bac

Parallel Genomics Uncover Novel Enterococcal-Bacteriophage Interactions

ABSTRACT

Bacteriophages (phages) have been proposed as alternative therapeutics for the treatment of multidrug-resistant bacterial infections. However, there are major gaps in our understanding of the molecular events in bacterial cells that control how bacteria respond to phage predation. Using the model organism Enterococcus faecalis, we used two distinct genomic approaches, namely, transposon library screening and RNA sequencing, to investigate the interaction of E. faecalis with a virulent phage. We discovered that a transcription factor encoding a LytR family response regulator controls the expression of enterococcal polysaccharide antigen (epa) genes that are involved in phage infection and bacterial fitness. In addition, we discovered that DNA mismatch repair mutants rapidly evolve phage adsorption deficiencies, underpinning a molecular basis for epa mutation during phage infection. Transcriptomic profiling of phage-infected E. faecalis revealed broad transcriptional changes influencing viral replication and progeny burst size. We also demonstrate that phage infection alters the expression of bacterial genes associated with intra- and interbacterial interactions, including genes involved in quorum sensing and polymicrobial competition. Together, our results suggest that phage predation has the potential to influence complex microbial behavior and may dictate how bacteria respond to external environmental stimuli. These responses could have collateral effects (positive or negative) on microbial communities, such as the host microbiota, during phage therapy.

IMPORTANCE We lack fundamental understanding of how phage infection influences bacterial gene expression and, consequently, how bacterial responses to phage infection affect the assembly of polymicrobial communities. Using parallel genomic approaches, we have discovered novel transcriptional regulators and metabolic genes that influence phage infection. The integration of whole-genome transcriptomic profiling during phage infection has revealed the differential regulation of genes important for group behaviors and polymicrobial interactions. Our work suggests that therapeutic phages could more broadly influence bacterial community composition outside their intended host targets.




bac

Bacterial Transformation Buffers Environmental Fluctuations through the Reversible Integration of Mobile Genetic Elements

ABSTRACT

Horizontal gene transfer (HGT) promotes the spread of genes within bacterial communities. Among the HGT mechanisms, natural transformation stands out as being encoded by the bacterial core genome. Natural transformation is often viewed as a way to acquire new genes and to generate genetic mixing within bacterial populations. Another recently proposed function is the curing of bacterial genomes of their infectious parasitic mobile genetic elements (MGEs). Here, we propose that these seemingly opposing theoretical points of view can be unified. Although costly for bacterial cells, MGEs can carry functions that are at points in time beneficial to bacteria under stressful conditions (e.g., antibiotic resistance genes). Using computational modeling, we show that, in stochastic environments, an intermediate transformation rate maximizes bacterial fitness by allowing the reversible integration of MGEs carrying resistance genes, although these MGEs are costly for host cell replication. Based on this dual function (MGE acquisition and removal), transformation would be a key mechanism for stabilizing the bacterial genome in the long term, and this would explain its striking conservation.

IMPORTANCE Natural transformation is the acquisition, controlled by bacteria, of extracellular DNA and is one of the most common mechanisms of horizontal gene transfer, promoting the spread of resistance genes. However, its evolutionary function remains elusive, and two main roles have been proposed: (i) the new gene acquisition and genetic mixing within bacterial populations and (ii) the removal of infectious parasitic mobile genetic elements (MGEs). While the first one promotes genetic diversification, the other one promotes the removal of foreign DNA and thus genome stability, making these two functions apparently antagonistic. Using a computational model, we show that intermediate transformation rates, commonly observed in bacteria, allow the acquisition then removal of MGEs. The transient acquisition of costly MGEs with resistance genes maximizes bacterial fitness in environments with stochastic stress exposure. Thus, transformation would ensure both a strong dynamic of the bacterial genome in the short term and its long-term stabilization.




bac

More than Simple Parasites: the Sociobiology of Bacteriophages and Their Bacterial Hosts

ABSTRACT

Bacteria harbor viruses called bacteriophages that, like all viruses, co-opt the host cellular machinery to replicate. Although this relationship is at first glance parasitic, there are social interactions among and between bacteriophages and their bacterial hosts. These social interactions can take on many forms, including cooperation, altruism, and cheating. Such behaviors among individuals in groups of bacteria have been well described. However, the social nature of some interactions between phages or phages and bacteria is only now becoming clear. We are just beginning to understand how bacteriophages affect the sociobiology of bacteria, and we know even less about social interactions within bacteriophage populations. In this review, we discuss recent developments in our understanding of bacteriophage sociobiology, including how selective pressures influence the outcomes of social interactions between populations of bacteria and bacteriophages. We also explore how tripartite social interactions between bacteria, bacteriophages, and an animal host affect host-microbe interactions. Finally, we argue that understanding the sociobiology of bacteriophages will have implications for the therapeutic use of bacteriophages to treat bacterial infections.




bac

Pyocin S5 Import into Pseudomonas aeruginosa Reveals a Generic Mode of Bacteriocin Transport

ABSTRACT

Pyocin S5 (PyoS5) is a potent protein bacteriocin that eradicates the human pathogen Pseudomonas aeruginosa in animal infection models, but its import mechanism is poorly understood. Here, using crystallography, biophysical and biochemical analyses, and live-cell imaging, we define the entry process of PyoS5 and reveal links to the transport mechanisms of other bacteriocins. In addition to its C-terminal pore-forming domain, elongated PyoS5 comprises two novel tandemly repeated kinked 3-helix bundle domains that structure-based alignments identify as key import domains in other pyocins. The central domain binds the lipid-bound common polysaccharide antigen, allowing the pyocin to accumulate on the cell surface. The N-terminal domain binds the ferric pyochelin transporter FptA while its associated disordered region binds the inner membrane protein TonB1, which together drive import of the bacteriocin across the outer membrane. Finally, we identify the minimal requirements for sensitizing Escherichia coli toward PyoS5, as well as other pyocins, and suggest that a generic pathway likely underpins the import of all TonB-dependent bacteriocins across the outer membrane of Gram-negative bacteria.

IMPORTANCE Bacteriocins are toxic polypeptides made by bacteria to kill their competitors, making them interesting as potential antibiotics. Here, we reveal unsuspected commonalities in bacteriocin uptake pathways, through molecular and cellular dissection of the import pathway for the pore-forming bacteriocin pyocin S5 (PyoS5), which targets Pseudomonas aeruginosa. In addition to its C-terminal pore-forming domain, PyoS5 is composed of two tandemly repeated helical domains that we also identify in other pyocins. Functional analyses demonstrate that they have distinct roles in the import process. One recognizes conserved sugars projected from the surface, while the other recognizes a specific outer membrane siderophore transporter, FptA, in the case of PyoS5. Through engineering of Escherichia coli cells, we show that pyocins can be readily repurposed to kill other species. This suggests basic ground rules for the outer membrane translocation step that likely apply to many bacteriocins targeting Gram-negative bacteria.




bac

Cyclic di-GMP Signaling in Bacillus subtilis Is Governed by Direct Interactions of Diguanylate Cyclases and Cognate Receptors

ABSTRACT

Bacillus subtilis contains two known cyclic di-GMP (c-di-GMP)-dependent receptors, YdaK and DgrA, as well as three diguanylate cyclases (DGCs): soluble DgcP and membrane-integral DgcK and DgcW. DgrA regulates motility, while YdaK is responsible for the formation of a putative exopolysaccharide, dependent on the activity of DgcK. Using single-molecule tracking, we show that a majority of DgcK molecules are statically positioned in the cell membrane but significantly less so in the absence of YdaK but more so upon overproduction of YdaK. The soluble domains of DgcK and of YdaK show a direct interaction in vitro, which depends on an intact I-site within the degenerated GGDEF domain of YdaK. These experiments suggest a direct handover of a second messenger at a single subcellular site. Interestingly, all three DGC proteins contribute toward downregulation of motility via the PilZ protein DgrA. Deletion of dgrA also affects the mobility of DgcK within the membrane and also that of DgcP, which arrests less often at the membrane in the absence of DgrA. Both, DgcK and DgcP interact with DgrA in vitro, showing that divergent as well as convergent direct connections exist between cyclases and their effector proteins. Automated determination of molecule numbers in live cells revealed that DgcK and DgcP are present at very low copy numbers of 6 or 25 per cell, respectively, such that for DgcK, a part of the cell population does not contain any DgcK molecule, rendering signaling via c-di-GMP extremely efficient.

IMPORTANCE Second messengers are free to diffuse through the cells and to activate all responsive elements. Cyclic di-GMP (c-di-GMP) signaling plays an important role in the determination of the life style transition between motility and sessility/biofilm formation but involves numerous distinct synthetases (diguanylate cyclases [DGCs]) or receptor pathways that appear to act in an independent manner. Using Bacillus subtilis as a model organism, we show that for two c-di-GMP pathways, DGCs and receptor molecules operate via direct interactions, where a synthesized dinucleotide appears to be directly used for the protein-protein interaction. We show that very few DGC molecules exist within cells; in the case of exopolysaccharide (EPS) formation via membrane protein DgcK, the DGC molecules act at a single site, setting up a single signaling pool within the cell membrane. Using single-molecule tracking, we show that the soluble DGC DgcP arrests at the cell membrane, interacting with its receptor, DgrA, which slows down motility. DgrA also directly binds to DgcK, showing that divergent as well as convergent modules exist in B. subtilis. Thus, local-pool signal transduction operates extremely efficiently and specifically.




bac

Erratum for Townsend et al., "A Master Regulator of Bacteroides thetaiotaomicron Gut Colonization Controls Carbohydrate Utilization and an Alternative Protein Synthesis Factor"




bac

Feedback Control of a Two-Component Signaling System by an Fe-S-Binding Receiver Domain

ABSTRACT

Two-component signaling systems (TCSs) function to detect environmental cues and transduce this information into a change in transcription. In its simplest form, TCS-dependent regulation of transcription entails phosphoryl-transfer from a sensory histidine kinase to its cognate DNA-binding receiver protein. However, in certain cases, auxiliary proteins may modulate TCSs in response to secondary environmental cues. Caulobacter crescentus FixT is one such auxiliary regulator. FixT is composed of a single receiver domain and functions as a feedback inhibitor of the FixL-FixJ (FixLJ) TCS, which regulates the transcription of genes involved in adaptation to microaerobiosis. We sought to define the impact of fixT on Caulobacter cell physiology and to understand the molecular mechanism by which FixT represses FixLJ signaling. fixT deletion results in excess production of porphyrins and premature entry into stationary phase, demonstrating the importance of feedback inhibition of the FixLJ signaling system. Although FixT is a receiver domain, it does not affect dephosphorylation of the oxygen sensor kinase FixL or phosphoryl-transfer from FixL to its cognate receiver FixJ. Rather, FixT represses FixLJ signaling by inhibiting the FixL autophosphorylation reaction. We have further identified a 4-cysteine motif in Caulobacter FixT that binds an Fe-S cluster and protects the protein from degradation by the Lon protease. Our data support a model in which the oxidation of this Fe-S cluster promotes the degradation of FixT in vivo. This proteolytic mechanism facilitates clearance of the FixT feedback inhibitor from the cell under normoxia and resets the FixLJ system for a future microaerobic signaling event.

