chin New Pathways to Learning: The Team Teaching Approach. A Library and Information Science Case Study By Published On :: Full Article
chin The Development, Use and Evaluation of a Program Design Tool in the Learning and Teaching of Software Development By Published On :: Full Article
chin Experimenting with eXtreme Teaching Method – Assessing Students’ and Teachers’ Experiences By Published On :: Full Article
chin Befriending Computer Programming: A Proposed Approach to Teaching Introductory Programming By Published On :: Full Article
chin Proposal of an Instructional Design for Teaching the Requirement Process for Designing Information Systems By Published On :: Full Article
chin Impact of Motivation on Intentions in Online Learning: Canada vs China By Published On :: Full Article
chin DigiStylus: A Socio-Technical Approach to Teaching and Research in Paleography By Published On :: Full Article
chin Novel Phonetic Name Matching Algorithm with a Statistical Ontology for Analysing Names Given in Accordance with Thai Astrology By Published On :: Full Article
chin The Adoption of Automatic Teller Machines in Nigeria: An Application of the Theory of Diffusion of Innovation By Published On :: Full Article
chin The Need to Balance the Blend: Online versus Face-to-Face Teaching in an Introductory Accounting Subject By Published On :: Full Article
chin Finding Diamonds in Data: Reflections on Teaching Data Mining from the Coal Face By Published On :: Full Article
chin WWW Image Searching Delivers High Precision and No Misinformation: Reality or Ideal? By Published On :: Full Article
chin Would Cloud Computing Revolutionize Teaching Business Intelligence Courses? By Published On :: Full Article
chin Playing it Safe: Approaching Science Safety Awareness through Computer Game-Based Training By Published On :: Full Article
chin Improving Teaching and Learning in an Information Systems Subject: A Work in Progress By Published On :: Full Article
chin Teaching Undergraduate Software Engineering Using Open Source Development Tools By Published On :: Full Article
chin Navigating the Framework Jungle for Teaching Web Application Development By Published On :: Full Article
chin IT Teachers’ Experience of Teaching–Learning Strategies to Promote Critical Thinking By Published On :: 2015-06-03 Information Technology (IT) high school learners are constantly struggling to cope with the challenges of succeeding in the subject. IT teachers, therefore, need to be empowered to utilize appropriate teaching–learning strategies to improve IT learners’ success in the subject. By promoting critical thinking skills, IT learners have the opportunity to achieve greater success in the most difficult part of the curriculum, which is programming. Participating IT teachers received once-off face-to-face professional development where some teachers received professional development in critical thinking strategies while other IT teachers received professional development in critical thinking strategies infused into pair programming. To determine how teachers experience these suggested strategies, teachers participated in initial interviews as well as follow-up interviews after they had implemented the suggested strategies. From the interviews, it became evident that teachers felt that their learners benefited from the strategies. Teachers in the pair programming infusing critical thinking strategies focused more on the pair programming implementation than on the totality of pair programming infused with critical thinking. Although teachers were initially willing to change their ways, they were not always willing to implement new teaching–learning strategies. Full Article
chin Fuzzy Control Teaching Models By Published On :: 2016-05-21 Many degree courses at technical universities include the subject of control systems engineering. As an addition to conventional approaches Fuzzy Control can be used to easily find control solutions for systems, even if they include nonlinearities. To support further educational training, models which represent a technical system to be controlled are required. These models have to represent the system in a transparent and easy cognizable manner. Furthermore, a programming tool is required that supports an easy Fuzzy Control development process, including the option to verify the results and tune the system behavior. In order to support the development process a graphical user interface is needed to display the fuzzy terms under real time conditions, especially with a debug system and trace functionality. The experiences with such a programming tool, the Fuzzy Control Design Tool (FHFCE Tool), and four fuzzy teaching models will be presented in this paper. The methodical and didactical objective in the utilization of these teaching models is to develop solution strategies using Computational Intelligence (CI) applications for Fuzzy Controllers in order to analyze different algorithms of inference or defuzzyfication and to verify and tune those systems efficiently. Full Article
chin Using Office Simulation Software in Teaching Computer Literacy Using Three Sets of Teaching/Learning Activities By Published On :: 2016-05-15 The most common course delivery model is based on teacher (knowledge provider) - student (knowledge receiver) relationship. The most visible symptom of this situation is over-reliance on textbook’s tutorials. This traditional model of delivery reduces teacher flexibility, causes lack of interest among students, and often makes classes boring. Especially this is visible when teaching Computer Literacy courses. Instead, authors of this paper suggest a new active model which is based on MS Office simulation. The proposed model was discussed within the framework of three activities: guided software simulation, instructor-led activities, and self-directed learning activities. The model proposed in the paper of active teaching based on software simulation was proven as more effective than traditional. Full Article
