanced fee-for-service 46% [reference]). Respondents in team and nonteam capitation models were more likely than those in enhanced fee-for-service models to report that their provider had an after-hours clinic (team capitation 59%, adjusted OR 2.59, 95% CI 2.39–2.81; nonteam capitation 51%, adjusted OR 1.90, 95% CI 1.76–2.04; enhanced fee-for service 34% [reference]). Patterns were similar for respondents in small towns. There was minimal to no difference by model for satisfaction with time to appointment or telephone access.

Interpretation:

In our setting, there was an association between some types of access to primary care and physician payment model and team-based care, but the direction was not consistent. Different measures of timely access are needed to understand health care system performance.




tea

Perspectives of specialists and family physicians in interprofessional teams in caring for patients with multimorbidity: a qualitative study

Background:

Patients with multimorbidity often require services across different health care settings, yet team processes among settings are rarely implemented. We explored perceptions of specialists and family physicians collaborating in a telemedicine interprofessional consultation for patients with multimorbidity to better understand the value of bringing physicians together across the boundaries of health care settings.

Methods:

This was a descriptive qualitative, interview-based study. Physicians who had previously participated in the Telemedicine Interprofessional Model of Practice for Aging and Complex Treatments (Telemedicine IMPACT Plus [TIP] Program) were invited to participate and asked to describe their experience of being a member of the program. Interviews were conducted from March to May 2016. We conducted an iterative and interpretive process using both individual and team analysis to identify themes.

Results:

There were 15 participants, 9 specialists and 6 family physicians. Three themes emerged in the analysis: creating new perspectives on care for patients with multimorbidity by sharing knowledge, skills and attitudes; the shift from a consultant model to an interprofessional team model (allowing a window into the community, extending discussions beyond the medical model and focusing on the patient’s health in context); and opportunities for learners, including learning about interprofessional collaboration and gaining exposure to a real-world model for caring for people with multimorbidity in outpatient settings.

Interpretation:

Family physicians and specialists participating in a TIP Program believed the program improved their knowledge and skills, while also serving as an effective care delivery strategy. The findings also support that learners require more exposure to nontraditional consultant models in order to care for patients with multimorbidity effectively.




tea

Selling Chateau Villa In Phu My Hung- Tan Phu Ward- District 7- 612 sqm- The NegotiablePrice

FOR SALE CHATEAU VILLA IN PHU MY HUNG- TAN PHU WARD- DISTRICT 7 - Land area: 612 sqm - Floor area: 1000 sqm - Garden and riverside area: 1000 sqm - The villa is designed a basement, a ground floor, 3 floors, luxury furniture - Having 7 large bedrooms, 8 toilets - Selling price: c...




tea

How to Measure Video Marketing Impact + KPIs for Every Team’s Video Program

window.addEventListener("message", function (message) { var msg = message.data && JSON.parse(message.data); if (msg.name === "hapyak_embedded_experience_aspect_ratio_available") { var hyIframe = document.getElementById("hapyak_embedded_experience_6432"); hyIframe.style.paddingTop = 100 * (1 / […]

The post How to Measure Video Marketing Impact + KPIs for Every Team’s Video Program appeared first on e-Learning Feeds.




tea

Strikers 1945 II Launches May 29 on Steam

City Connection announced it will release the 1997 shoot ’em up, Strikers 1945 II, for Windows PC via Steam on May 29. It will support English and Japanese language options.

Full Article



tea

Sci-Fi Action Platformer Dark Light Launches May 8 for Steam Early Access, Later for Switch

Developer Mirari & Co. announced the science-fiction action platformer Dark Light for Windows PC via Steam Early Access on May 8 and later for the Nintendo Switch when the game leaves Steam Early Access. 

Mirari & Co. is looking to release the game within one year of the Steam Early Access release, however, it depends "on how we are taking players suggestions and advice to shaping the game."

View the latest trailer of the game below:

Here is an overview of the game:

Dark Light is a science-fiction action-platformer with unique gameplay. Explore an apocalyptic cyberpunk world full of supernatural beings. Encounter and defeat creatures of darkness invisible to the naked eye, detected only with the light source from your drone. Experience the horror and feel their presence as they surround you.

