tia

Fine-Tuning Control: Pattern Management Versus Supplementation: View 1: Pattern Management: an Essential Component of Effective Insulin Management

Jan Pearson
Apr 1, 2001; 14:
Articles




tia

Integrating Depression Care With Diabetes Care in Real-World Settings: Lessons From the Robert Wood Johnson Foundation Diabetes Initiative

Daren Anderson
Jan 1, 2007; 20:10-16
Feature Articles




tia

Negotiating the Barrier of Hypoglycemia in Diabetes

Philip E. Cryer
Jan 1, 2002; 15:
Articles




tia

The testis-specific LINC component SUN3 is essential for sperm head shaping during mouse spermiogenesis [Cell Biology]

Sperm head shaping is a key event in spermiogenesis and is tightly controlled via the acrosome–manchette network. Linker of nucleoskeleton and cytoskeleton (LINC) complexes consist of Sad1 and UNC84 domain–containing (SUN) and Klarsicht/ANC-1/Syne-1 homology (KASH) domain proteins and form conserved nuclear envelope bridges implicated in transducing mechanical forces from the manchette to sculpt sperm nuclei into a hook-like shape. However, the role of LINC complexes in sperm head shaping is still poorly understood. Here we assessed the role of SUN3, a testis-specific LINC component harboring a conserved SUN domain, in spermiogenesis. We show that CRISPR/Cas9-generated Sun3 knockout male mice are infertile, displaying drastically reduced sperm counts and a globozoospermia-like phenotype, including a missing, mislocalized, or fragmented acrosome, as well as multiple defects in sperm flagella. Further examination revealed that the sperm head abnormalities are apparent at step 9 and that the sperm nuclei fail to elongate because of the absence of manchette microtubules and perinuclear rings. These observations indicate that Sun3 deletion likely impairs the ability of the LINC complex to transduce the cytoskeletal force to the nuclear envelope, required for sperm head elongation. We also found that SUN3 interacts with SUN4 in mouse testes and that the level of SUN4 proteins is drastically reduced in Sun3-null mice. Altogether, our results indicate that SUN3 is essential for sperm head shaping and male fertility, providing molecular clues regarding the underlying pathology of the globozoospermia-like phenotype.




tia

Quantitative Profiling of the Human Substantia Nigra Proteome from Laser-capture Microdissected FFPE Tissue

Eva Griesser
May 1, 2020; 19:839-851
Research




tia

DEqMS: a method for accurate variance estimation in differential protein expression analysis

Yafeng Zhu
Mar 23, 2020; 0:TIR119.001646v1-mcp.TIR119.001646
Technological Innovation and Resources




tia

Compliance Checklists No Longer Required at Initial Manuscript Submission

Alma L. Burlingame
Apr 1, 2020; 19:571-571
Editorial




tia

Human Control Is Essential to the Responsible Use of Military Neurotechnology

8 August 2019

Yasmin Afina

Research Assistant, International Security Programme
The military importance of AI-connected brain–machine interfaces is growing. Steps must be taken to ensure human control at all times over these technologies.

2019-08-08-BABWIB.jpg

A model of a human brain is displayed at an exhibition in Lisbon, Portugal. Photo: Getty Images.

Technological progress in neurotechnology and its military use is proceeding apace. As early as the 1970s, brain-machine interfaces have been the subject of study. By 2014, the UK’s Ministry of Defence was arguing that the development of artificial devices, such as artificial limbs, is ‘likely to see refinement of control to provide… new ways to connect the able-bodied to machines and computers.’ Today, brain-machine interface technology is being investigated around the world, including in Russia, China and South Korea.

Recent developments in the private sector are producing exciting new capabilities for people with disabilities and medical conditions. In early July, Elon Musk and Neuralink presented their ‘high-bandwidth’ brain-machine interface system, with small and flexible electrode threads packaged into a small device containing custom chips and to be inserted and implanted into the user’s brain for medical purposes.

In the military realm, in 2018, the United States’ Defense Advanced Research Projects Agency (DARPA) put out a call for proposals to investigate the potential of nonsurgical brain-machine interfaces to allow soldiers to ‘interact regularly and intuitively with artificially intelligent, semi-autonomous and autonomous systems in a manner currently not possible with conventional interfaces’. DARPA further highlighted the need for these interfaces to be bidirectional – where information is sent both from brain to machine (neural recording) and from machine to brain (neural stimulation) – which will eventually allow machines and humans to learn from each other.

This technology may provide soldiers and commanders with a superior level of sensory sensitivity and the ability to process a greater amount of data related to their environment at a faster pace, thus enhancing situational awareness. These capabilities will support military decision-making as well as targeting processes.

Neural recording will also enable the obtention of a tremendous amount of data from operations, including visuals, real-time thought processes and emotions. These sets of data may be used for feedback and training (including for virtual wargaming and for machine learning training), as well as for investigatory purposes. Collected data will also feed into research that may help researchers understand and predict human intent from brain signals – a tremendous advantage from a military standpoint.

Legal and ethical considerations

The flip side of these advancements is the responsibilities they will impose and the risks and vulnerabilities of the technology as well as legal and ethical considerations.

The primary risk would be for users to lose control over the technology, especially in a military context; hence a fail-safe feature is critical for humans to maintain ultimate control over decision-making. Despite the potential benefits of symbiosis between humans and AI, users must have the unconditional possibility to override these technologies should they believe it is appropriate and necessary for them to do so.

This is important given the significance of human control over targeting, as well as strategic and operational decision-making. An integrated fail-safe in brain-machine interfaces may in fact allow for a greater degree of human control over critical, time-sensitive decision-making. In other words, in the event of incoming missiles alert, while the AI may suggest a specific course of action, users must be able to decide in a timely manner whether to execute it or not.

Machines can learn from coded past experiences and decisions, but humans also use gut feelings to make life and death decisions. A gut feeling is a human characteristic that is not completely transferable, as it relies on both rational and emotional traits – and is part of the ‘second-brain’ and the gut-brain axis which is currently poorly understood. It is however risky to take decisions solely on gut feelings or solely on primary brain analysis—therefore, receiving a comprehensive set of data via an AI-connected brain-machine interface may help to verify and evaluate the information in a timely manner, and complement decision-making processes. However, these connections and interactions would have to be much better understood than the current state of knowledge. 

Fail-safe features are necessary to ensure compliance with the law, including international humanitarian law and international human rights law. As a baseline, human control must be used to 1) define areas where technology may or may not be trusted and to what extent, and 2) ensure legal, political and ethical accountability, responsibility and explainability at all times. Legal and ethical considerations must be taken into account from as early as the design and conceptualizing stage of these technologies, and oversight must be ensured across the entirety of the manufacturing supply chain.  

The second point raises the need to further explore and clarify whether existing national, regional and international legal, political and ethical frameworks are sufficient to cover the development and use of these technologies. For instance, there is value in assessing to what extent AI-connected brain-machine interfaces will affect the assessment of the mental element in war crimes and their human rights implications.

In addition, these technologies need to be highly secure and invulnerable to cyber hacks. Neural recording and neural stimulation will be directly affecting brain processes in humans and if an adversary has the ability to connect to a human brain, steps need to be taken to ensure that memory and personality could not be damaged.

Future questions

Military applications of technological progress in neurotechnology is inevitable, and their implications cannot be ignored. There is an urgent need for policymakers to understand the fast-developing neurotechnical capabilities, develop international standards and best practices – and, if necessary, new and dedicated legal instruments – to frame the use of these technologies.

