rome

Analytical Guidelines for co-fractionation Mass Spectrometry Obtained through Global Profiling of Gold Standard Saccharomyces cerevisiae Protein Complexes [Research]

Co-fractionation MS (CF-MS) is a technique with potential to characterize endogenous and unmanipulated protein complexes on an unprecedented scale. However this potential has been offset by a lack of guidelines for best-practice CF-MS data collection and analysis. To obtain such guidelines, this study thoroughly evaluates novel and published Saccharomyces cerevisiae CF-MS data sets using very high proteome coverage libraries of yeast gold standard complexes. A new method for identifying gold standard complexes in CF-MS data, Reference Complex Profiling, and the Extending 'Guilt-by-Association' by Degree (EGAD) R package are used for these evaluations, which are verified with concurrent analyses of published human data. By evaluating data collection designs, which involve fractionation of cell lysates, it is found that near-maximum recall of complexes can be achieved with fewer samples than published studies. Distributing sample collection across orthogonal fractionation methods, rather than a single high resolution data set, leads to particularly efficient recall. By evaluating 17 different similarity scoring metrics, which are central to CF-MS data analysis, it is found that two metrics rarely used in past CF-MS studies – Spearman and Kendall correlations – and the recently introduced Co-apex metric frequently maximize recall, whereas a popular metric—Euclidean distance—delivers poor recall. The common practice of integrating external genomic data into CF-MS data analysis is also evaluated, revealing that this practice may improve the precision and recall of known complexes but is generally unsuitable for predicting novel complexes in model organisms. If studying nonmodel organisms using orthologous genomic data, it is found that particular subsets of fractionation profiles (e.g. the lowest abundance quartile) should be excluded to minimize false discovery. These assessments are summarized in a series of universally applicable guidelines for precise, sensitive and efficient CF-MS studies of known complexes, and effective predictions of novel complexes for orthogonal experimental validation.




rome

High-dimensional Cytometry (ExCYT) and Mass Spectrometry of Myeloid Infiltrate in Clinically Localized Clear Cell Renal Cell Carcinoma Identifies Novel Potential Myeloid Targets for Immunotherapy [Research]

Renal Cell Carcinoma (RCC) is one of the most commonly diagnosed cancers worldwide with research efforts dramatically improving understanding of the biology of the disease. To investigate the role of the immune system in treatment-naïve clear cell Renal Cell Carcinoma (ccRCC), we interrogated the immune infiltrate in patient-matched ccRCC tumor samples, benign normal adjacent tissue (NAT) and peripheral blood mononuclear cells (PBMCs isolated from whole blood, focusing our attention on the myeloid cell infiltrate. Using flow cytometric, MS, and ExCYT analysis, we discovered unique myeloid populations in PBMCs across patient samples. Furthermore, normal adjacent tissues and ccRCC tissues contained numerous myeloid populations with a unique signature for both tissues. Enrichment of the immune cell (CD45+) fraction and subsequent gene expression analysis revealed a number of myeloid-related genes that were differentially expressed. These data provide evidence, for the first time, of an immunosuppressive and pro-tumorigenic role of myeloid cells in early, clinically localized ccRCC. The identification of a number of immune proteins for therapeutic targeting provides a rationale for investigation into the potential efficacy of earlier intervention with single-agent or combination immunotherapy for ccRCC.




rome

Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS1) and in Silico Peptide Mass Libraries [Technological Innovation and Resources]

Over the past decade, modern methods of MS (MS) have emerged that allow reliable, fast and cost-effective identification of pathogenic microorganisms. Although MALDI-TOF MS has already revolutionized the way microorganisms are identified, recent years have witnessed also substantial progress in the development of liquid chromatography (LC)-MS based proteomics for microbiological applications. For example, LC-tandem MS (LC-MS2) has been proposed for microbial characterization by means of multiple discriminative peptides that enable identification at the species, or sometimes at the strain level. However, such investigations can be laborious and time-consuming, especially if the experimental LC-MS2 data are tested against sequence databases covering a broad panel of different microbiological taxa. In this proof of concept study, we present an alternative bottom-up proteomics method for microbial identification. The proposed approach involves efficient extraction of proteins from cultivated microbial cells, digestion by trypsin and LC–MS measurements. Peptide masses are then extracted from MS1 data and systematically tested against an in silico library of all possible peptide mass data compiled in-house. The library has been computed from the UniProt Knowledgebase covering Swiss-Prot and TrEMBL databases and comprises more than 12,000 strain-specific in silico profiles, each containing tens of thousands of peptide mass entries. Identification analysis involves computation of score values derived from correlation coefficients between experimental and strain-specific in silico peptide mass profiles and compilation of score ranking lists. The taxonomic positions of the microbial samples are then determined by using the best-matching database entries. The suggested method is computationally efficient – less than 2 mins per sample - and has been successfully tested by a test set of 39 LC-MS1 peak lists obtained from 19 different microbial pathogens. The proposed method is rapid, simple and automatable and we foresee wide application potential for future microbiological applications.