IMPORTANCE Two-component signal transduction systems (TCSs) are broadly conserved in the bacterial kingdom and generally contain two molecular components, a sensor histidine kinase and a receiver protein. Sensor histidine kinases alter their phosphorylation state in direct response to a physical or chemical cue, whereas receiver proteins "receive" the phosphoryl group from the kinase to regulate a change in cell physiology. We have discovered that a single-domain receiver protein, FixT, binds an Fe-S cluster and controls Caulobacter heme homeostasis though its function as a negative-feedback regulator of the oxygen sensor kinase FixL. We provide evidence that the Fe-S cluster protects FixT from Lon-dependent proteolysis in the cell and endows FixT with the ability to function as a second, autonomous oxygen/redox sensor in the FixL-FixJ signaling pathway. This study introduces a novel mechanism of regulated TCS feedback control by an Fe-S-binding receiver domain.




bac

The Min System Disassembles FtsZ Foci and Inhibits Polar Peptidoglycan Remodeling in Bacillus subtilis

ABSTRACT

A microfluidic system coupled with fluorescence microscopy is a powerful approach for quantitative analysis of bacterial growth. Here, we measure parameters of growth and dynamic localization of the cell division initiation protein FtsZ in Bacillus subtilis. Consistent with previous reports, we found that after division, FtsZ rings remain at the cell poles, and polar FtsZ ring disassembly coincides with rapid Z-ring accumulation at the midcell. In cells mutated for minD, however, the polar FtsZ rings persist indefinitely, suggesting that the primary function of the Min system is in Z-ring disassembly. The inability to recycle FtsZ monomers in the minD mutant results in the simultaneous maintenance of multiple Z-rings that are restricted by competition for newly synthesized FtsZ. Although the parameters of FtsZ dynamics change in the minD mutant, the overall cell division time remains the same, albeit with elongated cells necessary to accumulate a critical threshold amount of FtsZ for promoting medial division. Finally, the minD mutant characteristically produces minicells composed of polar peptidoglycan shown to be inert for remodeling in the wild type. Polar peptidoglycan, however, loses its inert character in the minD mutant, suggesting that the Min system not only is important for recycling FtsZ but also may have a secondary role in the spatiotemporal regulation of peptidoglycan remodeling.

IMPORTANCE Many bacteria grow and divide by binary fission in which a mother cell divides into two identical daughter cells. To produce two equally sized daughters, the division machinery, guided by FtsZ, must dynamically localize to the midcell each cell cycle. Here, we quantitatively analyzed FtsZ dynamics during growth and found that the Min system of Bacillus subtilis is essential to disassemble FtsZ rings after division. Moreover, a failure to efficiently recycle FtsZ results in an increase in cell size. Finally, we show that the Min system has an additional role in inhibiting cell wall turnover and contributes to the "inert" property of cell walls at the poles.




bac

Sulfamoyl Heteroarylcarboxylic Acids as Promising Metallo-{beta}-Lactamase Inhibitors for Controlling Bacterial Carbapenem Resistance

ABSTRACT

Production of metallo-β-lactamases (MBLs), which hydrolyze carbapenems, is a cause of carbapenem resistance in Enterobacteriaceae. Development of effective inhibitors for MBLs is one approach to restore carbapenem efficacy in carbapenem-resistant Enterobacteriaceae (CRE). We report here that sulfamoyl heteroarylcarboxylic acids (SHCs) can competitively inhibit the globally spreading and clinically relevant MBLs (i.e., IMP-, NDM-, and VIM-type MBLs) at nanomolar to micromolar orders of magnitude. Addition of SHCs restored meropenem efficacy against 17/19 IMP-type and 7/14 NDM-type MBL-producing Enterobacteriaceae to satisfactory clinical levels. SHCs were also effective against IMP-type MBL-producing Acinetobacter spp. and engineered Escherichia coli strains overproducing individual minor MBLs (i.e., TMB-2, SPM-1, DIM-1, SIM-1, and KHM-1). However, SHCs were less effective against MBL-producing Pseudomonas aeruginosa. Combination therapy with meropenem and SHCs successfully cured mice infected with IMP-1-producing E. coli and dually NDM-1/VIM-1-producing Klebsiella pneumoniae clinical isolates. X-ray crystallographic analyses revealed the inhibition mode of SHCs against MBLs; the sulfamoyl group of SHCs coordinated to two zinc ions, and the carboxylate group coordinated to one zinc ion and bound to positively charged amino acids Lys224/Arg228 conserved in MBLs. Preclinical testing revealed that the SHCs showed low toxicity in cell lines and mice and high stability in human liver microsomes. Our results indicate that SHCs are promising lead compounds for inhibitors of MBLs to combat MBL-producing CRE.

IMPORTANCE Carbapenem antibiotics are the last resort for control of severe infectious diseases, bloodstream infections, and pneumonia caused by Gram-negative bacteria, including Enterobacteriaceae. However, carbapenem-resistant Enterobacteriaceae (CRE) strains have spread globally and are a critical concern in clinical settings because CRE infections are recognized as a leading cause of increased mortality among hospitalized patients. Most CRE produce certain kinds of serine carbapenemases (e.g., KPC- and GES-type β-lactamases) or metallo-β-lactamases (MBLs), which can hydrolyze carbapenems. Although effective MBL inhibitors are expected to restore carbapenem efficacy against MBL-producing CRE, no MBL inhibitor is currently clinically available. Here, we synthesized 2,5-diethyl-1-methyl-4-sulfamoylpyrrole-3-carboxylic acid (SPC), which is a potent inhibitor of MBLs. SPC is a remarkable lead compound for clinically useful MBL inhibitors and can potentially provide a considerable benefit to patients receiving treatment for lethal infectious diseases caused by MBL-producing CRE.




bac

Metagenomic Exploration of the Marine Sponge Mycale hentscheli Uncovers Multiple Polyketide-Producing Bacterial Symbionts

ABSTRACT

Marine sponges have been a prolific source of unique bioactive compounds that are presumed to act as a deterrent to predation. Many of these compounds have potential therapeutic applications; however, the lack of efficient and sustainable synthetic routes frequently limits clinical development. Here, we describe a metagenomic investigation of Mycale hentscheli, a chemically gifted marine sponge that possesses multiple distinct chemotypes. We applied shotgun metagenomic sequencing, hybrid assembly of short- and long-read data, and metagenomic binning to obtain a comprehensive picture of the microbiome of five specimens, spanning three chemotypes. Our data revealed multiple producing species, each having relatively modest secondary metabolomes, that contribute collectively to the chemical arsenal of the holobiont. We assembled complete genomes for multiple new genera, including two species that produce the cytotoxic polyketides pateamine and mycalamide, as well as a third high-abundance symbiont harboring a proteusin-type biosynthetic pathway that appears to encode a new polytheonamide-like compound. We also identified an additional 188 biosynthetic gene clusters, including a pathway for biosynthesis of peloruside. These results suggest that multiple species cooperatively contribute to defensive symbiosis in M. hentscheli and reveal that the taxonomic diversity of secondary-metabolite-producing sponge symbionts is larger and richer than previously recognized.

IMPORTANCE Mycale hentscheli is a marine sponge that is rich in bioactive small molecules. Here, we use direct metagenomic sequencing to elucidate highly complete and contiguous genomes for the major symbiotic bacteria of this sponge. We identify complete biosynthetic pathways for the three potent cytotoxic polyketides which have previously been isolated from M. hentscheli. Remarkably, and in contrast to previous studies of marine sponges, we attribute each of these metabolites to a different producing microbe. We also find that the microbiome of M. hentscheli is stably maintained among individuals, even over long periods of time. Collectively, our data suggest a cooperative mode of defensive symbiosis in which multiple symbiotic bacterial species cooperatively contribute to the defensive chemical arsenal of the holobiont.




bac

Protein-Mediated and RNA-Based Origins of Replication of Extrachromosomal Mycobacterial Prophages

ABSTRACT

Temperate bacteriophages are common and establish lysogens of their bacterial hosts in which the prophage is stably inherited. It is typical for such prophages to be integrated into the bacterial chromosome, but extrachromosomally replicating prophages have been described also, with the best characterized being the Escherichia coli phage P1 system. Among the large collection of sequenced mycobacteriophages, more than half are temperate or predicted to be temperate, most of which code for a tyrosine or serine integrase that promotes site-specific prophage integration. However, within the large group of 621 cluster A temperate phages, ~20% lack an integration cassette, which is replaced with a parABS partitioning system. A subset of these phages carry genes coding for a RepA-like protein (RepA phages), which we show here is necessary and sufficient for autonomous extrachromosomal replication. The non-RepA phages appear to replicate using an RNA-based system, as a parABS-proximal region expressing a noncoding RNA is required for replication. Both RepA and non-RepA phage-based plasmids replicate at one or two copies per cell, transform both Mycobacterium smegmatis and Mycobacterium tuberculosis, and are compatible with pAL5000-derived oriM and integration-proficient plasmid vectors. Characterization of these phage-based plasmids offers insights into the variability of lysogenic maintenance systems and provides a large suite of plasmids for actinobacterial genetics that vary in stability, copy number, compatibility, and host range.

IMPORTANCE Bacteriophages are the most abundant biological entities in the biosphere and are a source of uncharacterized biological mechanisms and genetic tools. Here, we identify segments of phage genomes that are used for stable extrachromosomal replication in the prophage state. Autonomous replication of some of these phages requires a RepA-like protein, although most lack repA and use RNA-based systems for replication initiation. We describe a suite of plasmids based on these prophage replication functions that vary in copy number, stability, host range, and compatibility. These plasmids expand the toolbox available for genetic manipulation of Mycobacterium and other Actinobacteria, including Gordonia terrae.




bac

Bacillus anthracis Responds to Targocil-Induced Envelope Damage through EdsRS Activation of Cardiolipin Synthesis

ABSTRACT

Bacillus anthracis is a spore-forming bacterium that causes devastating infections and has been used as a bioterror agent. This pathogen can survive hostile environments through the signaling activity of two-component systems, which couple environmental sensing with transcriptional activation to initiate a coordinated response to stress. In this work, we describe the identification of a two-component system, EdsRS, which mediates the B. anthracis response to the antimicrobial compound targocil. Targocil is a cell envelope-targeting compound that is toxic to B. anthracis at high concentrations. Exposure to targocil causes damage to the cellular barrier and activates EdsRS to induce expression of a previously uncharacterized cardiolipin synthase, which we have named ClsT. Both EdsRS and ClsT are required for protection against targocil-dependent damage. Induction of clsT by EdsRS during targocil treatment results in an increase in cardiolipin levels, which protects B. anthracis from envelope damage. Together, these results reveal that a two-component system signaling response to an envelope-targeting antimicrobial induces production of a phospholipid associated with stabilization of the membrane. Cardiolipin is then used to repair envelope damage and promote B. anthracis viability.