As a Dark Hunter you were dropped into a wreaked world. To survive, you need to equip yourself, fight your way through, and collect ‘shards’ from killing supernatural creatures to reinforce your energy. Through survival, you will explore the mysterious dark zones of the apocalypse world.

Key Features:

  • Cinematic quality graphic, detailed characters and environment design, and vivid animation with lush visual effect.
  • A variety of range, melee, and throwable weapons; unique items; and multiple ways to upgrade weapons, special equipment, and the player to shape your own character skills.
  • Non-linear map structure for you to choose your own path to explore the dark zones. Encounter horrifying supernatural enemies, fearsome bosses, and friendly NPCs, and fight with invisible creatures that can only be seen in a special light source.
  • Detect invisible enemies and reveal hidden paths with the special light source from your drone.

A life-long and avid gamer, William D'Angelo was first introduced to VGChartz in 2007. After years of supporting the site, he was brought on in 2010 as a junior analyst, working his way up to lead analyst in 2012. He has expanded his involvement in the gaming community by producing content on his own YouTube channel and Twitch channel dedicated to gaming Let's Plays and tutorials. You can contact the author at wdangelo@vgchartz.com or on Twitter @TrunksWD.

Full Article - https://www.vgchartz.com/article/443411/sci-fi-action-platformer-dark-light-launches-may-8-for-steam-early-access-later-for-switch/




tea

Disintegration Launches June 16 for PS4, Xbox One And Steam

Publisher Private Division and developer V1 Interactive announced Disintegration will launch for the PlayStation 4, Xbox One and Windows PC via Steam on June 16 for $49.99.

View the story trailer below:

Here is an overview of the game:

Disintegration is a sci-fi, first-person shooter that blends real-time tactical elements to create an entirely new experience. Set in a world ripped apart by famine, scarce resources, and the planet on the brink of destruction, humanity has developed a process to survive its harsh reality known as Integration, in which a human brain is transferred to a robotic armature. From the ensuing chaos, an aggressive, militaristic legion, known as the Rayonne, gain control and begins to impose the once optional process of Integration onto the rest of humanity to consolidate their power.

Players command Romer Shoal, an incredibly-skilled Gravcycle pilot, who leads a small band of outlaws to fight back against an overwhelming Rayonne force. Over the course of a thrilling single-player campaign, players will control a Gravcycle loaded with weaponry, leading Romer and his team across a series of diverse missions packed with action, explosions, and plot twists, to beat back the Rayonne forces and give the last vestiges of humanity hope to prevail.

In addition to the full single-player campaign, Disintegration features frenetic player-versus-player multiplayer where pilots and their crews compete in three game modes and six distinct maps. Players can select from nine highly-stylized “Crews” which lend themselves to different playstyles.

Multiplayer provides a host of cosmetic customizations that can be purchased or earned in-game, including pilot and crew skins, cosmetic Gravcycle customizations, and a variety of banners. In addition to the multiplayer content at release, the team at V1 will be supporting the game post-launch with seasonal content drops.

Key Features:

  • Tactical Gravcycle Combat – Pilot a heavily armed Gravcycle featuring a variety of firepower, maneuverability, and abilities.
  • Riveting Single-player Campaign – From Marcus Lehto, the co-creator of Halo and creative director of Halo: Reach, comes an all-new sci-fi saga. Play as Romer Shoal and confront the Rayonne, a rising global army set on eliminating what remains of humanity.
  • Frenetic Multiplayer Action – Battle across a variety of maps in three intense, team-based five-versus-five multiplayer modes. Choose your favorite Gravcycle and lead your crew alongside your teammates, competing against opposing pilots to win objective-based matches.

A life-long and avid gamer, William D'Angelo was first introduced to VGChartz in 2007. After years of supporting the site, he was brought on in 2010 as a junior analyst, working his way up to lead analyst in 2012. He has expanded his involvement in the gaming community by producing content on his own YouTube channel and Twitch channel dedicated to gaming Let's Plays and tutorials. You can contact the author at wdangelo@vgchartz.com or on Twitter @TrunksWD.