rome

Kinome Profiling of Primary Endometrial Tumors Using Multiplexed Inhibitor Beads and Mass Spectrometry Identifies SRPK1 as Candidate Therapeutic Target [Research]

Endometrial carcinoma (EC) is the most common gynecologic malignancy in the United States, with limited effective targeted therapies. Endometrial tumors exhibit frequent alterations in protein kinases, yet only a small fraction of the kinome has been therapeutically explored. To identify kinase therapeutic avenues for EC, we profiled the kinome of endometrial tumors and normal endometrial tissues using Multiplexed Inhibitor Beads and Mass Spectrometry (MIB-MS). Our proteomics analysis identified a network of kinases overexpressed in tumors, including Serine/Arginine-Rich Splicing Factor Kinase 1 (SRPK1). Immunohistochemical (IHC) analysis of endometrial tumors confirmed MIB-MS findings and showed SRPK1 protein levels were highly expressed in endometrioid and uterine serous cancer (USC) histological subtypes. Moreover, querying large-scale genomics studies of EC tumors revealed high expression of SRPK1 correlated with poor survival. Loss-of-function studies targeting SRPK1 in an established USC cell line demonstrated SRPK1 was integral for RNA splicing, as well as cell cycle progression and survival under nutrient deficient conditions. Profiling of USC cells identified a compensatory response to SRPK1 inhibition that involved EGFR and the up-regulation of IGF1R and downstream AKT signaling. Co-targeting SRPK1 and EGFR or IGF1R synergistically enhanced growth inhibition in serous and endometrioid cell lines, representing a promising combination therapy for EC.




rome

Stoichiometry of Nucleotide Binding to Proteasome AAA+ ATPase Hexamer Established by Native Mass Spectrometry [Research]

AAA+ ATPases constitute a large family of proteins that are involved in a plethora of cellular processes including DNA disassembly, protein degradation and protein complex disassembly. They typically form a hexametric ring-shaped structure with six subunits in a (pseudo) 6-fold symmetry. In a subset of AAA+ ATPases that facilitate protein unfolding and degradation, six subunits cooperate to translocate protein substrates through a central pore in the ring. The number and type of nucleotides in an AAA+ ATPase hexamer is inherently linked to the mechanism that underlies cooperation among subunits and couples ATP hydrolysis with substrate translocation. We conducted a native MS study of a monodispersed form of PAN, an archaeal proteasome AAA+ ATPase, to determine the number of nucleotides bound to each hexamer of the WT protein. We utilized ADP and its analogs (TNP-ADP and mant-ADP), and a nonhydrolyzable ATP analog (AMP-PNP) to study nucleotide site occupancy within the PAN hexamer in ADP- and ATP-binding states, respectively. Throughout all experiments we used a Walker A mutant (PANK217A) that is impaired in nucleotide binding as an internal standard to mitigate the effects of residual solvation on mass measurement accuracy and to serve as a reference protein to control for nonspecific nucleotide binding. This approach led to the unambiguous finding that a WT PAN hexamer carried – from expression host – six tightly bound ADP molecules that could be exchanged for ADP and ATP analogs. Although the Walker A mutant did not bind ADP analogs, it did bind AMP-PNP, albeit at multiple stoichiometries. We observed variable levels of hexamer dissociation and an appearance of multimeric species with the over-charged molecular ion distributions across repeated experiments. We posit that these phenomena originated during ESI process at the final stages of ESI droplet evolution.




rome

Fourier transform mass spectrometry [Invited]

This article provides an introduction to Fourier transform-based mass spectrometry (FTMS). The key performance characteristics of FTMS, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of FTMS technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for his/her application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook.




rome

WITHDRAWN: Quantitative mass spectrometry analysis of PD-L1 protein expression, N-glycosylation and expression stoichiometry with PD-1 and PD-L2 in human melanoma [Research]

This article has been withdrawn by the authors. We discovered an error after this manuscript was published as a Paper in Press. Specifically, we learned that the structures of glycans presented for the PD-L1 peptide were drawn and labeled incorrectly. We wish to withdraw this article and submit a corrected version for review.




rome

Calculating glycoprotein similarities from mass spectrometric data [Review]

Complex protein glycosylation occurs through biosynthetic steps in the secretory pathway that create macro- and microheterogeneity of structure and function.  Required for all life forms, glycosylation diversifies and adapts protein interactions with binding partners that underpin interactions at cell surfaces and pericellular and extracellular environments. Because these biological effects arise from heterogeneity of structure and function, it is necessary to measure their changes as part of the quest to understand nature.  Quite often, however, the assumption behind proteomics that post-translational modifications are discrete additions that can be modeled using the genome as a template does not apply to protein glycosylation.  Rather, it is necessary to quantify the glycosylation distribution at each glycosite and to aggregate this information into a population of mature glycoproteins that exist in a given biological system.  To date, mass spectrometric methods for assigning singly glycosylated peptides are well-established.  But it is necessary to quantify glycosylation heterogeneity accurately in order to gauge the alterations that occur during biological processes.  The task is to quantify the glycosylated peptide forms as accurately as possible and then apply appropriate bioinformatics algorithms to the calculation of micro- and macro-similarities.  In this review, we summarize current approaches for protein quantification as they apply to this glycoprotein similarity problem.