Considering the opportunities that brain-machine interfaces may present in the realms of security and defence, inclusive, multi-stakeholder discussions and negotiations leading to the development of standards must include the following considerations:

  • What degree of human control would be desirable, at what stage and by whom? To what extent could human users be trusted with their own judgment in decision-making processes?
  • How could algorithmic and human biases, the cyber security and vulnerabilities of these technologies and the quality of data be factored into these discussions?
  • How can ethical and legal considerations be incorporated into the design stage of these technologies?
  • How can it be ensured that humans cannot be harmed in the process, either inadvertently or deliberately?
  • Is there a need for a dedicated international forum to discuss the military applications of neurotechnology? How could these discussions be integrated to existing international processes related to emerging military applications of technological progress, such as the Convention on Certain Conventional Weapons (CCW) Group of Governmental Experts on Lethal Autonomous Weapons Systems?




tia

The Smart Peace Initiative: An Integrated and Adaptive Approach to Building Peace

Invitation Only Research Event

12 May 2020 - 10:00am to 11:30am
Add to Calendar

Smart Peace brings together global expertise in conflict analysis and research, peacebuilding and mediation programming, and behavioural science and evaluation. Together, Smart Peace partners are developing integrated and adaptive peace initiatives, working with local partners to prevent and resolve complex and intractable conflicts in Central African Republic, Myanmar and northern Nigeria.
 
This roundtable is an opportunity for Smart Peace partners to share the Smart Peace concept, approach and objectives, and experiences of the first phases of programme implementation. Roundtable discussions among participants from policy, practice and research communities will inform future priorities and planning for Smart Peace learning, advocacy and communication.
 
Smart Peace partners include Conciliation Resources, Behavioural Insights Team, The Centre for Humanitarian Dialogue, Chatham House, ETH Zurich, International Crisis Group and The Asia Foundation.

Nilza Amaral

Project Manager, International Security Programme




tia

Soundscapes of war: the audio-visual performance of war by Shi'a militias in Iraq and Syria

7 May 2020 , Volume 96, Number 3

Helle Malmvig

This article sets out to bring sound and music to the field of visual studies in International Relations. It argues that IR largely has approached the visual field as if it was without sound; neglecting how audial landscapes frame and direct our interpretation of moving imagery. Sound and music contribute to making imagery intelligible to us, we ‘hear the pictures’ often without noticing. The audial can for instance articulate a visual absence, or blast visual signs, bring out certain emotional stages or subjects’ inner life. Audial frames steer us in distinct directions, they can mute the cries of the wounded in war, or amplify the sounds of joy of soldiers shooting in the air. To bring the audial and the visual analytically and empirically together, the article therefore proposes four key analytical themes: 1) the audial–visual frame, 2) point of view/point of audition, 3) modes of audio-visual synchronization and 4) aesthetics moods. These are applied to a study of ‘war music videos’ in Iraq and Syria made and circulated by Shi'a militias currently fighting there. Such war music videos, it is suggested, are not just artefacts of popular culture, but have become integral parts of how warfare is practiced today, and one that is shared by soldiers in the US and Europe. War music videos are performing war, just as they shape how war is known by spectators and participants alike.




tia

Head-to-head comparison of 68Ga-DOTA-JR11 and 68Ga-DOTATATE PET/CT in patients with metastatic, well-differentiated neuroendocrine tumors: a prospective study

Purpose: 68Ga-DOTA-JR11 is an antagonist for somatostatin receptor used in neuroendocrine imaging. The purpose of this study is to compare 68Ga-DOTA-JR11 and 68Ga-DOTATATE PET/CT in patients with metastatic, well-differentiated neuroendocrine tumors. Methods: Patients with histologically-proven, metastatic and/or unresectable, well-differentiated neuroendocrine tumors were prospectively recruited in this study. They received an intravenous injection of 68Ga-DOTATATE (4.0 ± 1.3 mCi) on the first day and 68Ga-DOTA-JR11 (4.0 ± 1.4 mCi) on the second day. Whole-body PET/CT scans were performed at 40 to 60 minutes after injection on the same scanner. Physiologic uptake of normal organs, lesion numbers, and lesion uptake were compared. Results: Twenty-nine patients were prospectively enrolled in the study. The SUVmax of the spleen, renal cortex, adrenal glands, pituitary glands, stomach wall, normal liver parenchyma, small intestine, pancreas, and bone marrow were significantly lower on 68Ga-DOTA-JR11 than on 68Ga-DOTATATE PET/CT (P<0.001). 68Ga-DOTA-JR11 detected significantly more liver lesions (539 vs. 356, P = 0.002), but fewer bone lesions (156 vs. 374, P = 0.031, Figure 3) than 68Ga-DOTATATE. The tumor-to-background ratio of liver lesions was significantly higher on 68Ga-DOTA-JR11 (7.6 ± 5.1 vs. 3.4 ± 2.0, P<0.001). 68Ga-DOTA-JR11 and 68Ga-DOTATATE PET/CT showed comparable results for primary tumors and lymph node metastases based on either patient-based or lesion-based comparison. Conclusion: 68Ga-DOTA-JR11 performs better in the detection ability and TBR of liver metastases. However, 68Ga-DOTATATE outperforms 68Ga-DOTA-JR11 in the detection of bone metastases. The differential affinity of different metastatic sites provides key information for patient selection in imaging and peptide receptor radionuclide therapy.




tia

Initial studies with [11C]vorozole positron emission tomography detect over-expression of intra-tumoral aromatase in breast cancer

Introduction: Aromatase inhibitors are the mainstay of hormonal therapy in estrogen receptor positive, postmenopausal breast cancer, although response rate is just over 50%. The goal of the present study was to validate and optimize positron emission tomography (PET) with 11C-vorozole for measuring aromatase expression in postmenopausal breast cancer. Methods: Ten newly diagnosed, postmenopausal women with biopsy confirmed breast cancer were administered 11C-vorozole intravenously and PET emission data collected between 40 – 90 minutes post-injection. Tracer injection and scanning were repeated 2 hours after ingestion of 2.5mg letrozole p.o. Mean and maximal standard uptake values and ratios to non-tumor tissue (SUVs, SUVRs) were calculated for tumor and non-tumor regions at baseline and after letrozole. Biopsy specimens from the same tumors were stained for aromatase using immunohistochemistry and evaluated for stain intensity and the percentage of immune-positive cells. Results: Seven of the 10 women (70%) demonstrated increased focal uptake of tracer (SUVR>1.1) coinciding with the mammographic location of the lesion. The other 3 women (30%) did not show increased uptake in the tumor (SUVR <1.0). All of the cases with SUVR above 1.1 had SUVs above 2.4 and there was no overlap in SUV between the two groups, with mean SUV in tumors overexpressing aromatase (SUVR>1.1) ranging from 2.47 to 13.6, while tumors not overexpressing aromatase (SUVR<1) ranged from 0.8 to 1.8. Pretreatment with letrozole reduced tracer uptake in the majority of subjects; although the %blocking varied across and within tumors. Tumors with high SUV in vivo also showed high staining intensity on IHC. Conclusion: PET with 11C-vorozole is a useful technique for measuring aromatase expression in individual breast lesions, enabling a non-invasive quantitative measurement of baseline and post-treatment aromatase availability in primary tumors and metastatic lesions.




tia

Differential expression of glucose transporters and hexokinases in prostate cancer with a neuroendocrine gene signature: a mechanistic perspective for FDG imaging of PSMA-suppressed tumors