IMPORTANCE Compromising the integrity of the bacterial cell barrier is a common action of antimicrobials. Targocil is an antimicrobial that is active against the bacterial envelope. We hypothesized that Bacillus anthracis, a potential weapon of bioterror, senses and responds to targocil to alleviate targocil-dependent cell damage. Here, we show that targocil treatment increases the permeability of the cellular envelope and is particularly toxic to B. anthracis spores during outgrowth. In vegetative cells, two-component system signaling through EdsRS is activated by targocil. This results in an increase in the production of cardiolipin via a cardiolipin synthase, ClsT, which restores the loss of barrier function, thereby reducing the effectiveness of targocil. By elucidating the B. anthracis response to targocil, we have uncovered an intrinsic mechanism that this pathogen employs to resist toxicity and have revealed therapeutic targets that are important for bacterial defense against structural damage.




bac

Minimalistic Cellulosome of the Butanologenic Bacterium Clostridium saccharoperbutylacetonicum

ABSTRACT

Clostridium saccharoperbutylacetonicum is a mesophilic, anaerobic, butanol-producing bacterium, originally isolated from soil. It was recently reported that C. saccharoperbutylacetonicum possesses multiple cellulosomal elements and would potentially form the smallest cellulosome known in nature. Its genome contains only eight dockerin-bearing enzymes, and its unique scaffoldin bears two cohesins (Cohs), three X2 modules, and two carbohydrate-binding modules (CBMs). In this study, all of the cellulosome-related modules were cloned, expressed, and purified. The recombinant cohesins, dockerins, and CBMs were tested for binding activity using enzyme-linked immunosorbent assay (ELISA)-based techniques. All the enzymes were tested for their comparative enzymatic activity on seven different cellulosic and hemicellulosic substrates, thus revealing four cellulases, a xylanase, a mannanase, a xyloglucanase, and a lichenase. All dockerin-containing enzymes interacted similarly with the second cohesin (Coh2) module, whereas Coh1 was more restricted in its interaction pattern. In addition, the polysaccharide-binding properties of the CBMs within the scaffoldin were examined by two complementary assays, affinity electrophoresis and affinity pulldown. The scaffoldin of C. saccharoperbutylacetonicum exhibited high affinity for cellulosic and hemicellulosic substrates, specifically to microcrystalline cellulose and xyloglucan. Evidence that supports substrate-dependent in vivo secretion of cellulosomes is presented. The results of our analyses contribute to a better understanding of simple cellulosome systems by identifying the key players in this minimalistic system and the binding pattern of its cohesin-dockerin interaction. The knowledge gained by our study will assist further exploration of similar minimalistic cellulosomes and will contribute to the significance of specific sets of defined cellulosomal enzymes in the degradation of cellulosic biomass.

IMPORTANCE Cellulosome-producing bacteria are considered among the most important bacteria in both mesophilic and thermophilic environments, owing to their capacity to deconstruct recalcitrant plant-derived polysaccharides (and notably cellulose) into soluble saccharides for subsequent processing. In many ecosystems, the cellulosome-producing bacteria are particularly effective "first responders." The massive amounts of sugars produced are potentially amenable in industrial settings to further fermentation by appropriate microbes to biofuels, notably ethanol and butanol. Among the solvent-producing bacteria, Clostridium saccharoperbutylacetonicum has the smallest cellulosome system known thus far. The importance of investigating the building blocks of such a small, multifunctional nanomachine is crucial to understanding the fundamental activities of this efficient enzymatic complex.




bac

Adaptive Evolution of Geobacter sulfurreducens in Coculture with Pseudomonas aeruginosa

ABSTRACT

Interactions between microorganisms in mixed communities are highly complex, being either syntrophic, neutral, predatory, or competitive. Evolutionary changes can occur in the interaction dynamics between community members as they adapt to coexistence. Here, we report that the syntrophic interaction between Geobacter sulfurreducens and Pseudomonas aeruginosa coculture change in their dynamics over evolutionary time. Specifically, Geobacter sp. dominance increases with adaptation within the cocultures, as determined through quantitative PCR and fluorescence in situ hybridization. This suggests a transition from syntrophy to competition and demonstrates the rapid adaptive capacity of Geobacter spp. to dominate in cocultures with P. aeruginosa. Early in coculture establishment, two single-nucleotide variants in the G. sulfurreducens fabI and tetR genes emerged that were strongly selected for throughout coculture evolution with P. aeruginosa phenazine wild-type and phenazine-deficient mutants. Sequential window acquisition of all theoretical spectra-mass spectrometry (SWATH-MS) proteomics revealed that the tetR variant cooccurred with the upregulation of an adenylate cyclase transporter, CyaE, and a resistance-nodulation-division (RND) efflux pump notably known for antibiotic efflux. To determine whether antibiotic production was driving the increased expression of the multidrug efflux pump, we tested Pseudomonas-derived phenazine-1-carboxylic acid (PHZ-1-CA) for its potential to inhibit Geobacter growth and drive selection of the tetR and fabI genetic variants. Despite its inhibitory properties, PHZ-1-CA did not drive variant selection, indicating that other antibiotics may drive overexpression of the efflux pump and CyaE or that a novel role exists for these proteins in the context of this interaction.

IMPORTANCE Geobacter and Pseudomonas spp. cohabit many of the same environments, where Geobacter spp. often dominate. Both bacteria are capable of extracellular electron transfer (EET) and play important roles in biogeochemical cycling. Although they recently in 2017 were demonstrated to undergo direct interspecies electron transfer (DIET) with one another, the genetic evolution of this syntrophic interaction has not been examined. Here, we use whole-genome sequencing of the cocultures before and after adaptive evolution to determine whether genetic selection is occurring. We also probe their interaction on a temporal level and determine whether their interaction dynamics change over the course of adaptive evolution. This study brings to light the multifaceted nature of interactions between just two microorganisms within a controlled environment and will aid in improving metabolic models of microbial communities comprising these two bacteria.




bac

Synergy between Cell Surface Glycosidases and Glycan-Binding Proteins Dictates the Utilization of Specific Beta(1,3)-Glucans by Human Gut Bacteroides

ABSTRACT

The human gut microbiota (HGM) has far-reaching impacts on human health and nutrition, which are fueled primarily by the metabolism of otherwise indigestible complex carbohydrates commonly known as dietary fiber. However, the molecular basis of the ability of individual taxa of the HGM to address specific dietary glycan structures remains largely unclear. In particular, the utilization of β(1,3)-glucans, which are widespread in the human diet as yeast, seaweed, and plant cell walls, had not previously been resolved. Through a systems-based approach, here we show that the symbiont Bacteroides uniformis deploys a single, exemplar polysaccharide utilization locus (PUL) to access yeast β(1,3)-glucan, brown seaweed β(1,3)-glucan (laminarin), and cereal mixed-linkage β(1,3)/β(1,4)-glucan. Combined biochemical, enzymatic, and structural analysis of PUL-encoded glycoside hydrolases (GHs) and surface glycan-binding proteins (SGBPs) illuminates a concerted molecular system by which B. uniformis recognizes and saccharifies these distinct β-glucans. Strikingly, the functional characterization of homologous β(1,3)-glucan utilization loci (1,3GUL) in other Bacteroides further demonstrated that the ability of individual taxa to utilize β(1,3)-glucan variants and/or β(1,3)/β(1,4)-glucans arises combinatorially from the individual specificities of SGBPs and GHs at the cell surface, which feed corresponding signals to periplasmic hybrid two-component sensors (HTCSs) via TonB-dependent transporters (TBDTs). These data reveal the importance of cooperativity in the adaptive evolution of GH and SGBP cohorts to address individual polysaccharide structures. We anticipate that this fine-grained knowledge of PUL function will inform metabolic network analysis and proactive manipulation of the HGM. Indeed, a survey of 2,441 public human metagenomes revealed the international, yet individual-specific, distribution of each 1,3GUL.

IMPORTANCE Bacteroidetes are a dominant phylum of the human gut microbiota (HGM) that target otherwise indigestible dietary fiber with an arsenal of polysaccharide utilization loci (PULs), each of which is dedicated to the utilization of a specific complex carbohydrate. Here, we provide novel insight into this paradigm through functional characterization of homologous PULs from three autochthonous Bacteroides species, which target the family of dietary β(1,3)-glucans. Through detailed biochemical and protein structural analysis, we observed an unexpected diversity in the substrate specificity of PUL glycosidases and glycan-binding proteins with regard to β(1,3)-glucan linkage and branching patterns. In combination, these individual enzyme and protein specificities support taxon-specific growth on individual β(1,3)-glucans. This detailed metabolic insight, together with a comprehensive survey of individual 1,3GULs across human populations, further expands the fundamental roadmap of the HGM, with potential application to the future development of microbial intervention therapies.




bac

Romo1-Derived Antimicrobial Peptide Is a New Antimicrobial Agent against Multidrug-Resistant Bacteria in a Murine Model of Sepsis

ABSTRACT

To overcome increasing bacterial resistance to conventional antibiotics, many antimicrobial peptides (AMPs) derived from host defense proteins have been developed. However, there are considerable obstacles to their application to systemic infections because of their low bioavailability. In the present study, we developed an AMP derived from Romo1 (AMPR-11) that exhibits a broad spectrum of antimicrobial activity. AMPR-11 showed remarkable efficacy against sepsis-causing bacteria, including multidrug-resistant strains, with low toxicity in a murine model of sepsis after intravenous administration. It seems that AMPR-11 disrupts bacterial membranes by interacting with cardiolipin and lipid A. From the results of this study, we suggest that AMPR-11 is a new class of agent for overcoming low efficacy in the intravenous application of AMPs and is a promising candidate to overcome multidrug resistance.