rome

Developments in Mass Spectrometry for Glycosaminoglycan Analysis: A Review [Review]

This review covers recent developments in glycosaminoglycan (GAG) analysis via mass spectrometry (MS). GAGs participate in a variety of biological functions, including cellular communication, wound healing, and anticoagulation, and are important targets for structural characterization. GAGs exhibit a diverse range of structural features due to the variety of O- and N-sulfation modifications and uronic acid C-5 epimerization that can occur, making their analysis a challenging target. Mass spectrometry approaches to the structure assignment of GAGs have been widely investigated, and new methodologies remain the subject of development. Advances in sample preparation, tandem MS techniques (MS/MS), on-line separations and automated analysis software have advanced the field of GAG analysis. These recent developments have led to remarkable improvements in the precision and time efficiency for the structural characterization of GAGs.




rome

A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-based Glycoproteomics [Review]

Glycosylation is a prevalent, yet heterogeneous modification with a broad range of implications in molecular biology. This heterogeneity precludes enrichment strategies that can be universally beneficial for all glycan classes. Thus, choice of enrichment strategy has profound implications on experimental outcomes. Here we review common enrichment strategies used in modern mass spectrometry (MS)-based glycoproteomic experiments, including lectins and other affinity chromatographies, hydrophilic interaction chromatography (HILIC) and its derivatives, porous graphitic carbon (PGC), reversible and irreversible chemical coupling strategies, and chemical biology tools that often leverage bioorthogonal handles. Interest in glycoproteomics continues to surge as MS instrumentation and software improve, so this review aims to help equip researchers with necessary information to choose appropriate enrichment strategies that best complement these efforts.




rome

Accelerating the field of epigenetic histone modification through mass spectrometry-based approaches [Review]

Histone post-translational modifications (PTMs) are one of the main mechanisms of epigenetic regulation. Dysregulation of histone PTMs leads to many human diseases, such as cancer. Due to its high-throughput, accuracy, and flexibility, mass spectrometry (MS) has emerged as a powerful tool in the epigenetic histone modification field, allowing the comprehensive and unbiased analysis of histone PTMs and chromatin-associated factors. Coupled with various techniques from molecular biology, biochemistry, chemical biology and biophysics, MS has been employed to characterize distinct aspects of histone PTMs in the epigenetic regulation of chromatin functions. In this review we will describe advancements in the field of MS that have facilitated the analysis of histone PTMs and chromatin biology.  




rome

Imaging Mass Spectrometry and Lectin Analysis of N-linked Glycans in Carbohydrate Antigen Defined Pancreatic Cancer Tissues [Research]

The early detection of pancreatic ductal adenocarcinoma is a complex clinical obstacle yet is key to improving the overall likelihood of patient survival. Current and prospective carbohydrate biomarkers CA19-9 and sTRA are sufficient for surveilling disease progression yet are not approved for delineating PDAC from other abdominal cancers and non-cancerous pancreatic pathologies. To further understand these glycan epitopes, an imaging mass spectrometry approach was utilized to assess the N-glycome of the human pancreas and pancreatic cancer in a cohort of PDAC patients represented by tissue microarrays and whole tissue sections. Orthogonally, these same tissues were characterized by multi-round immunofluorescence which defined expression of CA19-9 and sTRA as well as other lectins towards carbohydrate epitopes with the potential to improve PDAC diagnosis. These analyses revealed distinct differences not only in N-glycan spatial localization across both healthy and diseased tissues but importantly between different biomarker-categorized tissue samples. Unique sulfated bi-antennary N-glycans were detected specifically in normal pancreatic islets. N-glycans from CA19-9 expressing tissues tended to be bi-, tri- and tetra-antennary structures with both core and terminal fucose residues and bisecting N-acetylglucosamines. These N-glycans were detected in less abundance in sTRA-expressing tumor tissues, which favored tri- and tetra-antennary structures with polylactosamine extensions. Increased sialylation of N-glycans was detected in all tumor tissues. A candidate new biomarker derived from IMS was further explored by fluorescence staining with selected lectins on the same tissues. The lectins confirmed the expression of the epitopes in cancer cells and revealed different tumor-associated staining patterns between glycans with bisecting GlcNAc and those with terminal GlcNAc. Thus, the combination of lectin-IHC and IMS techniques produces more complete information for tumor classification than the individual analyses alone. These findings potentiate the development of early assessment technologies to rapidly and specifically identify PDAC in the clinic that may directly impact patient outcomes.