Purpose: Although the incidence of de novo neuroendocrine prostate cancer (NEPC) is rare, recent data suggests that low expression of prostate-specific membrane antigen (PSMA) is associated with a spectrum of neuroendocrine (NE) hallmarks and androgen receptor (AR)-suppression in prostate cancer (PC). Previous clinical reports indicate that PCs with a phenotype similar to NE tumors can be more amenable to imaging by 18F-Fluorodeoxyglucose (FDG) rather than PSMA-targeting radioligands. In this study, we evaluated the association between NE gene signature and FDG uptake-associated genes including glucose transporters (GLUTs) and hexokinases, with the goal of providing a genomic signature to explain the reported FDG-avidity of PSMA-suppressed tumors. Methods: Data mining approaches, cell lines and patient-derived xenograft (PDX) models were used to study the levels of 14 members of the SLC2A family (encoding GLUT proteins), 4 members of the hexokinase family (genes: HK1 to 3 and GCK) and PSMA (FOLH1 gene) following AR-inhibition and in correlation with NE hallmarks. Also, we characterize a NE-like PC (NELPC) subset among a cohort of primary and metastatic PC samples with no NE histopathology. We measured glucose uptake in a NE-induced in vitro model and a zebrafish model by non-radioactive imaging of glucose uptake using fluorescent glucose bioprobe, GB2-Cy3. Results: This work demonstrates that a NE gene signature associates with differential expression of genes encoding GLUT and hexokinase proteins. In NELPC, elevated expression of GCK (encoding glucokinase protein) and decreased expression of SLC2A12 correlated with earlier biochemical recurrence. In tumors treated with AR-inhibitors, high expression of GCK and low expression of SLC2A12 correlated with NE histopathology and PSMA gene suppression. GLUT12-suppression and amplification of glucokinase was observed in NE-induced PC cell lines and PDX models. A higher glucose uptake was confirmed in low-PSMA tumors using a GB2-Cy3 probe in a zebrafish model. Conclusion: NE gene signature in NEPC and NELPC associates with a distinct transcriptional profile of GLUTs and HKs. PSMA-suppression correlates with GLUT12-suppression and glucokinase-amplification. Alteration of FDG uptake-associated genes correlated positively with higher glucose uptake in AR and PSMA-suppressed tumors. Zebrafish xenograft tumor models are an accurate and efficient pre-clinical method for monitoring non-radioactive glucose uptake.




tia

18F-Fluorodeoxyglucose Positron Emission Tomography / Computed Tomography in Left-Ventricular Assist Device Infection: Initial Results Supporting the Usefulness of Image-Guided Therapy

Background: Accurate definition of the extent and severity of left-ventricular assist device (LVAD) infection may facilitate therapeutic decision making and targeted surgical intervention. Here, we explore the value of 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for guidance of patient management. Methods: Fifty-seven LVAD-carrying patients received 85 whole-body 18F-FDG PET/CT scans for the work-up of device infection. Clinical follow-up was obtained over a period of up to two years. Results: PET/CT showed various patterns of infectious involvement of the 4 LVAD components: driveline entry point (77% of cases), subcutaneous driveline path (87%), pump pocket (49%) and outflow tract (58%). Driveline smears revealed staphylococcus or pseudomonas strains as the underlying pathogen in a majority of cases (48 and 34%, respectively). At receiver-operating characteristics analysis, an 18F-FDG standardized uptake value (SUV) >2.5 was most accurate to identify smear-positive driveline infection. Infection of 3 or all 4 LVAD components showed a trend towards lower survival vs infection of 2 or less components (P = 0.089), while involvement of thoracic lymph nodes was significantly associated with adverse outcome (P = 0.001 for nodal SUV above vs below median). Finally, patients that underwent early surgical revision within 3 months after PET/CT (n = 21) required significantly less inpatient hospital care during follow-up when compared to those receiving delayed surgical revision (n = 11; p<0.05). Conclusion: Whole-body 18F-FDG PET/CT identifies the extent of LVAD infection and predicts adverse outcome. Initial experience suggests that early image-guided surgical intervention may facilitate a less complicated subsequent course.




tia

Initial Clinical Results of a Novel Immuno-PET Theranostic Probe in HER2-negative Breast Cancer

Purpose: This prospective study evaluated the imaging performance of a novel immunological pretargeting positron-emission tomorgraphy (immuno-PET) method in patients with HER2-negative, carcinoembryonic antigen (CEA)-positive, metastatic breast cancer (BC), compared to computed tomography (CT), bone magnetic resonance imaging (MRI), and 18Fluorodeoxyglucose PET (FDG-PET). Patients and Methods: Twenty-three patients underwent whole-body immuno-PET after injection of 150 MBq 68Ga-IMP288, a histamine-succinyl-glycine peptide given following initial targeting of a trivalent anti-CEA, bispecific, anti-peptide antibody. The gold standards were histology and imaging follow-up. Tumor standard uptake values (SUVmax and SUVmean) were measured, and tumor burden analyzed using Total Tumor Volume (TTV) and Total Lesion Activity (TLA). Results: Total lesion sensitivity of immuno-PET and FDG-PET was 94.7% (1116/1178) and 89.6% (1056/1178), respectively. Immuno-PET had a somewhat higher sensitivity than CT and FDG-PET in lymph nodes (92.4% vs 69.7% and 89.4%, respectively) and liver metastases (97.3% vs 92.1% and 94.8%, respectively), whereas sensitivity was lower for lung metastases (48.3% vs 100% and 75.9%, respectively). Immuno-PET showed higher sensitivity than MRI and FDG-PET for bone lesions (95.8% vs 90.7% and 89.3%, respectively). In contrast to FDG-PET, immuno-PET disclosed brain metastases. Despite equivalent tumor SUVmax, SUVmean, and TTV, TLA was significantly higher with immuno-PET compared to FDG PET (P = 0.009). Conclusion: Immuno-PET using anti-CEA/anti-IMP288 bispecific antibody, followed by 68Ga-IMP288, is a potentially sensitive theranostic imaging method for HER2-negative, CEA-positive, metastatic BC patients, and warrants further research.




tia

Neuroendocrine Differentiation and Response toPSMA-Targeted Radioligand Therapy in Advanced Metastatic Castration-Resistant Prostate Cancer: a Single-Center Retrospective Study

Introduction: Neuroendocrine differentiation is associated with treatment failure and poor outcome in metastatic castration-resistant prostate cancer (mCRPC). We investigated the effect of circulating neuroendocrine biomarkers on the efficacy of PSMA-targeted radioligand therapy (RLT). Methods: Neuroendocrine biomarker profiles (progastrin-releasing peptide, neuron-specific enolase, and chromogranin-A) were analyzed in 50 patients commencing 177Lu-PSMA-617 RLT. The primary endpoint was PSA response in relation to baseline neuroendocrine marker profiles. Additional endpoints included progression-free survival. Tumor uptake on post-therapeutic scans, a known predictive marker for response, was used as control-variable. Results: Neuroendocrine biomarker profiles were abnormal in the majority of patients. Neuroendocrine biomarker levels did not predict treatment failure or early progression (P ≥ 0.13). By contrast, intense PSMA-ligand uptake in metastases predicted both treatment response (P = 0.0030) and reduced risk of early progression (P = 0.0111). Conclusion: Neuroendocrine marker profiles do not predict adverse outcome of RLT. By contrast, high ligand uptake was confirmed to be crucial for achieving tumor-response.




tia

18F-DCFPyL PET/CT in Patients with Subclinical Recurrence of Prostate Cancer: Effect of Lesion Size, Smooth Filter and Partial Volume Correction on Prostate Cancer Molecular Imaging Standardized Evaluation (PROMISE) criteria

Purpose: To determine the effect of smooth filter and partial volume correction (PVC) method on measured prostate-specific membrane antigen (PSMA) activity in small metastatic lesions and to determine the impact of these changes on the molecular imaging (mi) PSMA scoring. Materials & Methods: Men with biochemical recurrence of prostate cancer with negative CT and bone scintigraphy were referred for 18F-DCFPyL PET/CT. Examinations were performed on one of 2 PET/CT scanners (GE Discovery 610 or Siemens mCT40). All suspected tumor sites were manually contoured on co-registered CT and PET images, and each was assigned a miPSMA score as per the PROMISE criteria. The PVC factors were calculated for every lesion using the anatomical CT and then applied to the unsmoothed PET images. The miPSMA scores, with and without the corrections, were compared, and a simplified "rule of thumb" (RoT) correction factor (CF) was derived for lesions at various sizes (<4mm, 4-7mm, 7-9mm, 9-12mm). This was then applied to the original dataset and miPSMA scores obtained using the RoT CF were compared to those found using the actual corrections. Results: There were 75 men (median age, 69 years; median serum PSA of 3.69 ug/L) with 232 metastatic nodes < 12 mm in diameter (mean lesion volume of 313.5 ± 309.6 mm3). Mean SUVmax before and after correction was 11.0 ± 9.3 and 28.5 ± 22.8, respectively (p<0.00001). The mean CF for lesions <4mm (n = 22), 4-7mm (n = 140), 7-9mm (n = 50), 9-12 mm (n = 20) was 4 (range: 2.5-6.4), 2.8 (range: 1.6-4.9), 2.3 (range: 1.6-3.3) and 1.8 (range 1.4-2.4), respectively. Overall miPSMA scores were concordant between the corrected dataset and RoT in 205/232 lesions (88.4%). Conclusion: There is a significant effect of smooth filter and partial volume correction on measured PSMA activity in small nodal metastases, impacting the miPSMA score.