IMPORTANCE Abuse of antibiotics often leads to increase of multidrug-resistant (MDR) bacteria, which threatens the life of human beings. To overcome threat of antibiotic resistance, scientists are developing a novel class of antibiotics, antimicrobial peptides, that can eradicate MDR bacteria. Unfortunately, these antibiotics have mainly been developed to cure bacterial skin infections rather than others, such as life-threatening sepsis. Major pharmaceutical companies have tried to develop antiseptic drugs; however, they have not been successful. Here, we report that AMPR-11, the antimicrobial peptide (AMP) derived from mitochondrial nonselective channel Romo1, has antimicrobial activity against Gram-positive and Gram-negative bacteria comprising many clinically isolated MDR strains. Moreover, AMPR-11 increased the survival rate in a murine model of sepsis caused by MDR bacteria. We propose that AMPR-11 could be a novel antiseptic drug candidate with a broad antimicrobial spectrum to overcome MDR bacterial infection.




bac

Intercellular Transmission of a Synthetic Bacterial Cytotoxic Prion-Like Protein in Mammalian Cells

ABSTRACT

RepA is a bacterial protein that builds intracellular amyloid oligomers acting as inhibitory complexes of plasmid DNA replication. When carrying a mutation enhancing its amyloidogenesis (A31V), the N-terminal domain (WH1) generates cytosolic amyloid particles that are inheritable within a bacterial lineage. Such amyloids trigger in bacteria a lethal cascade reminiscent of mitochondrial impairment in human cells affected by neurodegeneration. To fulfill all the criteria to qualify as a prion-like protein, horizontal (intercellular) transmissibility remains to be demonstrated for RepA-WH1. Since this is experimentally intractable in bacteria, here we transiently expressed in a murine neuroblastoma cell line the soluble, barely cytotoxic RepA-WH1 wild type [RepA-WH1(WT)] and assayed its response to exposure to in vitro-assembled RepA-WH1(A31V) amyloid fibers. In parallel, murine cells releasing RepA-WH1(A31V) aggregates were cocultured with human neuroblastoma cells expressing RepA-WH1(WT). Both the assembled fibers and donor-derived RepA-WH1(A31V) aggregates induced, in the cytosol of recipient cells, the formation of cytotoxic amyloid particles. Mass spectrometry analyses of the proteomes of both types of injured cells pointed to alterations in mitochondria, protein quality triage, signaling, and intracellular traffic. Thus, a synthetic prion-like protein can be propagated to, and become cytotoxic to, cells of organisms placed at such distant branches of the tree of life as bacteria and mammalia, suggesting that mechanisms of protein aggregate spreading and toxicity follow default pathways.

IMPORTANCE Proteotoxic amyloid seeds can be transmitted between mammalian cells, arguing that the intercellular exchange of prion-like protein aggregates can be a common phenomenon. RepA-WH1 is derived from a bacterial intracellular functional amyloid protein, engineered to become cytotoxic in Escherichia coli. Here, we have studied if such bacterial aggregates can also be transmitted to, and become cytotoxic to, mammalian cells. We demonstrate that RepA-WH1 is capable of entering naive cells, thereby inducing the cytotoxic aggregation of a soluble RepA-WH1 variant expressed in the cytosol, following the same trend that had been described in bacteria. These findings highlight the universality of one of the central principles underlying prion biology: No matter the biological origin of a given prion-like protein, it can be transmitted to a phylogenetically unrelated recipient cell, provided that the latter expresses a soluble protein onto which the incoming protein can readily template its amyloid conformation.




bac

Burkholderia ubonensis Meropenem Resistance: Insights into Distinct Properties of Class A {beta}-Lactamases in Burkholderia cepacia Complex and Burkholderia pseudomallei Complex Bacteria

ABSTRACT

Burkholderia pseudomallei, the founding member of the B. pseudomallei complex (Bpc), is a biothreat agent and causes melioidosis, a disease whose treatment mainly relies on ceftazidime and meropenem. The concern is that B. pseudomallei could enhance its drug resistance repertoire by the acquisition of DNA from resistant near-neighbor species. Burkholderia ubonensis, a member of the B. cepacia complex (Bcc), is commonly coisolated from environments where B. pseudomallei is present. Unlike B. pseudomallei, in which significant primary carbapenem resistance is rare, it is not uncommon in B. ubonensis, but the underlying mechanisms are unknown. We established that carbapenem resistance in B. ubonensis is due to an inducible class A PenB β-lactamase, as has been shown for other Bcc bacteria. Inducibility is not sufficient for high-level resistance but also requires other determinants, such as a PenB that is more robust than that present in susceptible isolates, as well as other resistance factors. Curiously and diagnostic for the two complexes, both Bpc and Bcc bacteria contain distinct annotated PenA class A β-lactamases. However, the protein from Bcc bacteria is missing its essential active-site serine and, therefore, is not a β-lactamase. Regulated expression of a transcriptional penB'-lacZ (β-galactosidase) fusion in the B. pseudomallei surrogate B. thailandensis confirms that although Bpc bacteria lack an inducible β-lactamase, they contain the components required for responding to aberrant peptidoglycan synthesis resulting from β-lactam challenge. Understanding the diversity of antimicrobial resistance in Burkholderia species is informative about how the challenges arising from potential resistance transfer between them can be met.

IMPORTANCE Burkholderia pseudomallei causes melioidosis, a tropical disease that is highly fatal if not properly treated. Our data show that, in contrast to B. pseudomallei, B. ubonensis β-lactam resistance is fundamentally different because intrinsic resistance is mediated by an inducible class A β-lactamase. This includes resistance to carbapenems. Our work demonstrates that studies with near-neighbor species are informative about the diversity of antimicrobial resistance in Burkholderia and can also provide clues about the potential of resistance transfer between bacteria inhabiting the same environment. Knowledge about potential adverse challenges resulting from the horizontal transfer of resistance genes between members of the two complexes enables the design of effective countermeasures.




bac

Novel Divisome-Associated Protein Spatially Coupling the Z-Ring with the Chromosomal Replication Terminus in Caulobacter crescentus

ABSTRACT

Cell division requires proper spatial coordination with the chromosome, which undergoes dynamic changes during chromosome replication and segregation. FtsZ is a bacterial cytoskeletal protein that assembles into the Z-ring, providing a platform to build the cell division apparatus. In the model bacterium Caulobacter crescentus, the cellular localization of the Z-ring is controlled during the cell cycle in a chromosome replication-coupled manner. Although dynamic localization of the Z-ring at midcell is driven primarily by the replication origin-associated FtsZ inhibitor MipZ, the mechanism ensuring accurate positioning of the Z-ring remains unclear. In this study, we showed that the Z-ring colocalizes with the replication terminus region, located opposite the origin, throughout most of the C. crescentus cell cycle. Spatial organization of the two is mediated by ZapT, a previously uncharacterized protein that interacts with the terminus region and associates with ZapA and ZauP, both of which are part of the incipient division apparatus. While the Z-ring and the terminus region coincided with the presence of ZapT, colocalization of the two was perturbed in cells lacking zapT, which is accompanied by delayed midcellular positioning of the Z-ring. Moreover, cells overexpressing ZapT showed compromised positioning of the Z-ring and MipZ. These findings underscore the important role of ZapT in controlling cell division processes. We propose that ZapT acts as a molecular bridge that physically links the terminus region to the Z-ring, thereby ensuring accurate site selection for the Z-ring. Because ZapT is conserved in proteobacteria, these findings may define a general mechanism coordinating cell division with chromosome organization.

IMPORTANCE Growing bacteria require careful tuning of cell division processes with dynamic organization of replicating chromosomes. In enteric bacteria, ZapA associates with the cytoskeletal Z-ring and establishes a physical linkage to the chromosomal replication terminus through its interaction with ZapB-MatP-DNA complexes. However, because ZapB and MatP are found only in enteric bacteria, it remains unclear how the Z-ring and the terminus are coordinated in the vast majority of bacteria. Here, we provide evidence that a novel conserved protein, termed ZapT, mediates colocalization of the Z-ring with the terminus in Caulobacter crescentus, a model organism that is phylogenetically distant from enteric bacteria. Given that ZapT facilitates cell division processes in C. crescentus, this study highlights the universal importance of the physical linkage between the Z-ring and the terminus in maintaining cell integrity.




bac

Complete Structure of the Enterococcal Polysaccharide Antigen (EPA) of Vancomycin-Resistant Enterococcus faecalis V583 Reveals that EPA Decorations Are Teichoic Acids Covalently Linked to a Rhamnopolysaccharide Backbone

ABSTRACT

All enterococci produce a complex polysaccharide called the enterococcal polysaccharide antigen (EPA). This polymer is required for normal cell growth and division and for resistance to cephalosporins and plays a critical role in host-pathogen interaction. The EPA contributes to host colonization and is essential for virulence, conferring resistance to phagocytosis during the infection. Recent studies revealed that the "decorations" of the EPA polymer, encoded by genetic loci that are variable between isolates, underpin the biological activity of this surface polysaccharide. In this work, we investigated the structure of the EPA polymer produced by the high-risk enterococcal clonal complex Enterococcus faecalis V583. We analyzed purified EPA from the wild-type strain and a mutant lacking decorations and elucidated the structure of the EPA backbone and decorations. We showed that the rhamnan backbone of EPA is composed of a hexasaccharide repeat unit of C2- and C3-linked rhamnan chains, partially substituted in the C3 position by α-glucose (α-Glc) and in the C2 position by β-N-acetylglucosamine (β-GlcNAc). The so-called "EPA decorations" consist of phosphopolysaccharide chains corresponding to teichoic acids covalently bound to the rhamnan backbone. The elucidation of the complete EPA structure allowed us to propose a biosynthetic pathway, a first essential step toward the design of antimicrobials targeting the synthesis of this virulence factor.