rome

Multi-sample mass spectrometry-based approach for discovering injury markers in chronic kidney disease [Research]

Urinary proteomics studies have primarily focused on identifying markers of chronic kidney disease (CKD) progression. Here, we aimed to determine urinary markers of CKD renal parenchymal injury through proteomics analysis in animal kidney tissues and cells and in the urine of patients with CKD. Label-free quantitative proteomics analysis based on liquid chromatography-tandem mass spectrometry was performed on urine samples obtained from 6 normal controls and 9, 11, and 10 patients with CKD stages 1, 3, and 5, respectively, and on kidney tissue samples from a rat CKD model by 5/6 nephrectomy. Tandem mass tag-based quantitative proteomics analysis was performed for primary cultured glomerular endothelial cells (GECs) and proximal tubular epithelial cells (PTECs) before and after inducing 24-h hypoxia injury. Upon hierarchical clustering, out of 858 differentially expressed proteins (DEPs) in the urine of CKD patients, the levels of 416 decreased and 403 increased sequentially according to the disease stage, respectively. Among 2965 DEPs across 5/6 nephrectomized and sham-operated rat kidney tissues, 86 DEPs showed same expression patterns in the urine and kidney tissue. After cross-validation with two external animal proteome datasets, 38 DEPs were organized; only 10 DEPs, including serotransferrin, gelsolin, poly ADP-ribose polymerase 1, neuroblast differentiation-associated protein AHNAK, microtubule-associated protein 4, galectin-1, protein S, thymosin beta-4, myristoylated alanine-rich C-kinase substrate, and vimentin were finalized by screening human GECs and PTECs data. Among these ten potential candidates for universal CKD marker, validation analyses for protein S and galectin-1 were conducted. Galectin-1 was observed to have a significant inverse correlation with renal function as well as higher expression in glomerulus with chronic injury than protein S. This constitutes the first multi-sample proteomics study for identifying key renal-expressed proteins associated with CKD progression. The discovered proteins represent potential markers of chronic renal cell and tissue damage and candidate contributors to CKD pathophysiology.




rome

Coronavirus Squeezes Supply of Chromebooks, iPads, and Other Digital Learning Devices

School districts are competing against each other for purchases of digital devices as remote learning expands to schools across the country.




rome

Rome Based Agencies making an impact in Burkina Faso

FAO, IFAD and WFP/Burkina [...]




rome

The Pre-Summit of the UN Food Systems Summit, 26-28 July 2021, Rome

Delivering the latest evidence-based and scientific approaches, launching new commitments for food systems transformation.




rome

ROME WATER DIALOGUE, a Special Event on the road to the UN 2023 Water Conference 29 November 2022, 09.00-16.15 (CET)

Water is one of the world´s most important resources. It is central to agriculture that accounts for 72 percent of global freshwater withdrawals, to other economic sectors and is essential [...]




rome

Rome Water Dialogue 2023

FAO invites all Members to the second installment of the Rome Water Dialogue at FAO headquarters in Rome, Italy, on October 4-5, 2023, building on the success of the first [...]




rome

Rome Reborn

Fly through, and over, ancient Rome's winding streets, broad plazas, forums—even its most famous monuments




rome

Rome's Trevi Fountain Will Get a Much-Needed Cleaning—and a Controversial New Entry Fee

During the restorations, visitors will be able to see the famous site via a temporary walkway, which officials will use to study the flow of foot traffic




rome

Amplification and Identification of Vertebrate Host Cytochrome c Oxidase Subunit I (COI) DNA Barcoding Templates from Mosquito Blood Meals

Mosquitoes take blood meals from a diverse range of host animals and their host associations vary by species. Characterizing these associations is an important element of the transmission dynamics of mosquito-vectored pathogens. To characterize mosquito host associations, various molecular techniques have been developed, which are collectively referred to as blood meal analysis. DNA barcoding has diverse biological applications and is well-suited to mosquito blood meal analysis. The standard DNA barcoding marker for animals is a 5' fragment of the cytochrome c oxidase I (COI) gene. A major advantage of this marker is its taxonomic coverage in DNA sequence reference databases, making it feasible to identify a wider range of mosquito host species than with any other gene. However, the COI gene contains high sequence variation at potential priming sites between vertebrate orders. Coupled with the need for primer sequences to be mismatched with mosquito priming sites so that annealing to mosquito DNA is inhibited, it can be difficult to design primers suitable for blood meal analysis applications. Several primers are available that perform well in mosquito blood meal analysis, annealing to priming sites for most vertebrate host taxa, but not to those of mosquitoes. Because priming site sequence variation among vertebrate taxa can cause amplification to fail, a hierarchical approach to DNA barcoding-based blood meal analysis can be applied. In such an approach, no single primer set is expected to be effective for 100% of potential host species. If amplification fails in the initial reaction, a subsequent reaction is attempted with primers that anneal to different priming sites, and so on, until amplification is successful.