tia

177Lu-lilotomab satetraxetan has the potential to counteract resistance to rituximab in non-Hodgkins lymphoma

Background: Patients with NHL who are treated with rituximab may develop resistant disease, often associated with changes in expression of CD20. The next generation β-particle emitting radioimmunoconjugate 177Lu-lilotomab-satetraxetan (Betalutin®) was shown to up-regulate CD20 expression in different rituximab-sensitive NHL cell lines and to act synergistically with rituximab in a rituximab-sensitive NHL animal model. We hypothesized that 177Lu-lilotomab-satetraxetan may be used to reverse rituximab-resistance in NHL. Methods: The rituximab-resistant Raji2R and the parental Raji cell lines were used. CD20 expression was measured by flow cytometry. ADCC was measured by a bioluminescence reporter assay. The efficacies of combined treatments with 177Lu-lilotomab-satetraxetan (150MBq/kg or 350MBq/kg) and rituximab (4x10mg/kg) were compared with those of single agents or saline in a Raji2R-xenograft model. Cox-regression and the Bliss independence model were used to assess synergism. Results: Rituximab-binding in Raji2R cells was 36±5% of that in the rituximab-sensitive Raji cells. 177Lu-lilotomab-satetraxetan treatment of Raji2R cells increased the binding to 53±3% of the parental cell line. Rituximab ADCC-induction in Raji2R cells was 20±2% of that induced in Raji cells, while treatment with 177Lu-lilotomab-satetraxetan increased the ADCC-induction to 30±3% of the Raji cells, representing a 50% increase (p<0.05). The combination of rituximab with 350MBq/kg 177Lu-lilotomab-satetraxetan synergistically suppressed Raji2R tumor growth in athymic Foxn1nu mice. Conclusion: 177Lu-lilotomab-satetraxetan has the potential to reverse rituximab-resistance; it increases binding and ADCC-activity in-vitro and can synergistically improve anti-tumor efficacy in-vivo.




tia

Radioiodine Ablation of Remaining Thyroid Lobe in Patients with Differentiated Thyroid Cancer Treated by Lobectomy. A systematic review and meta-analysis.

Purpose: We aimed to conduct a systematic review and meta-analysis of studies reporting the performance of radioactive iodine therapy (131-I therapy) in differentiating thyroid cancer (DTC) patients requiring a completion treatment following lobectomy. We also evaluated the response to 131-I therapy according to 2015ATA guidelines and the adverse events. Methods: A specific search strategy was designed to find articles evaluating the use of I-131 in patients with evidence of DTC after lobectomy. PubMed, CENTRAL, Scopus and Web of Science were searched. The search was updated until January 2020, without language restriction. Data were cross-checked and any discrepancy discussed. A proportion meta-analysis (with 95%CI) was performed using the random-effects model. Meta-regressions on I-131 success were attempted. Results: The pooled success ablation rate was 69% with better results in patients receiving a single administration of about 3.7 GBq; high heterogeneity was found (I2 85%), and publication bias was absent (Egger test: P = 0.57). Incomplete structural responses were recorded in only 14 of 695 (2%) patients enrolled in our analysis. Incomplete biochemical responses were observed in 8 to 24% of patients, with higher rates (24%) in patients receiving low radioiodine activities (~1.1 GBq) and lower rates (from 8 to 18%) in patients receiving higher activities of radioiodine (~3.7 Gbq). Neck pain due to thyroiditis was reported in up to 18% of patients but, in most cases, symptoms resolved after oral paracetamol or a short course of prednisone. Conclusion: Lobar ablation with 131-I is effective especially when high 131I activities are used. However, the rate of incomplete biochemical response to initial treatment appears to be slightly higher than the classical scheme of initial treatment of DTC. "Radioisotopic lobectomy" should be considered for patients with low-to-intermediate risk DTC requiring completion treatment after lobectomy due to specific individual risk factors and/or patient’s preferences.




tia

Reshaping the amyloid buildup curve in Alzheimer's disease? - Partial volume effect correction of longitudinal amyloid PET data

It was hypothesized that the brain β-amyloid buildup curve plateaus at an early symptomatic Alzheimer's disease (AD) stage. Atrophy-related partial volume effects (PVEs) degrade signal in hot-spot imaging techniques, such as amyloid positron emission tomography (PET). This longitudinal analysis of amyloid-sensitive PET data investigated the shape of the β-amyloid curve in AD applying PVE correction (PVEC). We analyzed baseline and 2-year follow-up data of 216 symptomatic individuals on the AD continuum (positive amyloid status) enrolled in Alzheimer's Disease Neuroimaging Initiative (17 AD dementia, 199 mild cognitive impairment), including 18F-florbetapir PET, magnetic resonance imaging and mini mental state examination (MMSE) scores. For PVEC, the modified Müller-Gärtner method was performed. Compared to non-PVE-corrected data, PVE-corrected data yielded significantly higher regional and composite standardized uptake value ratio (SUVR) changes over time (P=0.0002 for composite SUVRs). Longitudinal SUVR changes in relation to MMSE decreases showed a significantly higher slope of the regression line in the PVE-corrected as compared to the non-PVE-corrected PET data (F=7.1, P=0.008). These PVEC results indicate that the β-amyloid buildup curve does not plateau at an early symptomatic disease stage. A further evaluation of the impact of PVEC on the in-vivo characterization of time-dependent AD pathology, including the reliable assessment and comparison of other amyloid tracers, is warranted.




tia

Unexplained Hyperthyroglobulinemia in Differentiated Thyroid Cancer Patients Indicates Radioiodine Adjuvant Therapy: A Prospective Multicenter Study

Background: The management for totally thyroidectomized differentiated thyroid cancer (TT-DTC) patients with unexplained hyperthyroglobulinemia remains indeterminate due to evidence scarcity. This multicenter study aimed at prospectively evaluating the response to radioiodine (131I) adjuvant therapy (RAT) and its potential role in risk stratification and causal clarification. Methods: TT-DTC patients with stimulated serum thyroglobulin (Tgoff) levels > 10 ng/mL but no structurally evident disease were consecutively enrolled in five tertiary care institutions. After the administration of 5.55 GBq of 131I, the risk of presence of persistent/recurrent/metastatic DTC (prmDTC) was compared to that before RAT. The causes of hyperthyroglobulinemia were explored and the response to RAT was assessed 6-12 months post RAT. The change in suppressed thyroglobulin (Tgon) level was reported. Results: A cohort of 254 subjects with a median Tgoff of 27.1 ng/mL was enrolled for the analyses. Immediately after RAT, low-, intermediate-, and high-risk were identified in 5.9%, 88.6%, and 5.5% patients, respectively, with no significant difference in risk stratification compared with that before RAT (P = 0.952). During the follow-up (median, 10.6 months), hyperthyroglobulinemia was ultimately attributed to thyroid remnant, biochemical disease, and structural/functional disease in 17.3%, 54.3%, and 28.3% of subjects, respectively. In addition, excellent, indeterminate, biochemical incomplete, and structural/functional incomplete responses were achieved in 18.1%, 27.2%, 36.2%, and 18.5% of patients, respectively. Notably, distribution for either cause of hyperthyroglobulinemia or response to RAT was comparable among the three postoperative risk groups. Tgon levels in patients who merely received RAT declined significantly over time. Conclusion: Our study demonstrated that over 90% of TT-DTC patients with unexplained hyperthyroglobulinemia are stratified as intermediate-high risk, and RAT using 5.55 GBq of 131I reveals biochemical/functional/structural disease and yields non-structural/functional incomplete response in more than 80% patients, suggesting TT-DTC patients with unexplained hyperthyroglobulinemia as explicit candidates for RAT.