IMPORTANCE Enterococci are opportunistic pathogens responsible for hospital- and community-acquired infections. All enterococci produce a surface polysaccharide called EPA (enterococcal polysaccharide antigen) required for biofilm formation, antibiotic resistance, and pathogenesis. Despite the critical role of EPA in cell growth and division and as a major virulence factor, no information is available on its structure. Here, we report the complete structure of the EPA polymer produced by the model strain E. faecalis V583. We describe the structure of the EPA backbone, made of a rhamnan hexasaccharide substituted by Glc and GlcNAc residues, and show that teichoic acids are covalently bound to this rhamnan chain, forming the so-called "EPA decorations" essential for host colonization and pathogenesis. This report represents a key step in efforts to identify the structural properties of EPA that are essential for its biological activity and to identify novel targets to develop preventive and therapeutic approaches against enterococci.




bac

Looking back to go forward: adherence to inhaled therapy before biologic therapy in severe asthma

For decades inhaled corticosteroids have been central to the management of asthma and are proven to be effective in maintaining symptom control, reducing exacerbations and preserving quality of life through mediation of airway inflammation. However, a small minority of patients have disease which is refractory to high dose inhaled corticosteroid (ICS) therapy and require additional oral corticosteroids to achieve acceptable control of symptoms and exacerbations. Severe asthma represents less than 10% of the total asthma population [1] but is the most serious, life-affecting and costly form of the condition [2].




bac

A rational approach to e-cigarettes: challenging ERS policy on tobacco harm reduction

We wish to thank J. Britton and co-workers for responding to our editorial and giving us an opportunity to clarify our position as well as correct a few misunderstandings. We definitely share the same goal, which is to relieve Europe and the rest of the world from the terrible results of the tobacco epidemic. We also do not "blankly oppose e-cigarettes"; however, we strongly advocate against a harm reduction strategy including e-cigarettes as well as heated tobacco products [1]. As clinicians we all see reluctant smokers where e-cigarettes can be tried as a last resort for getting off cigarette smoking, but that is of little relevance for a general harm reduction strategy. We also agree that the UK has achieved a lot in the area of smoking cessation but would argue that this has been achieved by impressive tobacco control, not by the use of e-cigarettes, and that a country such as Australia, which has banned nicotine-containing e-cigarettes, has achieved similar results.




bac

A rational approach to e-cigarettes: challenging ERS policy on tobacco harm reduction

The respiratory community is united in its desire to reduce and eliminate the harm caused by tobacco smoking, which is at present on course to kill one billion people in the 21st century. The stated policy of the European Respiratory Society is to strive "constantly to promote strong and evidence-based policies to reduce the burden of tobacco related diseases". In our view, the recent ERS Tobacco Control Committee statement on tobacco harm reduction [1], though well-intentioned, appears to be based on a number of false premises and draws its conclusions from a partial account of available data. It also presents a false dichotomy between the provision of "conventional" tobacco control and harm reduction approaches. We therefore respond, in turn, to the seven arguments presented against the adoption of harm reduction in the Committee's statement.




bac

Asking for Identification and Retail Tobacco Sales to Minors

BACKGROUND AND OBJECTIVES:

A previous single-county study found that retail stores usually asked young-looking tobacco customers to show proof-of-age identification, but a large proportion of illegal tobacco sales to minors occurred after the customers had shown identification proving they were too young to purchase tobacco. We sought to investigate these findings on a larger scale.

METHODS:

We obtained state reports for federal fiscal years 2017 and 2018 from a federal agency that tracks tobacco sales to supervised minors conducting compliance checks in retail stores. We used descriptive and multivariable logistic regression methods to determine (1) how often stores in 17 states requested identifications, (2) what proportion of violations occurred after identification requests, and (3) if violation rates differed when minors were required versus forbidden to carry identification.

RESULTS:

Stores asked minors for identification in 79.6% (95% confidence interval: 79.3%–80.8%) of compliance checks (N = 17 276). Violations after identification requests constituted 22.8% (95% confidence interval: 20.0%–25.6%; interstate range, 1.7%–66.2%) of all violations and were nearly 3 times as likely when minors were required to carry identification in compliance checks. Violations were 42% more likely when minors asked for a vaping product versus cigarettes.

CONCLUSIONS:

Stores that sell tobacco to underage customers are more likely to be detected and penalized when youth inspectors carry identification during undercover tobacco sales compliance checks. The new age-21 tobacco sales requirement presents an opportunity to require identifications be carried and address other long-standing weaknesses in compliance-check protocols to help combat the current adolescent vaping epidemic.




bac

T Follicular Helper Cells Regulate Humoral Response for Host Protection against Intestinal Citrobacter rodentium Infection [INFECTIOUS DISEASE AND HOST RESPONSE]

Key Points

  • Lack of Tfh cells renders the mice susceptible to C. rodentium infection.

  • Tfh cell–dependent protective Abs are essential to control C. rodentium.

  • Tfh cells regulate IgG1 response to C. rodentium infection.




    bac

    Complexes between C-Reactive Protein and Very Low Density Lipoprotein Delay Bacterial Clearance in Sepsis [INFECTIOUS DISEASE AND HOST RESPONSE]

    Key Points

  • Kupffer cells phagocytose both bacteria and CRP–VLDL complexes.

  • High levels of CRP–VLDL complexes delay bacterial clearance.

  • Pch disrupts CRP–VLDL complexes to improve bacterial clearance.




    bac

    LuxS/AI-2 Quorum Sensing System in Edwardsiella piscicida Promotes Biofilm Formation and Pathogenicity [Bacterial Infections]

    LuxS/AI-2 is an important quorum sensing system which affects the growth, biofilm formation, virulence, and metabolism of bacteria. LuxS is encoded by the luxS gene, but how this gene is associated with a diverse array of physiological activities in Edwardsiella piscicida (E. piscicida) is not known. Here, we constructed an luxS gene mutant strain, the luxS strain, to identify how LuxS/AI-2 affects pathogenicity. The results showed that LuxS was not found in the luxS gene mutant strain, and this gene deletion decreased E. piscicida growth compared to that of the wild-type strain. Meanwhile, the wild-type strain significantly increased penetration and motility in mucin compared to levels with the luxS strain. The 50% lethal dose (LD50) of the E. piscicida luxS strain for zebrafish was significantly higher than that of the wild-type strain, which suggested that the luxS gene deletion could attenuate the strain’s virulence. The AI-2 activities of EIB202 were 56-fold higher than those in the luxS strain, suggesting that the luxS gene promotes AI-2 production. Transcriptome results demonstrated that between cells infected with the luxS strain and those infected with the wild-type strain 46 genes were significantly differentially regulated, which included 34 upregulated genes and 12 downregulated genes. Among these genes, the largest number were closely related to cell immunity and signaling systems. In addition, the biofilm formation ability of EIB202 was significantly higher than that of the luxS strain. The supernatant of EIB202 increased the biofilm formation ability of the luxS strain, which suggested that the luxS gene and its product LuxS enhanced biofilm formation in E. piscicida. All results indicate that the LuxS/AI-2 quorum sensing system in E. piscicida promotes its pathogenicity through increasing a diverse array of physiological activities.




    bac

    Generation and Evaluation of a Glaesserella (Haemophilus) parasuis Capsular Mutant [Bacterial Infections]

    Glaesserella (Haemophilus) parasuis is a commensal bacterium of the upper respiratory tract in pigs and also the causative agent of Glässer’s disease, which causes significant morbidity and mortality in pigs worldwide. Isolates are characterized into 15 serovars by their capsular polysaccharide, which has shown a correlation with isolate pathogenicity. To investigate the role the capsule plays in G. parasuis virulence and host interaction, a capsule mutant of the serovar 5 strain HS069 was generated (HS069cap) through allelic exchange following natural transformation. HS069cap was unable to cause signs of systemic disease during a pig challenge study and had increased sensitivity to complement killing and phagocytosis by alveolar macrophages. Compared with the parent strain, HS069cap produced more robust biofilm and adhered equivalently to 3D4/31 cells; however, it was unable to persistently colonize the nasal cavity of inoculated pigs, with all pigs clearing HS069cap by 5 days postchallenge. Our results indicate the importance of the capsular polysaccharide to G. parasuis virulence as well as nasal colonization in pigs.




    bac

    Staphylococcus aureus Fibronectin Binding Protein A Mediates Biofilm Development and Infection [Bacterial Infections]

    Implanted medical device-associated infections pose significant health risks, as they are often the result of bacterial biofilm formation. Staphylococcus aureus is a leading cause of biofilm-associated infections which persist due to mechanisms of device surface adhesion, biofilm accumulation, and reprogramming of host innate immune responses. We found that the S. aureus fibronectin binding protein A (FnBPA) is required for normal biofilm development in mammalian serum and that the SaeRS two-component system is required for functional FnBPA activity in serum. Furthermore, serum-developed biofilms deficient in FnBPA were more susceptible to macrophage invasion, and in a model of biofilm-associated implant infection, we found that FnBPA is crucial for the establishment of infection. Together, these findings show that S. aureus FnBPA plays an important role in physical biofilm development and represents a potential therapeutic target for the prevention and treatment of device-associated infections.




    bac

    A Point Mutation in carR Is Involved in the Emergence of Polymyxin B-Sensitive Vibrio cholerae O1 El Tor Biotype by Influencing Gene Transcription [Bacterial Infections]

    Antimicrobial peptides play an important role in host defense against Vibrio cholerae. Generally, the V. cholerae O1 classical biotype is polymyxin B (PB) sensitive and El Tor is relatively resistant. Detection of classical biotype traits like the production of classical cholera toxin and PB sensitivity in El Tor strains has been reported in recent years, including in the devastating Yemen cholera outbreak during 2016-2018. To investigate the factor(s) responsible for the shift in the trend of sensitivity to PB, we studied the two-component system encoded by carRS, regulating the lipid A modification of El Tor vibrios, and found that only carR contains a single nucleotide polymorphism (SNP) in recently emerged PB-sensitive strains. We designated the two alleles present in PB-resistant and -sensitive strains carRr and carRs alleles, respectively, and replaced the carRs allele of a sensitive strain with the carRr allele, using an allelic-exchange approach. The sensitive strain then became resistant. The PB-resistant strain N16961 was made susceptible to PB in a similar fashion. Our in silico CarR protein models suggested that the D89N substitution in the more stable CarRs protein brings the two structural domains of CarR closer, constricting the DNA binding cleft. This probably reduces the expression of the carR-regulated almEFG operon, inducing PB susceptibility. Expression of almEFG in PB-sensitive strains was found to be downregulated under natural culturing conditions. In addition, the expression of carR and almEG decreased in all strains with increased concentrations of extracellular Ca2+ but increased with a rise in pH. The downregulation of almEFG in CarRs strains confirmed that the G265A mutation is responsible for the emergence of PB-sensitive El Tor strains.




    bac

    Characterization and Genomic Analysis of ValSw3-3, a New Siphoviridae Bacteriophage Infecting Vibrio alginolyticus [Genetic Diversity and Evolution]

    A novel lytic bacteriophage, ValSw3-3, which efficiently infects pathogenic strains of Vibrio alginolyticus, was isolated from sewage water and characterized by microbiological and in silico genomic analyses. Transmission electron microscopy indicated that ValSw3-3 has the morphology of siphoviruses. This phage can infect four species in the Vibrio genus and has a latent period of 15 min and a burst size of 95 ± 2 PFU/infected bacterium. Genome sequencing results show that ValSw3-3 has a 39,846-bp double-stranded DNA genome with a GC content of 43.1%. The similarity between the genome sequences of ValSw3-3 and those of other phages recorded in the GenBank database was below 50% (42%), suggesting that ValSw3-3 significantly differs from previously reported phages at the DNA level. Multiple genome comparisons and phylogenetic analysis based on the major capsid protein revealed that phage ValSw3-3 is grouped in a clade with five other phages, including Listonella phage phiHSIC (GenBank accession no. NC_006953.1), Vibrio phage P23 (MK097141.1), Vibrio phage pYD8-B (NC_021561.1), Vibrio phage 2E1 (KX507045.1), and Vibrio phage 12G5 (HQ632860.1), and is distinct from all known genera within the Siphoviridae family that have been ratified by the International Committee on Taxonomy of Viruses (ICTV). An in silico proteomic comparison of diverse phages from the Siphoviridae family supported this clustering result and suggested that ValSw3-3, phiHSIC, P23, pYD8-B, 2E1, and 12G5 should be classified as a novel genus cluster of Siphoviridae. A subsequent analysis of core genes also revealed the common genes shared within this new cluster. Overall, these results provide a characterization of Vibrio phage ValSw3-3 and support our proposal of a new viral genus within the family Siphoviridae.