rome

Identification of Mosquito Eggshell Proteins from Aedes aegypti by Liquid Chromatography with Tandem Mass Spectrometry (LC-MS/MS) Proteomic Analysis

The insect eggshell is a multifunctional structure with several important roles, including generating an entry point for sperm via the micropyle before oviposition, serving as an oviposition substrate attachment surface, and functioning as a protective layer during embryo development. Eggshell proteins play major roles in eggshell tanning and hardening following oviposition and provide molecular cues that define dorsal–ventral axis formation. Precise eggshell formation during ovarian follicle maturation is critical for normal embryo development and the synthesis of a defective eggshell often gives rise to inviable embryos. Therefore, simple and accurate methods for identifying eggshell proteins will facilitate our understanding of the molecular pathways regulating eggshell formation and the mechanisms underlying normal embryo development. This protocol describes how to isolate and enrich eggshells from mature oocytes of Aedes aegypti mosquitoes and how to extract their eggshell proteins for liquid chromatography with tandem mass spectrometry (LC–MS/MS) proteomic analysis. Although this methodology was developed for studying mosquito eggshells, it may be applicable to eggs from a variety of insects. Mosquitoes are ideal model organisms for this study as their ovarian follicle development and eggshell formation are meticulously regulated by blood feeding and their follicles develop synchronously throughout oogenesis in a time-dependent manner.




rome

Three guitars on the promenade

A group of believers worshiping Jesus in public leads to the opportunity to share the Gospel with a young, religious Jew.




rome

Google Chrome on iPhones gets new features with Drive, Maps integration - Business Standard

  1. Google Chrome on iPhones gets new features with Drive, Maps integration  Business Standard
  2. Stop Using Chrome On Your iPhone, Warns Apple—Millions Of Users Must Now Decide  Forbes
  3. 4 new Chrome improvements for iOS  The Keyword
  4. Chrome on iOS now lets you search using images and text at the same time  TechCrunch
  5. Google rolls out new features in Chrome for iPhone users  Moneycontrol





rome

'Gladiator II' review: Ridley Scott grapples with modern masculinity in ancient Rome

Paul Mescal, Denzel Washington, and Pedro Pascal face off in Ridley Scott's "Gladiator II." Review.




rome

Get some new tech on a budget with these discounted Chromebooks ahead of Black Friday

As of Nov. 11, Chromebook deals are aplenty ahead of Black Friday 2024. Check out our top picks from Lenovo, Asus, Samsung, and others.




rome

La promesa del Espíritu Santo, 1ª Parte A

La enseñanza bíblica en profundidad de John MacArthur lleva la verdad transformadora de la Palabra de Dios a millones de personas cada día.




rome

La promesa del Espíritu Santo, 1ª Parte B

La enseñanza bíblica en profundidad de John MacArthur lleva la verdad transformadora de la Palabra de Dios a millones de personas cada día.




rome

La promesa del Espíritu Santo, 2ª Parte A

La enseñanza bíblica en profundidad de John MacArthur lleva la verdad transformadora de la Palabra de Dios a millones de personas cada día.




rome

La promesa del Espíritu Santo, 2ª Parte B

La enseñanza bíblica en profundidad de John MacArthur lleva la verdad transformadora de la Palabra de Dios a millones de personas cada día.




rome

Playing Nuclear Games: Tickling the Tail of the Promethean Nuclear Fire Dragon

In recent years, the rhetoric, strategy and practice of nuclear deterrence has grown riskier, more urgent, more dangerous, less stable, and increasingly in the hands of deficient leaders and policymakers. Playing Nuclear Games The ten States that have manufactured and test detonated nuclear weapons since 1945, each have received and/or provided assistance to other States […]




rome

Neanderthal child may have had Down’s syndrome

A fossil bone displaying features consistent with Down’s syndrome belonged to a Neanderthal child who survived beyond 6 years old, adding to evidence that these extinct humans cared for members of their community




rome

Pollen, Fruits, Veggies Help Trigger Oral Allergy Syndrome

Title: Pollen, Fruits, Veggies Help Trigger Oral Allergy Syndrome
Category: Health News
Created: 8/30/2007 12:00:00 AM
Last Editorial Review: 8/30/2007 12:00:00 AM




rome

More Evidence Virus Plays Role in Chronic Fatigue Syndrome

Title: More Evidence Virus Plays Role in Chronic Fatigue Syndrome
Category: Health News
Created: 8/23/2010 6:10:00 PM
Last Editorial Review: 8/24/2010 12:00:00 AM




rome

Stress May Raise Risk of Premenstrual Syndrome

Title: Stress May Raise Risk of Premenstrual Syndrome
Category: Health News
Created: 8/26/2010 10:49:00 AM
Last Editorial Review: 8/26/2010 10:49:44 AM




rome

2 Cases Suggest Stem Cell Transplant Might Ease 'Stiff Person' Syndrome

Title: 2 Cases Suggest Stem Cell Transplant Might Ease 'Stiff Person' Syndrome
Category: Health News
Created: 8/26/2014 4:36:00 PM
Last Editorial Review: 8/27/2014 12:00:00 AM




rome

Restless Legs Syndrome Might Raise Risk of Suicide, Self-Harm

Title: Restless Legs Syndrome Might Raise Risk of Suicide, Self-Harm
Category: Health News
Created: 8/23/2019 12:00:00 AM
Last Editorial Review: 8/26/2019 12:00:00 AM




rome

What Is the Life Expectancy of Someone With CLOVES Syndrome?