chin Predicting Suitable Areas for Growing Cassava Using Remote Sensing and Machine Learning Techniques: A Study in Nakhon-Phanom Thailand By Published On :: 2018-05-18 Aim/Purpose: Although cassava is one of the crops that can be grown during the dry season in Northeastern Thailand, most farmers in the region do not know whether the crop can grow in their specific areas because the available agriculture planning guideline provides only a generic list of dry-season crops that can be grown in the whole region. The purpose of this research is to develop a predictive model that can be used to predict suitable areas for growing cassava in Northeastern Thailand during the dry season. Background: This paper develops a decision support system that can be used by farmers to assist them determine if cassava can be successfully grown in their specific areas. Methodology: This study uses satellite imagery and data on land characteristics to develop a machine learning model for predicting suitable areas for growing cassava in Thailand’s Nakhon-Phanom province. Contribution: This research contributes to the body of knowledge by developing a novel model for predicting suitable areas for growing cassava. Findings: This study identified elevation and Ferric Acrisols (Af) soil as the two most important features for predicting the best-suited areas for growing cassava in Nakhon-Phanom province, Thailand. The two-class boosted decision tree algorithm performs best when compared with other algorithms. The model achieved an accuracy of .886, and .746 F1-score. Recommendations for Practitioners: Farmers and agricultural extension agents will use the decision support system developed in this study to identify specific areas that are suitable for growing cassava in Nakhon-Phanom province, Thailand Recommendation for Researchers: To improve the predictive accuracy of the model developed in this study, more land and crop characteristics data should be incorporated during model development. The ground truth data for areas growing cassava should also be collected for a longer period to provide a more accurate sample of the areas that are suitable for cassava growing. Impact on Society: The use of machine learning for the development of new farming systems will enable farmers to produce more food throughout the year to feed the world’s growing population. Future Research: Further studies should be carried out to map other suitable areas for growing dry-season crops and to develop decision support systems for those crops. Full Article
chin Virtual Pathology Learning Resource: A Promising Strategy in Teaching Pathology to Allied Health Science Students By Published On :: 2018-05-18 Aim/Purpose: The objective of this study was to concept test a new instructional aid called Virtual Pathology Learning Resource (VPLR), which was used as a vehicle to communicate information and enhance teaching and learning of basic sciences (Anatomy, Physiology, and Pathology) to allied health science students at a South Australian university. Background: Pathology was traditionally taught using potted specimens to review disease manifestations independently. However, this approach was found inadequate and ineffective. VPLR is a new teaching platform comprising of digitised human normal and human pathology specimens (histology, histopathology), patient case studies, short answer and critical thinking questions, and self-assessment quizzes. Using authentic learning theory as an educational pedagogy, this learning resource was developed to enhance the teaching and learning of Pathology. Methodology: Cross-sectional study design was used. A survey, given at the end of the course, gathered qualitative and quantitative data concerning the perceptions and experiences of the students about VPLR and its components. The online tool SurveyMonkey was utilised so that students could respond anonymously to a web link that displayed the questionnaire. The perceived impact on students was assessed using an 18-item questionnaire seeking agreement or disagreement with statements about VPLR, multiple choice and open-ended questions querying the best things about VPLR, benefits to be derived, and areas for improvement. Descriptive and frequency analyses were performed. Contribution: The VPLR approach involved rich learning situations, contextualised content, and facilitated greater understanding of disease concepts and problems. Findings: In a sample of 103 Medical Radiation students, 42% of students (N=43) responded to the post-intervention survey. The majority of students reported highly positive effects for each component of the VPLR. The overall results indicated that this tool was a promising strategy in teaching Pathology as it assisted students’ gaining knowledge of the science, facilitated connections between sciences, and allowed students to make better links with professional practice and skills. Recommendations for Practitioners: As students found VPLR to be beneficial, it is recommended that the same approach is applied for the teaching of Pathology to other health science students, such as Nursing. Other universities might consider adopting the innovation for their courses. Recommendation for Researchers: Applying VPLR to teaching other allied health science students will be undertaken next. The innovation will be appropriate for other health science students with particular emphasis on case-based or problem-based learning and combined with clinical experiences. Impact on Society: In reshaping the way of teaching a science course, students are benefited with greater depth of understanding of content and increase motivation to study. These are important to keep students engaged and ready for practice. VPLR may impact on education and technology trends so that exploration and possibilities of initiatives are ongoing to help students become successful learners. Other impacts are the new forms of learning discovered, the renewed focus on group work and collaboration, and maximising the use of technology in innovation. Future Research: Future directions of this research would be to conduct a follow-up of this cohort of students to determine whether the impacts of the innovation were durable, meaning the change in perceptions and behaviour is sustained over time. Full Article