Full Article - https://www.vgchartz.com/article/443412/disintegration-launches-june-16-for-ps4-xbox-one-and-steam/




tea

Those Who Remain Delayed to May 28 for PS4, Xbox One And Steam

Publisher Wired Productions and developer Camel 101 have delayed psychological horror game, Those Who Remain, from May 15 to May 28 for the PlayStation 4, Xbox One and Windows PC via Steam. 

View the official release date trailer below:

Here is an overview of the game:

As the lights go out, the embers of darkness are stoked in the sleepy town of Dormont.

Whispers of disappearances carry through the town as a burgeoning, uneasy and irrational fear begins to spread and darkness comes to be an unwelcome reflection to Those Who Remain.

Some mistakes should never happen, not when your life is complete – and yet they do. Edward had the good life, a beautiful wife and the perfect little girl, yet finds himself several whiskeys down and driving through the night of Dormont to end his secret affair – in a bid to fix his mistakes.

As Edward pulls into the Golden Oak Motel, he is unaware just how much this night will change his life…

Key Features:

The horrors and darkness that thrive in the corner of every eye are torn loose…

Those Who Remain places you in an up-close, psychological horror story set in the sleepy town of Dormont – a town in a spiralling split from the fabric of reality, warped by darkness and the deeds of the Citizens who reside.

Confront the uncomfortable horrors reflected by the darkness and survive the night of Dormont as Edward is confronted with a test of his sanity, morality and the shadows of evil that lurks below.

  • Darkness Has Eyes -Navigate and survive the encroaching darkness and stay in the protection of the light by any means[br]
  • Worlds Torn Asunder – Pave your way ahead by moving between Dormont and its dark otherworldly counterpart to further solve the mysteries held within the dark
  • Conscience of Choice – Choose to help any surviving citizens of Dormont you encounter or leave them to the darkness. Innocence cannot always be assumed, and the township of Dormont hides a cursed trove of secrets
  • Savor your Sanity – Keep your sanity in check as you delve deeper into the darkness of Dormont – expected rules of the real world have been torn apart
  • Follow your Path – Your decisions and choices will determine the fate of Edward, through multiple different branching outcomes

A life-long and avid gamer, William D'Angelo was first introduced to VGChartz in 2007. After years of supporting the site, he was brought on in 2010 as a junior analyst, working his way up to lead analyst in 2012. He has expanded his involvement in the gaming community by producing content on his own YouTube channel and Twitch channel dedicated to gaming Let's Plays and tutorials. You can contact the author at wdangelo@vgchartz.com or on Twitter @TrunksWD.

Full Article - https://www.vgchartz.com/article/443413/those-who-remain-delayed-to-may-28-for-ps4-xbox-one-and-steam/




tea

Square Enix are selling 54 Eidos games at a steal, for charity

Stuck for things to play this weekend? After offering their exhaustive JRPG lineup at a pittance last week, Square Enix have this week gutted the price of their Eidos Anthology bundle on Steam as part of their “Stay Home & Play” campaign – offering 54 PC classics, contemporary bangers and bizarre curiosities for just under […]




tea

It's too late to ban face recognition – here's what we need instead

Plans to ban face recognition in public places would only halt a tiny fraction of its use. Instead we need to regulate the technology – and fast, says Donna Lu




tea

Flying cars remain science fiction as 24 teams fail to claim $1m prize

Flying car hopefuls were meant to take off at a competition on a NASA airbase, but no team claimed the prize after a string of crashes and no-shows




tea

Weird star was born when two white dwarfs merged instead of blowing up

White dwarf stars are common in the galaxy, but astronomers have found one that doesn't seem to obey the rules. They think it was born when two smaller white dwarfs merged together




tea

'1619' Pulitzer Will Boost Socialist Teaching in Schools

The Pulitzer Prize Board this week awarded its commentary award to The New York Times' Nikole Hannah-Jones for her essay launching the "1619 Project." This will accelerate a trend already underway: subjecting schoolchildren to a curriculum that blames slavery on capitalism and whose creator believes socialism offers the best path to racial equity.




tea

How Robotics Teams Prepared for DARPA's SubT Challenge

Roboticists share what they've learned so far from DARPA's Subterranean Challenge, and how they readied their bots for the next event—the Tunnel Circuit