Title: What Is the Life Expectancy of Someone With CLOVES Syndrome?
Category: Diseases and Conditions
Created: 8/26/2022 12:00:00 AM
Last Editorial Review: 8/26/2022 12:00:00 AM




rome

Investigations into the Concentrations and Metabolite Profiles of Doping Agents and Antidepressants in Human Seminal Fluid Using Liquid Chromatography-Mass Spectrometry [Articles]

Exogenous substances, including drugs and chemicals, can transfer into human seminal fluid and influence male fertility and reproduction. In addition, substances relevant in the context of sports drug testing programs, can be transferred into the urine of a female athlete (after unprotected sexual intercourse) and trigger a so-called adverse analytical finding. Here, the question arises as to whether it is possible to distinguish analytically between intentional doping offenses and unintentional contamination of urine by seminal fluid. To this end, 480 seminal fluids from nonathletes were analyzed to identify concentration ranges and metabolite profiles of therapeutic drugs that are also classified as doping agents. Therefore, a screening procedure was developed using liquid chromatography connected to a triple quadrupole mass spectrometer, and suspect samples (i.e., samples indicating the presence of relevant compounds) were further subjected to liquid chromatography-high-resolution accurate mass (tandem) mass spectrometry. The screening method yielded 90 findings (including aromatase inhibitors, selective estrogen receptor modulators, diuretics, stimulants, glucocorticoids, beta-blockers, antidepressants, and the nonapproved proliferator-activated receptor delta agonist GW1516) in a total of 81 samples, with 91% of these suspected cases being verified by the confirmation method. In addition to the intact drug, phase-I and -II metabolites were also occasionally observed in the seminal fluid. This study demonstrated that various drugs including those categorized as doping agents partition into seminal fluid. Monitoring substances and metabolites may contribute to a better understanding of the distribution and metabolism of exogenous substances in seminal fluid that may be responsible for the impairment of male fertility.

SIGNIFICANCE STATEMENT

This study demonstrates that doping agents as well as clinically relevant substances are transferred/eliminated into seminal fluid to a substantial extent and that knowledge about drug levels (and potential consequences for the male fertility and female exposure) is limited. The herein generated new dataset provides new insights into an important and yet little explored area of drug deposition and elimination, and hereby a basis for the assessment of contamination cases by seminal fluid in sports drug testing.




rome

Effects of Compound Probiotics on Pharmacokinetics of Cytochrome 450 Probe Drugs in Rats [Articles]

Compound probiotics have been widely used and commonly coadministered with other drugs for treating various chronic illnesses, yet their effects on drug pharmacokinetics remain underexplored. This study elucidated the impact of VSL#3 on the metabolism of probe drugs for cytochrome P450 enzymes (P450s), specifically omeprazole, tolbutamide, midazolam, metoprolol, phenacetin, and chlorzoxazone. Male Wistar rats were administered drinking water containing VSL#3 or not for 14 days and then intragastrically administered a P450 probe cocktail; this was done to investigate the host P450’s metabolic phenotype. Stool, liver/jejunum, and serum samples were collected for 16S ribosomal RNA sequencing, RNA sequencing, and bile acid profiling. The results indicated significant differences in both α and β diversity of intestinal microbial composition between the probiotic and vehicle groups in rats. In the probiotic group, the bioavailability of omeprazole increased by 269.9%, whereas those of tolbutamide and chlorpropamide decreased by 28.1% and 27.4%, respectively. The liver and jejunum exhibited 1417 and 4004 differentially expressed genes, respectively, between the two groups. In the probiotic group, most of P450 genes were upregulated in the liver but downregulated in the jejunum. The expression of genes encoding metabolic enzymes and drug transporters also changed. The serum-conjugated bile acids in the probiotic group were significantly reduced. Shorter duodenal villi and longer ileal villi were found in the probiotic group. In summary, VSL#3 administration altered the gut microbiota, host drug–processing gene expression, and intestinal structure in rats, which could be reasons for pharmacokinetic changes.