chin Design of a Knowledge Management System for the Research-Teaching Nexus: Evidence from Institutional Audit Reports By Published On :: 2020-05-01 Aim/Purpose: The need for Higher Education Institutions (HEIs) to maximize the use of their intellectual property and strategic resources for research and teaching has become ever more evident in recent years. Furthermore, little attention is paid in developing an enabling system that will facilitate knowledge transfer in the Research-Teaching Nexus (RTN). Hence, this study assesses the current state of practice in knowledge management of the nexus in higher education in Oman. It also explores the context of how Knowledge Management System (KMS) for the nexus can be designed and utilized by HEIs and challenges them to rethink their traditional approaches in managing their knowledge as-sets to boost individual and organizational learning. Background: This study provides a Knowledge Management-based framework and design of a knowledge management system that support the academic community towards the improvement of the nexus. This study sets out ideas from various academic and professional experts on how academic stakeholders in the higher education can improve and promote knowledge transfer and make better use of its knowledge and research assets for teaching and learning. It stressed the importance of having the knowledge assets or resources that can easily be pooled, accessed, and made available to its intended stakeholders. Methodology: Data were gathered from 29 out of 49 institutional quality audit reports of all HEIs in Oman. The panel comments were coded and analysed to extract valuable insights regarding the management of knowledge assets in research. Additionally, data were gathered from the institutional accreditation outcomes page of the same website. Manifest and latent content analyses were used in reporting the findings of the panel. Contribution: The study will contribute to a greater understanding and acceptance of Knowledge Management (KM) in higher education and extended the body of knowledge concerning knowledge management for the RTN. Findings: The reports revealed a very limited practice of the nexus in terms of people and culture, structure ad processes, and computing and web technologies. A few staff are involved in RTN work, there is an uneven understanding of the RTN among staff, limited joint research between staff and students are some of the reasons for this. Significantly, there is no explicit research framework or policy for the RTN, and systems and/or mechanisms are limited. Further-more, the reports did not account any use of computing and web technologies for the nexus. These limitations can lead to students with less academic, research, and graduate skills. Hence, this study presents a feature design of a KMS that incorporates various RTN best practices, as informed by the reports and literature. The design will allow the staff to utilize the research assets in the classroom, at the same time, engages students in research and scholarly under-takings. Recommendations for Practitioners: All HEIs must have a innovative system that integrates a formal agenda and approach, and set initiatives, strategies, policies, and procedures for knowledge management in utilizing research assets for teaching and learning. It must be designed so that RTN practices remain up-to-date, relevant, and responsive to the needs of the stakeholders, as well as, address academic accreditation challenges. Recommendation for Researchers: Researchers can evaluate the knowledge management of RTN practices of other HEIs outside of Oman to effectively recommend the proper course of action for teaching and learning improvement. Impact on Society: This study will redefine the role and contribution of HEIs, which are key players in advancing a knowledge economy. HEIs are expected to be powerhouses where academic knowledge is discovered, created, disseminated, shared, and re-invented. They must be able to fully grasp the value of managing knowledge to be able to effect positive and purposeful change to the community. Future Research: Future work should include staff and student surveys that examine the knowledge management need of the learning organization to better inform the design of a KMS for the RTN. Thereafter, future research can test the stage to test the effectiveness of the conceptual design. Full Article
chin Online Teaching With M-Learning Tools in the Midst of Covid-19: A Reflection Through Action Research By Published On :: 2021-06-12 Aim/Purpose: In the midst of COVID-19, classes are transitioned online. Instructors and students scramble for ways to adapt to this change. This paper shares an experience of one instructor in how he has gone through the adaptation. Background: This section provides a contextual background of online teaching. The instructor made use of M-learning to support his online teaching and adopted the UTAUT model to guide his interpretation of the phenomenon. Methodology: The methodology used in this study is action research through participant-observation. The instructor was able to look at his own practice in teaching and reflect on it through the lens of the UTAUT conceptual frame-work. Contribution: The results helped the instructor improve his practice and better under-stand his educational situations. From the narrative, others can adapt and use various apps and platforms as well as follow the processes to teach online. Findings: This study shares an experience of how one instructor had figured out ways to use M-learning tools to make the online teaching and learning more feasible and engaging. It points out ways that the instructor could connect meaningfully with his students through the