    IMPORTANCE Phage therapy has been considered a potential alternative to antibiotic therapy in treating bacterial infections. For controlling the vibriosis-causing pathogen Vibrio alginolyticus, well-documented phage candidates are still lacking. Here, we characterize a novel lytic Vibrio phage, ValSw3-3, based on its morphology, host range and infectivity, growth characteristics, stability under various conditions, and genomic features. Our results show that ValSw3-3 could be a potent candidate for phage therapy to treat V. alginolyticus infections due to its stronger infectivity and better pH and thermal stability than those of previously reported Vibrio phages. Moreover, genome sequence alignments, phylogenetic analysis, in silico proteomic comparison, and core gene analysis all support that this novel phage, ValSw3-3, and five unclassified phages form a clade distant from those of other known genera ratified by the ICTV. Thus, we propose a new viral genus within the Siphoviridae family to accommodate this clade, with ValSw3-3 as a representative member.




    bac

    Variation in outer blubber lipid concentration does not reflect morphological body condition in humpback whales [RESEARCH ARTICLE]

    Fredrik Christiansen, Kate R. Sprogis, Jasmin Gross, Juliana Castrillon, Hunter A. Warick, Eva Leunissen, and Susan Bengtson Nash

    An animal's body condition provides valuable information for ecophysiological studies, and is an important measure of fitness in population monitoring and conservation. While both the external body shape of an animal and its internal tissues (i.e. fat content) can be used as a measure of body condition, the relationship between the two is not always linear. We compared the morphological body condition (external metric obtained through aerial photogrammetry) of migrating humpback whales (Megaptera novaeangliae) with their outer blubber lipid concentration (internal metric obtained through blubber biopsy sampling) off the coast of south-west Australia early and late in the breeding season (spanning ~4.5 months). The external body condition index of juvenile and adult humpback whales decreased by 26.9 (from 18.8% to –8.1%) and 12.0 percentage points (from 8.6% to –3.4%), respectively, between the early and late phase. In contrast, we found no intra-seasonal change in blubber lipid concentration, and no difference between reproductive classes (juveniles, adults and lactating females); however, the small sample size prevented us from effectively testing these effects. Importantly, however, in the 33 animals for which paired metrics were obtained, we found no correlation between the morphometric body condition index and the blubber lipid concentration of individual whales. The lack of a linear relationship suggests that changes in outer blubber lipid concentration do not reflect external changes in body shape, thus limiting the utility of outer blubber lipid reserves for individual body condition evaluation. The wider spectrum of change in body morphometry captured with aerial photogrammetry supports the use of body morphometry as a reliable and well-tested method.




    bac

    Wolbachia-infected ant colonies have increased reproductive investment and an accelerated life cycle [RESEARCH ARTICLE]

    Rohini Singh and Timothy A. Linksvayer

    Wolbachia is a widespread group of maternally-transmitted endosymbiotic bacteria that often manipulates the reproductive strategy and life history of its hosts to favor its own transmission. Wolbachia mediated phenotypic effects are well characterized in solitary hosts, but effects in social hosts are unclear. The invasive pharaoh ant, Monomorium pharaonis, shows natural variation in Wolbachia infection between colonies and can be readily bred under laboratory conditions. We previously showed that Wolbachia-infected pharaoh ant colonies had more queen-biased sex ratios than uninfected colonies, which is expected to favor the spread of maternally-transmitted Wolbachia. Here, we further characterize the effects of Wolbachia on the short- and longer-term reproductive and life history traits of pharaoh ant colonies. First, we characterized the reproductive differences between naturally infected and uninfected colonies at three discrete time points and found that infected colonies had higher reproductive investment (i.e. infected colonies produced more new queens), particularly when existing colony queens were three months old. Next, we compared the long-term growth and reproduction dynamics of infected and uninfected colonies across their whole life cycle. Infected colonies had increased colony-level growth and early colony reproduction, resulting in a shorter colony life cycle, when compared to uninfected colonies.




    bac

    Establishment of 5'-3' interactions in mRNA independent of a continuous ribose-phosphate backbone [ARTICLE]

    Functions of eukaryotic mRNAs are characterized by intramolecular interactions between their ends. We have addressed the question whether 5' and 3' ends meet by diffusion-controlled encounter "through solution" or by a mechanism involving the RNA backbone. For this purpose, we used a translation system derived from Drosophila embryos that displays two types of 5'–3' interactions: Cap-dependent translation initiation is stimulated by the poly(A) tail and inhibited by Smaug recognition elements (SREs) in the 3' UTR. Chimeric RNAs were made consisting of one RNA molecule carrying a luciferase coding sequence and a second molecule containing SREs and a poly(A) tail; the two were connected via a protein linker. The poly(A) tail stimulated translation of such chimeras even when disruption of the RNA backbone was combined with an inversion of the 5'–3' polarity between the open reading frame and poly(A) segment. Stimulation by the poly(A) tail also decreased with increasing RNA length. Both observations suggest that contacts between the poly(A) tail and the 5' end are established through solution, independently of the RNA backbone. In the same chimeric constructs, SRE-dependent inhibition of translation was also insensitive to disruption of the RNA backbone. Thus, tracking of the backbone is not involved in the repression of cap-dependent initiation. However, SRE-dependent repression was insensitive to mRNA length, suggesting that the contact between the SREs in the 3' UTR and the 5' end of the RNA might be established in a manner that differs from the contact between the poly(A) tail and the cap.




    bac

    Spectral and photochemical diversity of tandem cysteine cyanobacterial phytochromes [Plant Biology]

    The atypical trichromatic cyanobacterial phytochrome NpTP1 from Nostoc punctiforme ATCC 29133 is a linear tetrapyrrole (bilin)-binding photoreceptor protein that possesses tandem-cysteine residues responsible for shifting its light-sensing maximum to the violet spectral region. Using bioinformatics and phylogenetic analyses, here we established that tandem-cysteine cyanobacterial phytochromes (TCCPs) compose a well-supported monophyletic phytochrome lineage distinct from prototypical red/far-red cyanobacterial phytochromes. To investigate the light-sensing diversity of this family, we compared the spectroscopic properties of NpTP1 (here renamed NpTCCP) with those of three phylogenetically diverged TCCPs identified in the draft genomes of Tolypothrix sp. PCC7910, Scytonema sp. PCC10023, and Gloeocapsa sp. PCC7513. Recombinant photosensory core modules of ToTCCP, ScTCCP, and GlTCCP exhibited violet-blue–absorbing dark-states consistent with dual thioether-linked phycocyanobilin (PCB) chromophores. Photoexcitation generated singly-linked photoproduct mixtures with variable ratios of yellow-orange and red-absorbing species. The photoproduct ratio was strongly influenced by pH and by mutagenesis of TCCP- and phytochrome-specific signature residues. Our experiments support the conclusion that both photoproduct species possess protonated 15E bilin chromophores, but differ in the ionization state of the noncanonical “second” cysteine sulfhydryl group. We found that the ionization state of this and other residues influences subsequent conformational change and downstream signal transmission. We also show that tandem-cysteine phytochromes present in eukaryotes possess similar amino acid substitutions within their chromophore-binding pocket, which tune their spectral properties in an analogous fashion. Taken together, our findings provide a roadmap for tailoring the wavelength specificity of plant phytochromes to optimize plant performance in diverse natural and artificial light environments.




    bac

    A single amino acid substitution uncouples catalysis and allostery in an essential biosynthetic enzyme in Mycobacterium tuberculosis [Enzymology]

    Allostery exploits the conformational dynamics of enzymes by triggering a shift in population ensembles toward functionally distinct conformational or dynamic states. Allostery extensively regulates the activities of key enzymes within biosynthetic pathways to meet metabolic demand for their end products. Here, we have examined a critical enzyme, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS), at the gateway to aromatic amino acid biosynthesis in Mycobacterium tuberculosis, which shows extremely complex dynamic allostery: three distinct aromatic amino acids jointly communicate occupancy to the active site via subtle changes in dynamics, enabling exquisite fine-tuning of delivery of these essential metabolites. Furthermore, this allosteric mechanism is co-opted by pathway branchpoint enzyme chorismate mutase upon complex formation. In this study, using statistical coupling analysis, site-directed mutagenesis, isothermal calorimetry, small-angle X-ray scattering, and X-ray crystallography analyses, we have pinpointed a critical node within the complex dynamic communication network responsible for this sophisticated allosteric machinery. Through a facile Gly to Pro substitution, we have altered backbone dynamics, completely severing the allosteric signal yet remarkably, generating a nonallosteric enzyme that retains full catalytic activity. We also identified a second residue of prime importance to the inter-enzyme communication with chorismate mutase. Our results reveal that highly complex dynamic allostery is surprisingly vulnerable and provide further insights into the intimate link between catalysis and allostery.




    bac

    Backfill mining alternatives and strategies for mitigating shallow coal mining hazards in the western mining area of China

    This study addresses the major geo-environmental hazards caused by shallow coal mining in China's western eco-environment frangible area. These hazards are related to the high overburden pressure, surface subsidence, soil and water losses, and land desertification, with consequent vegetation and wildlife losses. To mitigate these hazards, three alternative backfill mining methods are proposed, for three typical shallow coal mining conditions, using aeolian sand-based backfilling materials, which are readily available in this area. The main influencing factor is the backfill material compaction ratio. Its effect on aquiclude deformation and water-conducting fracture evolution are assessed by numerical and physical simulation methods. The potential application of the proposed backfill coal mining alternatives is evaluated and discussed in detail. The results obtained are considered to be valuable for developing a strategy for the coordinated exploitation of coal resources and environmental protection in China's western frangible eco-environment area.




    bac

    Fluorescent Hybridization of Mycobacterium leprae in Skin Samples Collected in Burkina Faso [Mycobacteriology and Aerobic Actinomycetes]