SIGNIFICANCE STATEMENT

This study focused on the effects of the probiotic VSL#3 on the pharmacokinetic profile of cytochrome P450 probe drugs and the expression of host drug metabolism genes. Compared with previous studies, the present study provides a comprehensive explanation for the host drug metabolism profile modified by probiotics, combined here with the bile acid profile and histopathological analysis.




rome

Characterizing the Distribution of a Stimulator of Interferon Genes Agonist and Its Metabolites in Mouse Liver by Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry [Special Section on New and Emerging Areas and Technologies in Drug Met

A STING (stimulator of interferon genes) agonist GSK3996915 under investigation in early discovery for hepatitis B was orally dosed to a mouse model for understanding the parent drug distribution in liver, the target organ. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) was used to quantify the distribution of GSK3996915 in liver collected from mice administered a single oral dose at 90 mg/kg. GSK3996915 was detected with a zonal distribution localized in the portal triad and highly concentrated in the main bile ducts, indicating clearance through biliary excretion. High spatial resolution imaging showed the distribution of the parent drug localized to the cellular populations in the sinusoids, including the Kupffer cells. Additionally, a series of drug-related metabolites were observed to be localized in the central zones of the liver. These results exemplify the potential of utilizing MALDI IMS for measuring not only quantitative drug distribution and target exposure but also drug metabolism and elimination in a single suite of experiments.

SIGNIFICANCE STATEMENT

An integrated imaging approach utilizing matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) complemented with immunohistochemistry (IHC) and histology was used to address the question of target exposure at the cellular level. Localized quantification of the parent drug in the target organ and identification of potential metabolites in the context of tissue histology were also achieved in one experimental suite to support characterization of pharmacokinetic properties of the drug in the early discovery stage.:




rome

The Potential of Cannabichromene (CBC) as a Therapeutic Agent [Special Section: Cannabinoid Signaling in Human Health and Disease-Minireview]

There is a growing interest in the use of medicinal plants to treat a variety of diseases, and one of the most commonly used medicinal plants globally is Cannabis sativa. The two most abundant cannabinoids (9-tetrahydrocannabinol and cannabidiol) have been governmentally approved to treat selected medical conditions; however, the plant produces over 100 cannabinoids, including cannabichromene (CBC). Although the cannabinoids share a common precursor molecule, cannabigerol, they are structurally and pharmacologically unique. These differences may engender differing therapeutic potentials. In this review, we will examine what is currently known about CBC with regards to pharmacodynamics, pharmacokinetics, and receptor profile. We will also discuss the therapeutic areas that have been examined for this cannabinoid, notably antinociceptive, antibacterial, and anti-seizure activities. Finally, we will discuss areas where new research is needed and potential novel medicinal applications for CBC.

SIGNIFICANCE STATEMENT

Cannabichromene (CBC) has been suggested to have disparate therapeutic benefits such as anti-inflammatory, anticonvulsant, antibacterial, and antinociceptive effects. Most of the focus on the medical benefits of cannabinoids has been focused on 9-tetrahydrocannabinol and cannabidiol. The preliminary studies on CBC indicate that this phytocannabinoid may have unique therapeutic potential that warrants further investigation. Following easier access to hemp, CBC products are commercially available over-the-counter and are being widely utilized with little or no evidence of their safety or efficacy.




rome

Roles of Individual Human Cytochrome P450 Enzymes in Drug Metabolism [Review Article]

Our knowledge of the roles of individual cytochrome P450 (P450) enzymes in drug metabolism has developed considerably in the past 30 years, and this base has been of considerable use in avoiding serious issues with drug interactions and issues due to variations. Some newer approaches are being considered for "phenotyping" metabolism reactions with new drug candidates. Endogenous biomarkers are being used for noninvasive estimation of levels of individual P450 enzymes. There is also the matter of some remaining "orphan" P450s, which have yet to be assigned reactions. Practical problems that continue in drug development include predicting drug-drug interactions, predicting the effects of polymorphic and other P450 variations, and evaluating interspecies differences in drug metabolism, particularly in the context of "metabolism in safety testing" regulatory issues ["disproportionate (human) metabolites"].

Significance Statement

Cytochrome P450 enzymes are the major catalysts involved in drug metabolism. The characterization of their individual roles has major implications in drug development and clinical practice.




rome

Cytochrome P450 Enzymes: The Old Pandoras Box with an Ever-Growing Hope for Therapy Optimization and Drug Development--Editorial [Editorial]




rome

Health supervision for children and adolescents with 16p11.2 deletion syndrome [PRECISION MEDICINE IN PRACTICE]

Rare genetic conditions are challenging for the primary care provider to manage without proper guidelines. This clinical review is designed to assist the pediatrician, family physician, or internist in the primary care setting to manage the complexities of 16p11.2 deletion syndrome. A multidisciplinary medical home with the primary care provider leading the care and armed with up-to-date guidelines will prove most helpful to the rare genetic patient population. A special focus on technology to fill gaps in deficits, review of case studies on novel medical treatments, and involvement with the educational system for advocacy with an emphasis on celebrating diversity will serve the rare genetic syndrome population well.




rome

Chest Pain in Primary Care: A Systematic Review of Risk Stratification Tools to Rule Out Acute Coronary Syndrome [Systematic Review]

PURPOSE

Chest pain frequently poses a diagnostic challenge for general practitioners (GPs). Utilizing risk stratification tools might help GPs to rule out acute coronary syndrome (ACS) and make appropriate referral decisions. We conducted a systematic review of studies evaluating risk stratification tools for chest pain in primary care settings, both with and without troponin assays. Our aims were to assess the performance of tools for ruling out ACS and to provide a comprehensive review of the current evidence.