various apps and plat-forms. Recommendations for Practitioners: The social aspects of learning are indispensable whether it takes place in person or online. Students need opportunities to connect socially; there-fore, instructors should try to optimize technology use to create such opportunities for conducive learning. Recommendations for Researchers: Quantitative studies using surveys or quasi-experiment methods should be the next step. Validated inventories with measures can be adopted and used in these studies. Statistical analysis can be applied to derive more objective findings. Impact on Society: Online teaching emerges as a solution for the delivery of education in the midst of COVID-19, but more studies are needed to overcome obstacles and barriers to both instructors and students. Future Research: Future studies should look at the obstacles that instructors encounter and the barriers with technology access and inequalities that students face in online classes. Full Article
chin Machine Learning-based Flu Forecasting Study Using the Official Data from the Centers for Disease Control and Prevention and Twitter Data By Published On :: 2021-06-03 Aim/Purpose: In the United States, the Centers for Disease Control and Prevention (CDC) tracks the disease activity using data collected from medical practice's on a weekly basis. Collection of data by CDC from medical practices on a weekly basis leads to a lag time of approximately 2 weeks before any viable action can be planned. The 2-week delay problem was addressed in the study by creating machine learning models to predict flu outbreak. Background: The 2-week delay problem was addressed in the study by correlation of the flu trends identified from Twitter data and official flu data from the Centers for Disease Control and Prevention (CDC) in combination with creating a machine learning model using both data sources to predict flu outbreak. Methodology: A quantitative correlational study was performed using a quasi-experimental design. Flu trends from the CDC portal and tweets with mention of flu and influenza from the state of Georgia were used over a period of 22 weeks from December 29, 2019 to May 30, 2020 for this study. Contribution: This research contributed to the body of knowledge by using a simple bag-of-word method for sentiment analysis followed by the combination of CDC and Twitter data to generate a flu prediction model with higher accuracy than using CDC data only. Findings: The study found that (a) there is no correlation between official flu data from CDC and tweets with mention of flu and (b) there is an improvement in the performance of a flu forecasting model based on a machine learning algorithm using both official flu data from CDC and tweets with mention of flu. Recommendations for Practitioners: In this study, it was found that there was no correlation between the official flu data from the CDC and the count of tweets with mention of flu, which is why tweets alone should be used with caution to predict a flu out-break. Based on the findings of this study, social media data can be used as an additional variable to improve the accuracy of flu prediction models. It is also found that fourth order polynomial and support vector regression models offered the best accuracy of flu prediction models. Recommendations for Researchers: Open-source data, such as Twitter feed, can be mined for useful intelligence benefiting society. Machine learning-based prediction models can be improved by adding open-source data to the primary data set. Impact on Society: Key implication of this study for practitioners in the field were to use social media postings to identify neighborhoods and geographic locations affected by seasonal outbreak, such as influenza, which would help reduce the spread of the disease and ultimately lead to containment. Based on the findings of this study, social media data will help health authorities in detecting seasonal outbreaks earlier than just using official CDC channels of disease and illness reporting from physicians and labs thus, empowering health officials to plan their responses swiftly and allocate their resources optimally for the most affected areas. Future Research: A future researcher could use more complex deep learning algorithms, such as Artificial Neural Networks and Recurrent Neural Networks, to evaluate the accuracy of flu outbreak prediction models as compared to the regression models used in this study. A future researcher could apply other sentiment analysis techniques, such as natural language processing and deep learning techniques, to identify context-sensitive emotion, concept extraction, and sarcasm detection for the identification of self-reporting flu tweets. A future researcher could expand the scope by continuously collecting tweets on a public cloud and applying big data applications, such as Hadoop and MapReduce, to perform predictions using several months of historical data or even years for a larger geographical area. Full Article
chin Technologies for Teaching in an Online Environment By Published On :: 2021-06-02 Aim/Purpose: The authors provide different technology applications useful in online instruction in addition to providing effective strategies for use in a virtual environment. Background: Last year, educators were forced to move their instruction online almost overnight. Many were not prepared to teach effectively in a virtual environment. Contribution: This paper serves as a resource to educators who are unfamiliar with teaching online as well as for those who would like to enhance their current practice. Recommendations for Practitioners: Be flexible when teaching in a virtual environment. Remain open to using new and unfamiliar technologies. Be consistent in providing feedback to students and communicate frequently with them. Impact on Society: The abrupt transition for educators, as well as for most workplaces, to an exclusively online environment in response to COVID has long-lasting effects in how business as usual will be conducted. Being proficient and comfortable in navigating a virtual environment is essential. Future Research: As we continue to work virtually, ongoing research that informs our practice is critical for remaining effective educators. Additionally, it is important to remain knowledgeable about current and new technologies available to us. Keywords online instruction, technology applications, strategies Full Article