tia

Confirmation of 123I-FP-CIT-SPECT (ioflupane) quantification methods in dementia with Lewy body and other neurodegenerative disorders

Rationale: To conduct a retrospective study comparing three 123I-FP-CIT-SPECT quantitative methods in patients with neurodegenerative syndromes as referenced to neuropathological findings. Methods: 123I-FP-CIT-SPECT and neuropathological findings among patients with neurodegenerative syndromes from the Mayo Alzheimer's Disease Research Center and Mayo Clinic Study of Aging were examined. Three 123I-FP-CIT-SPECT quantitative assessment Methods: MIMneuro (MIM Software Inc.), DaTQUANT (GE Healthcare), and manual region of interest (ROI) creation on an Advantage Workstation (GE Healthcare) were compared to neuropathological findings describing the presence or absence of Lewy body disease (LBD). Striatum to background ratios (SBRs) generated by DaTQUANT were compared to the calculated SBRs of the manual method and MIMneuro. The left and right SBRs for caudate, putamen and striatum were evaluated with the manual method. For DaTQUANT and MIMneuro the left, right, total and average SBRs and z-scores for whole striatum, caudate, putamen, anterior putamen, and posterior putamen were calculated. Results: The cohort included 24 patients [20 (83%) male, aged 75.4 +/- 10.0 at death]. The antemortem clinical diagnoses were Alzheimer’s disease dementia (ADem, N = 6), probable dementia with Lewy bodies (pDLB, N = 12), mixed ADem/pDLB (N = 1), Parkinson’s disease with mild cognitive impairment (N = 2), corticobasal syndrome (N = 1), idiopathic rapid eye movement sleep behavior disorder (iRBD) (N = 1) and behavioral variant frontotemporal dementia (N = 1). Seventeen (71%) had LBD pathology. All three 123I-FP-CIT-SPECT quantitative methods had area under the receiver operating characteristics (AUROC) values above 0.93 and up to 1.000 (p<0.001) and showed excellent discrimination between LBD and non-LBD patients in each region assessed, p<.001. There was no significant difference between the accuracy of the regions in discriminating the two groups, with good discrimination for both caudate and putamen. Conclusion: All three 123I-FP-CIT-SPECT quantitative methods showed excellent discrimination between LBD and non-LBD patients in each region assessed, using both SBRs and z-scores.




tia

Amyloid PET in Dementia Syndromes: A Chinese Multicenter Study

Cerebral β-amyloid deposits and regional glucose metabolism assessed by positron emission tomography (PET) are used to distinguish between Alzheimer's disease (AD) and other dementia syndromes. In the present multicenter study, we estimated the prevalence of β-amyloid deposits on PET imaging in a wide variety of dementia syndromes and mild cognitive impairment (MCI) within a memory clinic population. Methods: Of the 1193 consecutive patients with cognitive impairment (CI) who received combined 18F-AV45 and/or 11C-PIB PET, 960 were diagnosed with AD, 36 with frontotemporal dementia (FTD), 5 with dementia with Lewy bodies (DLB), 144 with MCI, 29with vascular dementia (VaD), 4 with corticobasal syndrome (CBS) and 15 with unclassifiable dementia. Baseline clinical diagnoses were independently established without access to PET imaging results. ApoE genotype analysis was performed in CI patients and 231 gender- and age-matched controls. Results: Of the 1193 CI patients, 860 (72.1%) were amyloid-positive. The prevalence of amyloid positivity in AD and MCI patients was 86.8% (833/960) and 9.7% (14/144), respectively. In FTD patients, the prevalence of β-amyloid deposits was 5.6% (2/36). In the 4 CBS patients, two were amyloid-positive. Three of the 5 DLB patients showed amyloid positivity, as did 6 of the 29 VaD (20.7%) patients. The ApoE4 allele frequency was significantly increased in amyloid-positive CI patients (30.5%) as compared with other amyloid-negative CI patients (14%) or controls (7.3%). Conclusion: Amyloid imaging may potentially be the most helpful parameter for differential diagnosis in dementia, particularly to distinguish between AD and FTD. Amyloid PET can be used in conjunction with the ApoE4 allele genetic risk test for amyloid deposits.




tia

Central and Eastern Europe and Sub-Saharan Africa: The Potential of Investment Partnerships for Mutual Benefit

31 October 2019

Trade between Central and Eastern Europe and sub-Saharan Africa has increased significantly in the last decade and a half. There is a strong case to be made for greater economic re-engagement, especially in terms of investment, that has the potential to support inclusive growth in both regions.

Damir Kurtagic

Former Academy Robert Bosch Fellow, Africa Programme

recycled-containerboard-warehouse_mondi_poland.jpg

Recycled containerboard warehouse, Mondi Group, Poland. Photo: Mondi Group.

Summary

  • There are growing economic links between the economies of Central and Eastern Europe and sub-Saharan Africa in terms of both trade and investment. However, while trade has picked up significantly from pre-EU accession levels, investment has not increased to the same extent.
  • Contrary to common assumption, investment flows are not solely from Central and Eastern Europe to sub-Saharan Africa. In reality, the largest investment flow between the two blocs occurs in the opposite direction – from South Africa into Central and Eastern Europe.
  • Sub-Saharan Africa can benefit from a greater commercial relationship focused on attracting sustainable investment from Central and Eastern Europe. For this to happen, commercial strategies towards Central and Eastern European countries need to be put in place before strategy can be reinforced by greater diplomatic and informational support.
  • For many sub-Saharan African governments, there is no overall targeted approach to attracting Central and Eastern European investors. A notable exception is South Africa, where departments have been established at provincial government level to specifically target investment from Central and Eastern Europe.
  • Sub-Saharan African governments expect Central and Eastern European private-sector investment to result not only in job creation, but also to bring spillover benefits such as the transfer of skills and knowledge to domestic industries.
  • Each sub-Saharan African country, in accordance with its individual circumstances, will need to adopt a discrete mix of administrative reform (particularly aimed at cutting red tape), as well as infrastructural and other policies that improve the business environment and generate investor confidence.
  • Much of the private sector in Central and Eastern Europe is somewhat hesitant to invest in sub-Saharan Africa on a greater scale. Many companies are most comfortable operating within their domestic environment; when they invest abroad, it tends to be in the ‘neighbourhood’ with which they are already familiar. Perceptions of risk are often compounded by popular misperceptions and generalizations about sub-Saharan Africa.
  • Central and Eastern European countries stand to gain from a deeper investment relationship. While greater engagement with sub-Saharan Africa has already been pursued by some countries, most of them focus on trade. Institutional support to companies from Central and Eastern Europe (both public and private) has evolved to a degree, but is still not comprehensive. Information for companies interested in investing is either lacking or not shared in an efficient way. And the greatest challenge is ensuring top-level political engagement.
  • EU membership offers clear opportunities for Central and Eastern European countries to invest sustainably and responsibly in sub-Saharan Africa. Not only is financial support forthcoming, through innovative EU financial instruments, but the availability of information relevant to business and the EU’s extensive diplomatic presence in Africa should help to alleviate some of the concerns of Central and Eastern European investors.




tia

Combining Precursor and Fragment Information for Improved Detection of Differential Abundance in Data Independent Acquisition [Technological Innovation and Resources]

In bottom-up, label-free discovery proteomics, biological samples are acquired in a data-dependent (DDA) or data-independent (DIA) manner, with peptide signals recorded in an intact (MS1) and fragmented (MS2) form. While DDA has only the MS1 space for quantification, DIA contains both MS1 and MS2 at high quantitative quality. DIA profiles of complex biological matrices such as tissues or cells can contain quantitative interferences, and the interferences at the MS1 and the MS2 signals are often independent. When comparing biological conditions, the interferences can compromise the detection of differential peptide or protein abundance and lead to false positive or false negative conclusions.