    Leprosy is caused by Mycobacterium leprae, and it remains underdiagnosed in Burkina Faso. We investigated the use of fluorescent in situ hybridization (FISH) for detecting M. leprae in 27 skin samples (skin biopsy samples, slit skin samples, and skin lesion swabs) collected from 21 patients from Burkina Faso and three from Côte d’Ivoire who were suspected of having cutaneous leprosy. In all seven Ziehl-Neelsen-positive skin samples (four skin biopsy samples and three skin swabs collected from the same patient), FISH specifically identified M. leprae, including one FISH-positive skin biopsy sample that remained negative after testing with PCR targeting the rpoB gene and with the GenoType LepraeDR assay. Twenty other skin samples and three negative controls all remained negative for Ziehl-Neelsen staining, FISH, and rpoB PCR. These data indicate the usefulness of a microscopic examination of skin samples after FISH for first-line diagnosis of cutaneous leprosy. Accordingly, FISH represents a potentially useful point-of-care test for the diagnosis of cutaneous leprosy.




    bac

    High-Content Screening, a Reliable System for Coxiella burnetii Isolation from Clinical Samples [Bacteriology]

    Q fever, caused by Coxiella burnetii, is a worldwide zoonotic disease that may cause severe forms in humans and requires a specific and prolonged antibiotic treatment. Although current serological and molecular detection tools allow a reliable diagnosis of the disease, culture of C. burnetii strains is mandatory to assess their susceptibility to antibiotics and sequence their genome in order to optimize patient management and epidemiological studies. However, cultivating this fastidious microorganism is difficult and restricted to reference centers, as it requires biosafety level 3 laboratories and relies on cell culture performed by experienced technicians. In addition, the culture yield is low, which results in a small number of isolates being available. In this work, we developed a novel high-content screening (HCS) isolation strategy based on optimized high-throughput cell culture and automated microscopic detection of infected cells with specifically designed algorithms targeting cytopathic effects. This method was more efficient than the shell vial assay, at the level of time dependency, when applied to both frozen specimens (7 isolates recovered by HCS only, sensitivity 91% versus 78% for shell vial) and fresh samples (1 additional isolate using HCS, sensitivity 7% versus 5% for shell vial), for which most strains were recovered more rapidly with the new technique. In addition, detecting positive cultures by an automated microscope reduced the need for expertise and saved 24% of technician working time. Application of HCS to antibiotic susceptibility testing of 12 strains demonstrated that it was as efficient as the standard procedure that combines shell vial culture and quantitative PCR.




    bac

    Evaluation of a Novel Multiplex PCR Panel Compared to Quantitative Bacterial Culture for Diagnosis of Lower Respiratory Tract Infections [Bacteriology]

    Quantitative bacterial culture of bronchoalveolar lavage fluids (BALF) is labor-intensive, and the delay involved in performing culture, definitive identification, and susceptibility testing often results in prolonged use of broad-spectrum antibiotics. The Unyvero lower respiratory tract (LRT) panel (Curetis, Holzgerlingen, Germany) allows the multiplexed rapid detection and identification of 20 potential etiologic agents of pneumonia within 5 h of collection. In addition, the assay includes detection of gene sequences that confer antimicrobial resistance. We retrospectively compared the performance of the molecular panel to routine quantitative bacterial culture methods on remnant BALF. Upon testing 175 BALF, we were able to analyze positive agreement of 181 targets from 129 samples, and 46 samples were negative. The positive percent agreement (PPA) among the microbial targets was 96.5%, and the negative percent agreement (NPA) was 99.6%. The targets with a PPA of <100% were Staphylococcus aureus (34/37 [91.9%]), Streptococcus pneumoniae (10/11 [90.9%]), and Enterobacter cloacae complex (2/4 [50%]). For the analyzable resistance targets, concordance with phenotypic susceptibility testing was 79% (14/18). This study found the Unyvero LRT panel largely concordant with culture results; however, no outcome or clinical impact studies were performed.




    bac

    Genomic Investigation Reveals Contaminated Detergent as the Source of an Extended-Spectrum-{beta}-Lactamase-Producing Klebsiella michiganensis Outbreak in a Neonatal Unit [Bacteriology]

    Klebsiella species are problematic pathogens in neonatal units and may cause outbreaks, for which the sources of transmission may be challenging to elucidate. We describe the use of whole-genome sequencing (WGS) to investigate environmental sources of transmission during an outbreak of extended-spectrum-β-lactamase (ESBL)-producing Klebsiella michiganensis colonizing neonates. Ceftriaxone-resistant Klebsiella spp. isolated from neonates (or their mothers) and the hospital environment were included. Short-read sequencing (Illumina) and long-read sequencing (MinION; Oxford Nanopore Technologies) were used to confirm species taxonomy, to identify antimicrobial resistance genes, and to determine phylogenetic relationships using single-nucleotide polymorphism profiling. A total of 21 organisms (10 patient-derived isolates and 11 environmental isolates) were sequenced. Standard laboratory methods identified the outbreak strain as an ESBL-producing Klebsiella oxytoca, but taxonomic assignment from WGS data suggested closer identity to Klebsiella michiganensis. Strains isolated from multiple detergent-dispensing bottles were either identical or closely related by single-nucleotide polymorphism comparison. Detergent bottles contaminated by K. michiganensis had been used for washing milk expression equipment. No new cases were identified once the detergent bottles were removed. Environmental reservoirs may be an important source in outbreaks of multidrug-resistant organisms. WGS, in conjunction with traditional epidemiological investigation, can be instrumental in revealing routes of transmission and guiding infection control responses.




    bac

    Pooling Pharyngeal, Anorectal, and Urogenital Samples for Screening Asymptomatic Men Who Have Sex with Men for Chlamydia trachomatis and Neisseria gonorrhoeae [Bacteriology]

    Screening for Chlamydia trachomatis and Neisseria gonorrhoeae at the pharyngeal, urogenital, and anorectal sites is recommended for men who have sex with men (MSM). Combining the three individual-site samples into a single pooled sample could result in significant cost savings, provided there is no significant sensitivity reduction. The aim of this study was to examine the sensitivity of pooled samples for detecting chlamydia and gonorrhea in asymptomatic MSM using a nucleic acid amplification test. Asymptomatic MSM who tested positive for chlamydia or gonorrhoea were invited to participate. Paired samples were obtained from participants prior to administration of treatment. To form the pooled sample, the anorectal swab was agitated in the urine specimen transport tube and then discarded. The pharyngeal swab and 2 ml of urine sample were then added to the tube. The difference in sensitivity between testing of pooled samples and individual-site testing was calculated against an expanded gold standard, where an individual is considered positive if either pooled-sample or individual-site testing returns a positive result. All samples were tested using the Aptima Combo 2 assay. A total of 162 MSM were enrolled in the study. Sensitivities of pooled-sample testing were 86% (94/109; 95% confidence interval [CI], 79 to 92%]) for chlamydia and 91% (73/80; 95% CI, 83 to 96%) for gonorrhea. The sensitivity reduction was significant for chlamydia (P = 0.02) but not for gonorrhea (P = 0.34). Pooling caused 22 infections (15 chlamydia and 7 gonorrhoea) to be missed, and the majority were single-site infections (19/22). Pooling urogenital and extragenital samples from asymptomatic MSM reduced the sensitivity of detection by approximately 10% for chlamydia but not for gonorrhea.




    bac

    Multicenter Evaluation of the BD Phoenix CPO Detect Test for Detection and Classification of Carbapenemase-Producing Organisms in Clinical Isolates [Bacteriology]

    Limited treatment options contribute to high morbidity/mortality rates with carbapenem-resistant, Gram-negative bacterial infections. New approaches for carbapenemase-producing organism (CPO) detection may help inform clinician decision-making on patient treatment and infection control. BD Phoenix CPO detect (CPO detect) detects and classifies carbapenemases in Enterobacterales, Acinetobacter baumannii, and Pseudomonas aeruginosa during susceptibility testing. The clinical performance of CPO detect is reported here. Enterobacterales, Acinetobacter baumannii, and Pseudomonas aeruginosa isolates were evaluated across three sites using CPO detect and a composite reference method (RM); the latter was comprised of the modified carbapenem inactivation method and a MIC screen for ertapenem, imipenem, and meropenem. Multiplex PCR testing was also utilized for Ambler class determination. Positive and negative percentages of agreement (PPA and NPA, respectively) between CPO detect and the RM were determined. The PPA and NPA for Enterobacterales were 98.5% (confidence intervals, 96.6%, 99.4%) and 97.2% (95.8%, 98.2%), respectively. The A. baumannii PPA and NPA, respectively, were 97.1% (90.2%, 99.2%) and 97.1% (89.9%, 99.2%). The P. aeruginosa PPA and NPA, respectively, were 95.9% (88.6%, 98.6%) and 92.3% (86.7%, 95.6%). The PPA values for carbapenemase class designations for all organisms combined and Enterobacterales alone, respectively, were 95.3% (90.2%, 97.8%) and 94.6% (88.8%, 97.5%) for class A, 94.0% (88.7%, 96.6%) and 96.4% (90.0%, 98.8%) for class B, and 95.0% (90.1%, 97.6%) and 99.0% (94.4%, 99.8%) for class D carbapenemases. NPA values for all organisms and Enterobacterales alone ranged from 98.5% to 100%. CPO detect provided accurate detection and classification of CPOs for the majority of isolates of Enterobacterales, Acinetobacter baumannii, and Pseudomonas aeruginosa tested.




    bac

    Evaluation of Cycle Threshold, Toxin Concentration, and Clinical Characteristics of Clostridioides difficile Infection in Patients with Discordant Diagnostic Test Results [Bacteriology]

    Clostridioides difficile infection (CDI) is one of the most common health care-associated infections that can cause significant morbidity and mortality. CDI diagnosis involves laboratory testing in conjunction with clinical assessment. The objective of this study was to assess the performance of various C. difficile tests and to compare clinical characteristics, Xpert C. difficile/Epi (PCR) cycle threshold (CT), and Singulex Clarity C. diff toxins A/B (Clarity) concentrations between groups with discordant test results. Unformed stool specimens from 200 hospitalized adults (100 PCR positive and 100 negative) were tested by cell cytotoxicity neutralization assay (CCNA), C. diff Quik Chek Complete (Quik Chek), Premier Toxins A and B, and Clarity. Clinical data, including CDI severity and CDI risk factors, were compared between discordant test results. Compared to CCNA, PCR had the highest sensitivity at 100% and Quik Chek had the highest specificity at 100%. Among clinical and laboratory data studied, prevalences of leukocytosis, prior antibiotic use, and hospitalizations were consistently higher across all subgroups in comparisons of toxin-positive to toxin-negative patients. Among PCR-positive samples, the median CT was lower in toxin-positive samples than in toxin-negative samples; however, CT ranges overlapped. Among Clarity-positive samples, the quantitative toxin concentration was significantly higher in toxin-positive samples than in toxin-negative samples as determined by CCNA and Quik Chek Toxin A and B. Laboratory tests for CDI vary in sensitivity and specificity. The quantitative toxin concentration may offer value in guiding CDI diagnosis and treatment. The presence of leukocytosis, prior antibiotic use, and previous hospitalizations may assist with CDI diagnosis, while other clinical parameters may not be consistently reliable.