METHODS

We searched PubMed and Embase for articles up to October 9, 2023 concerning adult patients with acute chest pain in primary care settings, for whom risk stratification tools (clinical decision rules [CDRs] and/or single biomarker tests) were used. To identify eligible studies, a combination of active learning and backward snowballing was applied. Screening, data extraction, and quality assessment (following the Quality Assessment of Diagnostic Accuracy Studies-2 tool) were performed independently by 2 researchers.

RESULTS

Of the 1,204 studies screened, 14 were included in the final review. Nine studies validated 7 different CDRs without troponin. Sensitivities ranged from 75.0% to 97.0%, and negative predictive values (NPV) ranged from 82.4% to 99.7%. None of the CDRs outperformed the unaided judgment of GP’s. Five studies reported on strategies using troponin measurements. Studies using high-sensitivity troponin showed highest diagnostic accuracy with sensitivity 83.3% to 100% and NPV 98.8% to 100%.

CONCLUSION

Clinical decision rules without troponin and the use of conventional troponin showed insufficient sensitivity to rule out ACS in primary care and are not recommended as standalone tools. High-sensitivity troponin strategies are promising, but studies are limited. Further prospective validation in primary care is needed before implementation.




rome

[PERSPECTIVES] New Paradigms in the Clinical Management of Li-Fraumeni Syndrome

Approximately 8.5%–16.2% of childhood cancers are associated with a pathogenic/likely pathogenic germline variant—a prevalence that is likely to rise with improvements in phenotype recognition, sequencing, and variant validation. One highly informative, classical hereditary cancer predisposition syndrome is Li–Fraumeni syndrome (LFS), associated with germline variants in the TP53 tumor suppressor gene, and a >90% cumulative lifetime cancer risk. In seeking to improve outcomes for young LFS patients, we must improve the specificity and sensitivity of existing cancer surveillance programs and explore how to complement early detection strategies with pharmacology-based risk-reduction interventions. Here, we describe novel precision screening technologies and clinical strategies for cancer risk reduction. In particular, we summarize the biomarkers for early diagnosis and risk stratification of LFS patients from birth, noninvasive and machine learning–based cancer screening, and drugs that have shown the potential to be repurposed for cancer prevention.




rome

Chronic fatigue syndrome could be quickly diagnosed via a blood test

Levels of certain cells, fatty molecules and proteins in the blood are different in people with chronic fatigue syndrome than in those without it, which could help doctors spot the condition sooner




rome

Chrome for iOS now lets you add text to Google Lens visual searches

If you use Chrome on your iPhone, you’re about to see some features sliding over from the Android version. Google Lens will let you add text to your image searches, and you can save files and pictures directly to Google Drive and Photos. You can get “Shopping Insights” for products you’re browsing.

Chrome for iOS now lets you add words to your Google Lens visual searches, allowing you to add nuance to your query or “perform more complex and specific searches,” as Chrome Product Manager Katia Muradyan wrote in a blog post. After activating Lens by tapping the camera icon in the Chrome search bar, you can ask questions about the object you’re snapping a pic of, and it will produce corresponding results. Google says AI Overviews will also appear for some of these search results.

The feature shares some common ground with an Apple Intelligence feature for iPhone 16 owners in iOS 18.2, which is currently in beta. Visual Intelligence lets you point your camera at something and get info about it, including asking ChatGPT questions about it or searching for it on Google.

Chrome for iPhone now has a feature that lets you save a file directly to Google Drive or Google Photos, sparing you from using your phone’s internal storage. When saving files from Chrome, you’ll see a new option to save the file to Drive. Similarly, when browsing a photo you want to save, long-press on it, and you’ll see a new “Save in Google Photos” option in the context menu. Of course, the feature requires you to be signed into a Google account.

Chrome for iOS also adds a feature that pops up a mini-map when you click on an address. Look for an underlined link to specific addresses; clicking on it will take you to the mini-map without leaving the browser.

Finally, Google is adding Shopping Insights for US users. The company frames it as a way to help you find great prices on items you’re shopping for, but it’s hard to imagine this feature exists strictly from the kindness of Google's heart. Regardless, you’ll soon see a “Good Deal Now” alert in Chrome’s address bar when browsing for products for which it’s available. You’ll see details like price history / tracking and buying options if you tap it.

This article originally appeared on Engadget at https://www.engadget.com/mobile/smartphones/chrome-for-ios-now-lets-you-add-text-to-google-lens-visual-searches-170920556.html?src=rss