We hypothesized that the combined use of MS1 and MS2 quantitative signals could improve our ability to detect differentially abundant proteins. Therefore, we developed a statistical procedure incorporating both MS1 and MS2 quantitative information of DIA. We benchmarked the performance of the MS1-MS2-combined method to the individual use of MS1 or MS2 in DIA using four previously published controlled mixtures, as well as in two previously unpublished controlled mixtures. In the majority of the comparisons, the combined method outperformed the individual use of MS1 or MS2. This was particularly true for comparisons with low fold changes, few replicates, and situations where MS1 and MS2 were of similar quality. When applied to a previously unpublished investigation of lung cancer, the MS1-MS2-combined method increased the coverage of known activated pathways.

Since recent technological developments continue to increase the quality of MS1 signals (e.g. using the BoxCar scan mode for Orbitrap instruments), the combination of the MS1 and MS2 information has a high potential for future statistical analysis of DIA data.




tia

Compliance Checklists No Longer Required at Initial Manuscript Submission [Editorials]




tia

Quantitative Profiling of the Human Substantia Nigra Proteome from Laser-capture Microdissected FFPE Tissue [Research]

Laser-capture microdissection (LCM) allows the visualization and isolation of morphologically distinct subpopulations of cells from heterogeneous tissue specimens. In combination with formalin-fixed and paraffin-embedded (FFPE) tissue it provides a powerful tool for retrospective and clinically relevant studies of tissue proteins in a healthy and diseased context. We first optimized the protocol for efficient LCM analysis of FFPE tissue specimens. The use of SDS containing extraction buffer in combination with the single-pot solid-phase-enhanced sample preparation (SP3) digest method gave the best results regarding protein yield and protein/peptide identifications. Microdissected FFPE human substantia nigra tissue samples (~3,000 cells) were then analyzed, using tandem mass tag (TMT) labeling and LC-MS/MS, resulting in the quantification of >5,600 protein groups. Nigral proteins were classified and analyzed by abundance, showing an enrichment of extracellular exosome and neuron-specific gene ontology (GO) terms among the higher abundance proteins. Comparison of microdissected samples with intact tissue sections, using a label-free shotgun approach, revealed an enrichment of neuronal cell type markers, such as tyrosine hydroxylase and alpha-synuclein, as well as proteins annotated with neuron-specific GO terms. Overall, this study provides a detailed protocol for laser-capture proteomics using FFPE tissue and demonstrates the efficiency of LCM analysis of distinct cell subpopulations for proteomic analysis using low sample amounts.




tia

Brisbane City Council IT contract faces potential $60 million blow-out

A $122 million Brisbane City Council IT contract will be renegotiated after a systems replacement program was delayed by 18 months, with a potential cost blow-out of up to $60 million.




tia

Face scanning falls flat as part of digital credentials push

State government's facial recognition ID check is now required for those seeking solar rebates, but it failed 40 per cent of the time during the first two weeks.




tia

WITHDRAWN: Heralds of parallel MS: Data-independent acquisition surpassing sequential identification of data dependent acquisition in proteomics [Research]

This article has been withdrawn by the authors. This article did not comply with the editorial guidelines of MCP. Specifically, single peptide based protein identifications of 9-19% were included in the analysis and discussed in the results and conclusions. We wish to withdraw this article and resubmit a clarified, corrected manuscript for review.




tia

DEqMS: a method for accurate variance estimation in differential protein expression analysis [Technological Innovation and Resources]

Quantitative proteomics by mass spectrometry is widely used in biomarker research and basic biology research for investigation of phenotype level cellular events. Despite the wide application, the methodology for statistical analysis of differentially expressed proteins has not been unified. Various methods such as t-test, linear model and mixed effect models are used to define changes in proteomics experiments. However, none of these methods consider the specific structure of MS-data. Choices between methods, often originally developed for other types of data, are based on compromises between features such as statistical power, general applicability and user friendliness. Furthermore, whether to include proteins identified with one peptide in statistical analysis of differential protein expression varies between studies. Here we present DEqMS, a robust statistical method developed specifically for differential protein expression analysis in mass spectrometry data. In all datasets investigated there is a clear dependence of variance on the number of PSMs or peptides used for protein quantification. DEqMS takes this feature into account when assessing differential protein expression. This allows for a more accurate data-dependent estimation of protein variance and inclusion of single peptide identifications without increasing false discoveries. The method was tested in several datasets including E.coli proteome spike-in data, using both label-free and TMT-labelled quantification. In comparison to previous statistical methods used in quantitative proteomics, DEqMS showed consistently better accuracy in detecting altered protein levels compared to other statistical methods in both label-free and labelled quantitative proteomics data. DEqMS is available as an R package in Bioconductor.




tia

Soundscapes of war: the audio-visual performance of war by Shi'a militias in Iraq and Syria

7 May 2020 , Volume 96, Number 3

Helle Malmvig

This article sets out to bring sound and music to the field of visual studies in International Relations. It argues that IR largely has approached the visual field as if it was without sound; neglecting how audial landscapes frame and direct our interpretation of moving imagery. Sound and music contribute to making imagery intelligible to us, we ‘hear the pictures’ often without noticing. The audial can for instance articulate a visual absence, or blast visual signs, bring out certain emotional stages or subjects’ inner life. Audial frames steer us in distinct directions, they can mute the cries of the wounded in war, or amplify the sounds of joy of soldiers shooting in the air. To bring the audial and the visual analytically and empirically together, the article therefore proposes four key analytical themes: 1) the audial–visual frame, 2) point of view/point of audition, 3) modes of audio-visual synchronization and 4) aesthetics moods. These are applied to a study of ‘war music videos’ in Iraq and Syria made and circulated by Shi'a militias currently fighting there. Such war music videos, it is suggested, are not just artefacts of popular culture, but have become integral parts of how warfare is practiced today, and one that is shared by soldiers in the US and Europe. War music videos are performing war, just as they shape how war is known by spectators and participants alike.




tia

High density lipoprotein and its apolipoprotein-defined subspecies and risk of dementia [Patient-Oriented and Epidemiological Research]

Whether HDL is associated with dementia risk is unclear. In addition to apoA1, other apolipoproteins are found in HDL, creating subspecies of HDL that may have distinct metabolic properties. We measured apoA1, apoC3, and apoJ levels in plasma and apoA1 levels in HDL that contains or lacks apoE, apoJ, or apoC3 using a modified sandwich ELISA in a case-cohort study nested within the Ginkgo Evaluation of Memory Study. We included 995 randomly selected participants and 521 participants who developed dementia during a mean of 5.1 years of follow-up. The level of total apoA1 was not significantly related to dementia risk, regardless of the coexistence of apoC3, apoJ, or apoE. Higher levels of total plasma apoC3 were associated with better cognitive function at baseline (difference in Modified Mini-Mental State Examination scores tertile 3 vs. tertile 1: 0.60; 95% CI: 0.23, 0.98) and a lower dementia risk (adjusted hazard ratio tertile 3 vs. tertile 1: 0.73; 95% CI: 0.55, 0.96). Plasma concentrations of apoA1 in HDL and its apolipoprotein-defined subspecies were not associated with cognitive function at baseline or with the risk of dementia during follow-up. Similar studies in other populations are required to better understand the association between apoC3 and Alzheimer’s disease pathology.




tia

Inbox: How will potential new rule affect Rays?