    bac

    Direct Determination of Pyrazinamide (PZA) Susceptibility by Sputum Microscopic Observation Drug Susceptibility (MODS) Culture at Neutral pH: the MODS-PZA Assay [Mycobacteriology and Aerobic Actinomycetes]

    Pyrazinamide (PZA) is considered the pivot drug in all tuberculosis treatment regimens due to its particular action on the persistent forms of Mycobacterium tuberculosis. However, no drug susceptibility test (DST) is considered sufficiently reliable for routine application. Although molecular tests are endorsed, their application is limited to known PZA resistance associated mutations. Microbiological DSTs for PZA have been restricted by technical limitations, especially the necessity for an acidic pH. Here, for the first time, MODS culture at neutral pH was evaluated using high PZA concentrations (400 and 800 μg/ml) to determine PZA susceptibility directly from sputum samples. Sputum samples were cultured with PZA for up to 21 days at 37°C. Plate reading was performed at two time points: R1 (mean, 10 days) and R2 (mean, 13 days) for each PZA concentration. A consensus reference test, composed of MGIT-PZA, pncA sequencing, and the classic Wayne test, was used. A total of 182 samples were evaluated. The sensitivity and specificity for 400 μg/ml ranged from 76.9 to 89.7 and from 93.0 to 97.9%, respectively, and for 800 μg/ml ranged from 71.8 to 82.1 and from 95.8 to 98.6%, respectively. Compared to MGIT-PZA, our test showed a similar turnaround time (medians of 10 and 12 days for PZA-sensitive and -resistant isolates, respectively). In conclusion, MODS-PZA is presented as a fast, simple, and low-cost DST that could complement the MODS assay to evaluate resistance to the principal first-line antituberculosis drugs. Further optimization of test conditions would be useful in order to increase its performance.




    bac

    Targeting Asymptomatic Bacteriuria in Antimicrobial Stewardship: the Role of the Microbiology Laboratory [Minireviews]

    This minireview focuses on the microbiologic evaluation of patients with asymptomatic bacteriuria, as well as indications for antibiotic treatment. Asymptomatic bacteriuria is defined as two consecutive voided specimens (preferably within 2 weeks) with the same bacterial species, isolated in quantitative counts of ≥105 CFU/ml in women, including pregnant women; a single voided urine specimen with one bacterial species isolated in a quantitative count ≥105 CFU/ml in men; and a single catheterized urine specimen with one or more bacterial species isolated in a quantitative count of ≥105 CFU/ml in either women or men (or ≥102 CFU/ml of a single bacterial species from a single catheterized urine specimen). Any urine specimen with ≥104 CFU/ml group B Streptococcus is significant for asymptomatic bacteriuria in a pregnant woman. Asymptomatic bacteriuria occurs, irrespective of pyuria, in the absence of signs or symptoms of a urinary tract infection. The two groups with the best evidence of adverse outcomes in the setting of untreated asymptomatic bacteriuria include pregnant women and patients who undergo urologic procedures with risk of mucosal injury. Screening and treatment of asymptomatic bacteriuria is not recommended in the following patient populations: pediatric patients, healthy nonpregnant women, older patients in the inpatient or outpatient setting, diabetic patients, patients with an indwelling urethral catheter, patients with impaired voiding following spinal cord injury, patients undergoing nonurologic surgeries, and nonrenal solid-organ transplant recipients. Renal transplant recipients beyond 1 month posttransplant should not undergo screening and treatment for asymptomatic bacteriuria. There is insufficient evidence to recommend for or against screening of renal transplant recipients within 1 month, patients with high-risk neutropenia, or patients with indwelling catheters at the time of catheter removal. Unwarranted antibiotics place patients at increased risk of adverse effects (including Clostridioides difficile diarrhea) and contribute to antibiotic resistance. Methods to reduce unnecessary screening for and treatment of asymptomatic bacteriuria aid in antibiotic stewardship.




    bac

    Multicenter Evaluation of the QIAstat-Dx Respiratory Panel for Detection of Viruses and Bacteria in Nasopharyngeal Swab Specimens [Virology]

    The QIAstat-Dx Respiratory Panel (QIAstat-Dx RP) is a multiplex in vitro diagnostic test for the qualitative detection of 20 pathogens directly from nasopharyngeal swab (NPS) specimens. The assay is performed using a simple sample-to-answer platform with results available in approximately 69 min. The pathogens identified are adenovirus, coronavirus 229E, coronavirus HKU1, coronavirus NL63, coronavirus OC43, human metapneumovirus A and B, influenza A, influenza A H1, influenza A H3, influenza A H1N1/2009, influenza B, parainfluenza virus 1, parainfluenza virus 2, parainfluenza virus 3, parainfluenza virus 4, rhinovirus/enterovirus, respiratory syncytial virus A and B, Bordetella pertussis, Chlamydophila pneumoniae, and Mycoplasma pneumoniae. This multicenter evaluation provides data obtained from 1,994 prospectively collected and 310 retrospectively collected (archived) NPS specimens with performance compared to that of the BioFire FilmArray Respiratory Panel, version 1.7. The overall percent agreement between QIAstat-Dx RP and the comparator testing was 99.5%. In the prospective cohort, the QIAstat-Dx RP demonstrated a positive percent agreement of 94.0% or greater for the detection of all but four analytes: coronaviruses 229E, NL63, and OC43 and rhinovirus/enterovirus. The test also demonstrated a negative percent agreement of ≥97.9% for all analytes. The QIAstat-Dx RP is a robust and accurate assay for rapid, comprehensive testing for respiratory pathogens.




    bac

    More than Smoke and Patches: The Quest for Pharmacotherapies to Treat Tobacco Use Disorder [Review Articles]

    Tobacco use is a persistent public health issue. It kills up to half its users and is the cause of nearly 90% of all lung cancers. The main psychoactive component of tobacco is nicotine, primarily responsible for its abuse-related effects. Accordingly, most pharmacotherapies for smoking cessation target nicotinic acetylcholine receptors (nAChRs), nicotine’s major site of action in the brain. The goal of the current review is twofold: first, to provide a brief overview of the most commonly used behavioral procedures for evaluating smoking cessation pharmacotherapies and an introduction to pharmacokinetic and pharmacodynamic properties of nicotine important for consideration in the development of new pharmacotherapies; and second, to discuss current and potential future pharmacological interventions aimed at decreasing tobacco use. Attention will focus on the potential for allosteric modulators of nAChRs to offer an improvement over currently approved pharmacotherapies. Additionally, given increasing public concern for the potential health consequences of using electronic nicotine delivery systems, which allow users to inhale aerosolized solutions as an alternative to smoking tobacco, an effort will be made throughout this review to address the implications of this relatively new form of nicotine delivery, specifically as it relates to smoking cessation.

    Significance Statement

    Despite decades of research that have vastly improved our understanding of nicotine and its effects on the body, only a handful of pharmacotherapies have been successfully developed for use in smoking cessation. Thus, investigation of alternative pharmacological strategies for treating tobacco use disorder remains active; allosteric modulators of nicotinic acetylcholine receptors represent one class of compounds currently under development for this purpose.




    bac

    Back-Table Fluorescence-Guided Imaging for Circumferential Resection Margin Evaluation Using Bevacizumab-800CW in Patients with Locally Advanced Rectal Cancer

    Negative circumferential resection margins (CRM) are the cornerstone for the curative treatment of locally advanced rectal cancer (LARC). However, in up to 18.6% of patients, tumor-positive resection margins are detected on histopathology. In this proof-of-concept study, we investigated the feasibility of optical molecular imaging as a tool for evaluating the CRM directly after surgical resection to improve tumor-negative CRM rates. Methods: LARC patients treated with neoadjuvant chemoradiotherapy received an intravenous bolus injection of 4.5 mg of bevacizumab-800CW, a fluorescent tracer targeting vascular endothelial growth factor A, 2–3 d before surgery (ClinicalTrials.gov identifier: NCT01972373). First, for evaluation of the CRM status, back-table fluorescence-guided imaging (FGI) of the fresh surgical resection specimens (n = 8) was performed. These results were correlated with histopathology results. Second, for determination of the sensitivity and specificity of bevacizumab-800CW for tumor detection, a mean fluorescence intensity cutoff value was determined from the formalin-fixed tissue slices (n = 42; 17 patients). Local bevacizumab-800CW accumulation was evaluated by fluorescence microscopy. Results: Back-table FGI correctly identified a tumor-positive CRM by high fluorescence intensities in 1 of 2 patients (50%) with a tumor-positive CRM. For the other patient, low fluorescence intensities were shown, although (sub)millimeter tumor deposits were present less than 1 mm from the CRM. FGI correctly identified 5 of 6 tumor-negative CRM (83%). The 1 patient with false-positive findings had a marginal negative CRM of only 1.4 mm. Receiver operating characteristic curve analysis of the fluorescence intensities of formalin-fixed tissue slices yielded an optimal mean fluorescence intensity cutoff value for tumor detection of 5,775 (sensitivity of 96.19% and specificity of 80.39%). Bevacizumab-800CW enabled a clear differentiation between tumor and normal tissue up to a microscopic level, with a tumor-to-background ratio of 4.7 ± 2.5 (mean ± SD). Conclusion: In this proof-of-concept study, we showed the potential of back-table FGI for evaluating the CRM status in LARC patients. Optimization of this technique with adaptation of standard operating procedures could change perioperative decision making with regard to extending resections or applying intraoperative radiation therapy in the case of positive CRM.




    bac

    Positive autofeedback regulation of Ptf1a transcription generates the levels of PTF1A required to generate itch circuit neurons [Research Papers]

    Peripheral somatosensory input is modulated in the dorsal spinal cord by a network of excitatory and inhibitory interneurons. PTF1A is a transcription factor essential in dorsal neural tube progenitors for specification of these inhibitory neurons. Thus, mechanisms regulating Ptf1a expression are key for generating neuronal circuits underlying somatosensory behaviors. Mutations targeted to distinct cis-regulatory elements for Ptf1a in mice, tested the in vivo contribution of each element individually and in combination. Mutations in an autoregulatory enhancer resulted in reduced levels of PTF1A, and reduced numbers of specific dorsal spinal cord inhibitory neurons, particularly those expressing Pdyn and Gal. Although these mutants survive postnatally, at ~3–5 wk they elicit a severe scratching phenotype. Behaviorally, the mutants have increased sensitivity to itch, but acute sensitivity to other sensory stimuli such as mechanical or thermal pain is unaffected. We demonstrate a requirement for positive transcriptional autoregulatory feedback to attain the level of the neuronal specification factor PTF1A necessary for generating correctly balanced neuronal circuits.