Rays beat reporter Juan Toribio answers fans' questions.




tia

A Peripheral Blood DNA Methylation Signature of Hepatic Fat Reveals a Potential Causal Pathway for Nonalcoholic Fatty Liver Disease

Nonalcoholic fatty liver disease (NAFLD) is a risk factor for type 2 diabetes (T2D). We aimed to identify the peripheral blood DNA methylation signature of hepatic fat. We conducted epigenome-wide association studies of hepatic fat in 3,400 European ancestry (EA) participants and in 401 Hispanic ancestry and 724 African ancestry participants from four population-based cohort studies. Hepatic fat was measured using computed tomography or ultrasound imaging and DNA methylation was assessed at >400,000 cytosine-guanine dinucleotides (CpGs) in whole blood or CD14+ monocytes using a commercial array. We identified 22 CpGs associated with hepatic fat in EA participants at a false discovery rate <0.05 (corresponding P = 6.9 x 10–6) with replication at Bonferroni-corrected P < 8.6 x 10–4. Mendelian randomization analyses supported the association of hypomethylation of cg08309687 (LINC00649) with NAFLD (P = 2.5 x 10–4). Hypomethylation of the same CpG was also associated with risk for new-onset T2D (P = 0.005). Our study demonstrates that a peripheral blood–derived DNA methylation signature is robustly associated with hepatic fat accumulation. The hepatic fat–associated CpGs may represent attractive biomarkers for T2D. Future studies are warranted to explore mechanisms and to examine DNA methylation signatures of NAFLD across racial/ethnic groups.




tia

TWIST1-Reprogrammed Endothelial Cell Transplantation Potentiates Neovascularization-Mediated Diabetic Wound Tissue Regeneration

Hypo-vascularised diabetic non-healing wounds are due to reduced number and impaired physiology of endogenous endothelial progenitor cell (EPC) population that, limits their recruitment and mobilization at the wound site. To enrich the EPC repertoire from non-endothelial precursors, abundantly available mesenchymal stromal cells (MSCs) were reprogrammed into induced-endothelial cells (iECs). We identified cell signaling molecular targets by meta-analysis of microarray datasets. BMP-2 induction leads to the expression of inhibitory Smad 6/7-dependent negative transcriptional regulation of ID1, rendering the latter's reduced binding to TWIST1 during transdifferentiation of WJ-MSC into iEC. TWIST1, in turn, regulates endothelial genes transcription, positively of pro-angiogenic-KDR and negatively, in part, of anti-angiogenic-SFRP4. Twist1 reprogramming enhanced the endothelial lineage commitment of WJ-MSC, increased the vasculogenic potential of reprogrammed EC (rEC). Transplantation of stable TWIST1-rECs into full-thickness type 1 and 2 diabetic-splinted wound healing murine model enhanced the microcirculatory blood flow and accelerated the wound tissue regeneration. An increased or decreased co-localization of GFP with KDR/SFRP4 and CD31 in the regenerated diabetic wound bed with TWIST1 overexpression or silencing (piLenti-TWIST1-shRNA-GFP), respectively further confirmed improved neovascularization. This study depicted the reprogramming of WJ-MSCs into rECs using unique transcription factors, TWIST1 for an efficacious cell transplantation therapy to induce neovascularization–mediated diabetic wound tissue regeneration.




tia

Myo-Inositol Oxygenase (MIOX) Overexpression Drives the Progression of Renal Tubulo-Interstitial Injury in Diabetes

Conceivably, upregulation of myo-inositol oxygenase (MIOX) is associated with altered cellular redox. Its promoter includes oxidant-response elements, and we also discovered binding sites for XBP-1, a transcription factor of ER stress response. Previous studies indicate that MIOX’s upregulation in acute tubular injury is mediated by oxidant and ER stress. Here, we investigated if hyperglycemia leads to accentuation of oxidant and ER stress, while boosting each other’s activities and thereby augmenting tubulo-interstitial injury/fibrosis. We generated MIOX-overexpressing transgenic (MIOX-TG) and -knockout (MIOX-KO) mice. A diabetic state was induced by streptozotocin administration. Also, MIOX-KO were crossbred with Ins2Akita to generate Ins2Akita/KO mice. MIOX-TG mice had worsening renal functions with kidneys having increased oxidant/ER stress, as reflected by DCF/DHE staining, perturbed NAD/NADH and GSH/GSSG ratios, increased NOX-4 expression, apoptosis and its executionary molecules, accentuation of TGF-β signaling, Smads and XBP-1 nuclear translocation, expression of GRP78 and XBP1 (ER stress markers) and accelerated tubulo-interstitial fibrosis. These changes were not seen in MIOX-KO mice. Interestingly, such changes were remarkably reduced in Ins2Akita/KO mice, and likewise in vitro experiments with XBP1-siRNA. These findings suggest that MIOX expression accentuates while its deficiency shields kidneys from tubulo-interstitial injury by dampening oxidant and ER stress, which mutually enhance each other’s activity.




tia

Potential Protection Against Type 2 Diabetes in Obesity Through Lower CD36 Expression and Improved Exocytosis in {beta}-Cells

Obesity is a risk factor for type 2 diabetes (T2D), however not all obese individuals develop the disease. In this study, we aimed to investigate the cause of differential insulin secretion capacity of pancreatic islets from T2D and non-T2D (ND) especially obese donors (BMI ≥30 kg/m2). Islets from obese T2D donors had reduced insulin secretion, decreased β-cell exocytosis and higher expression of fatty acid translocase CD36. We tested the hypothesis that CD36 is a key molecule in the reduced insulin secretion capacity. Indeed, CD36 overexpression led to decreased insulin secretion, impaired exocytosis and reduced granule docking. This was accompanied with reduced expression of the exocytotic proteins, SNAP25, STXBP1 and VAMP2, likely because CD36 induced down-regulation of the IRS proteins, suppressed insulin signaling PI3K-AKT pathway and increased nuclear localization of the transcription factor FoxO1. CD36 antibody treatment of the human β-cell line, EndoC-βH1, increased IRS1 and exocytotic protein levels, improved granule docking and enhanced insulin secretion. Our results demonstrate that β-cells from obese T2D donors have dysfunctional exocytosis likely due to an abnormal lipid handling represented by differential CD36 expression. Hence, CD36 could be a key molecule to limit β-cell function in T2D associated with obesity.




tia

Pharmacologic PPAR-{gamma} Activation Reprograms Bone Marrow Macrophages and Partially Rescues HSPC Mobilization in Human and Murine Diabetes

Mobilization of hematopoietic stem/progenitor cells (HSPCs) from the bone marrow (BM) is impaired in diabetes. Excess oncostatin M (OSM) produced by M1 macrophages in the diabetic BM signals through p66Shc to induce Cxcl12 in stromal cells and retain HSPCs. BM adipocytes are another source of CXCL12 that blunts mobilization. We tested a strategy of pharmacologic macrophage reprogramming to rescue HSPC mobilization. In vitro, PPAR- activation with pioglitazone switched macrophages from M1 to M2, reduced Osm expression, and prevented transcellular induction of Cxcl12. In diabetic mice, pioglitazone treatment downregulated Osm, p66Shc and Cxcl12 in the hematopoietic BM, restored the effects of granulocyte-colony stimulation factor (G-CSF), and partially rescued HSPC mobilization, but it increased BM adipocytes. Osm deletion recapitulated the effects of pioglitazone on adipogenesis, which was p66Shc-independent, and double knockout of Osm and p66Shc completely rescued HSPC mobilization. In the absence of OSM, BM adipocytes produced less CXCL12, being arguably devoid of HSPC-retaining activity, whereas pioglitazone failed to downregulate Cxcl12 in BM adipocytes. In diabetic patients under pioglitazone therapy, HSPC mobilization after G-CSF was partially rescued. In summary, pioglitazone reprogrammed BM macrophages and suppressed OSM signaling, but sustained Cxcl12 expression by BM adipocytes could limit full recovery of HSPC mobilization.




tia

Exercise Combats Hepatic Steatosis: Potential Mechanisms and Clinical Implications

Hepatic steatosis, the excess storage of intrahepatic lipids, is a rampant clinical problem associated with the obesity epidemic. Hepatic steatosis is linked to increased risk for insulin resistance, type 2 diabetes, and cardiovascular and advanced liver disease. Accumulating evidence shows that physical activity, exercise, and aerobic capacity have profound effects on regulating intrahepatic lipids and mediating susceptibility for hepatic steatosis. Moreover, exercise can effectively reduce hepatic steatosis independent of changes in body mass. In this perspective, we highlight 1) the relationship between obesity and metabolic pathways putatively driving hepatic steatosis compared with changes induced by exercise; 2) the impact of physical activity, exercise, and aerobic capacity compared with caloric restriction on regulating intrahepatic lipids and steatosis risk; 3) the effects of exercise training (modalities, volume, intensity) for treatment of hepatic steatosis, and 4) evidence for a sustained protection against steatosis induced by exercise. Overall, evidence clearly indicates that exercise powerfully regulates intrahepatic storage of fat and risk for steatosis.




tia

Inhibition of glycosphingolipid biosynthesis reverts multidrug resistance by differentially modulating ABC transporters in chronic myeloid leukemias [Cell Biology]

Multidrug resistance (MDR) in cancer arises from cross-resistance to structurally- and functionally-divergent chemotherapeutic drugs. In particular, MDR is characterized by increased expression and activity of ATP-binding cassette (ABC) superfamily transporters. Sphingolipids are substrates of ABC proteins in cell signaling, membrane biosynthesis, and inflammation, for example, and their products can favor cancer progression. Glucosylceramide (GlcCer) is a ubiquitous glycosphingolipid (GSL) generated by glucosylceramide synthase, a key regulatory enzyme encoded by the UDP-glucose ceramide glucosyltransferase (UGCG) gene. Stressed cells increase de novo biosynthesis of ceramides, which return to sub-toxic levels after UGCG mediates incorporation into GlcCer. Given that cancer cells seem to mobilize UGCG and have increased GSL content for ceramide clearance, which ultimately contributes to chemotherapy failure, here we investigated how inhibition of GSL biosynthesis affects the MDR phenotype of chronic myeloid leukemias. We found that MDR is associated with higher UGCG expression and with a complex GSL profile. UGCG inhibition with the ceramide analog d-threo-1-(3,4,-ethylenedioxy)phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (EtDO-P4) greatly reduced GSL and monosialotetrahexosylganglioside levels, and co-treatment with standard chemotherapeutics sensitized cells to mitochondrial membrane potential loss and apoptosis. ABC subfamily B member 1 (ABCB1) expression was reduced, and ABCC-mediated efflux activity was modulated by competition with nonglycosylated ceramides. Consistently, inhibition of ABCC-mediated transport reduced the efflux of exogenous C6-ceramide. Overall, UGCG inhibition impaired the malignant glycophenotype of MDR leukemias, which typically overcomes drug resistance through distinct mechanisms. This work sheds light on the involvement of GSL in chemotherapy failure, and its findings suggest that targeted GSL modulation could help manage MDR leukemias.




tia

The testis-specific LINC component SUN3 is essential for sperm head shaping during mouse spermiogenesis [Cell Biology]

Sperm head shaping is a key event in spermiogenesis and is tightly controlled via the acrosome–manchette network. Linker of nucleoskeleton and cytoskeleton (LINC) complexes consist of Sad1 and UNC84 domain–containing (SUN) and Klarsicht/ANC-1/Syne-1 homology (KASH) domain proteins and form conserved nuclear envelope bridges implicated in transducing mechanical forces from the manchette to sculpt sperm nuclei into a hook-like shape. However, the role of LINC complexes in sperm head shaping is still poorly understood. Here we assessed the role of SUN3, a testis-specific LINC component harboring a conserved SUN domain, in spermiogenesis. We show that CRISPR/Cas9-generated Sun3 knockout male mice are infertile, displaying drastically reduced sperm counts and a globozoospermia-like phenotype, including a missing, mislocalized, or fragmented acrosome, as well as multiple defects in sperm flagella. Further examination revealed that the sperm head abnormalities are apparent at step 9 and that the sperm nuclei fail to elongate because of the absence of manchette microtubules and perinuclear rings. These observations indicate that Sun3 deletion likely impairs the ability of the LINC complex to transduce the cytoskeletal force to the nuclear envelope, required for sperm head elongation. We also found that SUN3 interacts with SUN4 in mouse testes and that the level of SUN4 proteins is drastically reduced in Sun3-null mice. Altogether, our results indicate that SUN3 is essential for sperm head shaping and male fertility, providing molecular clues regarding the underlying pathology of the globozoospermia-like phenotype.




tia

Metabolic Endotoxemia Initiates Obesity and Insulin Resistance

Patrice D. Cani
Jul 1, 2007; 56:1761-1772
Obesity Studies




tia

One Week of Bed Rest Leads to Substantial Muscle Atrophy and Induces Whole-Body Insulin Resistance in the Absence of Skeletal Muscle Lipid Accumulation

Marlou L. Dirks
Oct 1, 2016; 65:2862-2875
Metabolism




tia

Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis

Jay S. Skyler
Feb 1, 2017; 66:241-255
Perspectives in Diabetes




tia

Widening the drug trial net has the potential to reduce respiratory failure




tia

Role of phospholipid synthesis in the development and differentiation of malaria parasites in the blood [Microbiology]

The life cycle of malaria parasites in both their mammalian host and mosquito vector consists of multiple developmental stages that ensure proper replication and progeny survival. The transition between these stages is fueled by nutrients scavenged from the host and fed into specialized metabolic pathways of the parasite. One such pathway is used by Plasmodium falciparum, which causes the most severe form of human malaria, to synthesize its major phospholipids, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. Much is known about the enzymes involved in the synthesis of these phospholipids, and recent advances in genetic engineering, single-cell RNA-Seq analyses, and drug screening have provided new perspectives on the importance of some of these enzymes in parasite development and sexual differentiation and have identified targets for the development of new antimalarial drugs. This Minireview focuses on two phospholipid biosynthesis enzymes of P. falciparum that catalyze phosphoethanolamine transmethylation (PfPMT) and phosphatidylserine decarboxylation (PfPSD) during the blood stages of the parasite. We also discuss our current understanding of the biochemical, structural, and biological functions of these enzymes and highlight efforts to use them as antimalarial drug targets.




tia

Virtual Roundtable: Tectonic Plates of 2020 – Developments in the US Presidential Race

Invitation Only Research Event

18 March 2020 - 1:00pm to 1:45pm

Event participants

John Zogby, Founder and Senior Partner, John Zogby Strategies
Chair: Dr Lindsay Newman, Senior Research Fellow, US and Americas Programme, Chatham House

This event is part of the Inaugural Virtual Roundtable Series on the US, Americas and the State of the World and will take place virtually only. Participants should not come to Chatham House for these events.

US and Americas Programme




tia

Diabetes Core Update: Therapeutic Inertia – April 2020

In this first episode of a three-part series on “Disrupting Therapeutic Inertia in Diabetes Management,” Drs. John Russell and Neil Skolnik examine a case study of a 55-year-old man with type 2 diabetes (3 years duration, A1C 8.2%). In so doing, they review six articles that define achievement gaps in reaching A1C goals and the reasons for why those gaps exist. In episodes 2 and 3 of this series, Drs. Russell and Skolnik we will look at additional causes of therapeutic inertia and solutions for overcoming it. This special three-part series on therapeutic inertia is supported by independent educational grant from Sanofi (https://www.sanofi.com).

This issue will review:

  1. Achievement of target therapeutic goals in persons with T2DM
  2. Achievement of therapeutic goals from 2005 – 2015
  3. Clinical Inertia in Newly Diagnosed Type 2 DM
  4. Clinical Inertia over Time in Type 2 DM
  5. Gap Between Efficacy in Randomized Controlled Trials and Effectiveness in Real-World Use
  6. Difference between Clinical Trial and Real-World Studies Achievement of Target A1C <7.0% in Patients Treated with Basal Insulin in RCTs and Clinical Practice

For more information about each of ADA’s science and medical journals, please visit www.diabetesjournals.org.

Presented by:

Neil Skolnik, M.D., Professor of Family and Community Medicine, Sidney Kimmel Medical College, Thomas Jefferson University; Associate Director, Family Medicine Residency Program, Abington Jefferson Health

John J. Russell, M.D., Professor of Family and Community Medicine, Sidney Kimmel Medical College, Thomas Jefferson University; Director, Family Medicine Residency Program, Chair-Department of Family Medicine, Abington Jefferson Health




tia

Implications of climate change for the UN Security Council: mapping the range of potential policy responses

6 November 2015 , Volume 91, Number 6

 

 

Shirley V. Scott