chin Factors Determining the Balance between Online and Face-to-Face Teaching: An Analysis using Actor-Network Theory By Published On :: Full Article
chin Secure Software Engineering: A New Teaching Perspective Based on the SWEBOK By Published On :: Full Article
chin (GbL #3) Innovative Teaching Using Simulation and Virtual Environments By Published On :: Full Article
chin Social Networking, Teaching, and Learning: Introduction to Special Section on Social Networking, Teaching, and Learning (SNTL) By Published On :: Full Article
chin Locating the Weak Points of Innovation Capability before Launching a Development Project By Published On :: Full Article
chin The Relationship between Ambidextrous Knowledge Sharing and Innovation within Industrial Clusters: Evidence from China By Published On :: 2019-04-28 Aim/Purpose: This study examines the influence of ambidextrous knowledge sharing in industrial clusters on innovation performance from the perspective of knowledge-based dynamic capabilities. Background: The key factor to improving innovation performance in an enterprise is to share knowledge with other enterprises in the same cluster and use dynamic capabilities to absorb, integrate, and create knowledge. However, the relationships among these concepts remain unclear. Based on the dynamic capability theory, this study empirically reveals how enterprises drive innovation performance through knowledge sharing. Methodology: Survey data from 238 cluster enterprises were used in this study. The sample was collected from industrial clusters in China’s Fujian province that belong to the automobile, optoelectronic, and microwave communications industries. Through structural equation modeling, this study assessed the relationships among ambidextrous knowledge sharing, dynamic capabilities, and innovation performance. Contribution: This study contributes to the burgeoning literature on knowledge management in China, an important emerging economy. It also enriches the exploration of innovation performance in the cluster context and expands research on the dynamic mechanism from a knowledge perspective. Findings: Significant relationships are found between ambidextrous knowledge sharing and innovation performance. First, ambidextrous knowledge sharing positively influences the innovation performance of cluster enterprises. Further, knowledge absorption and knowledge generation capabilities play a mediating role in this relationship, which confirms that dynamic capabilities are a partial mediator in the relationship between ambidextrous knowledge sharing and innovation performance. Recommendations for Practitioners: The results highlight the crucial role of knowledge management in contributing to cluster innovation and management practices. They indicate that cluster enterprises should consider the importance of knowledge sharing and dynamic capabilities for improving innovation performance and establish a multi-agent knowledge sharing platform. Recommendation for Researchers: Researchers could further explore the role of other mediating variables (e.g., organizational agility, industry growth) as well as moderating variables (e.g., environmental uncertainty, learning orientation). Impact on Society: This study provides a reference for enterprises in industrial clusters to use knowledge-based capabilities to enhance their competitive advantage. Future Research: Future research could collect data from various countries and regions to test the research model and conduct a comparative analysis of industrial clusters. Full Article
chin A New Typology Design of Performance Metrics to Measure Errors in Machine Learning Regression Algorithms By Published On :: 2019-01-24 Aim/Purpose: The aim of this study was to analyze various performance metrics and approaches to their classification. The main goal of the study was to develop a new typology that will help to advance knowledge of metrics and facilitate their use in machine learning regression algorithms Background: Performance metrics (error measures) are vital components of the evaluation frameworks in various fields. A performance metric can be defined as a logical and mathematical construct designed to measure how close are the actual results from what has been expected or predicted. A vast variety of performance metrics have been described in academic literature. The most commonly mentioned metrics in research studies are Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), etc. Knowledge about metrics properties needs to be systematized to simplify the design and use of the metrics. Methodology: A qualitative study was conducted to achieve the objectives of identifying related peer-reviewed research studies, literature reviews, critical thinking and inductive reasoning. Contribution: The main contribution of this paper is in ordering knowledge of performance metrics and enhancing understanding of their structure and properties by proposing a new typology, generic primary metrics mathematical formula and a visualization chart Findings: Based on the analysis of the structure of numerous performance metrics, we proposed a framework of metrics which includes four (4) categories: primary metrics, extended metrics, composite metrics, and hybrid sets of metrics. The paper identified three (3) key components (dimensions) that determine the structure and properties of primary metrics: method of determining point distance, method of normalization, method of aggregation of point distances over a data set. For each component, implementation options have been identified. The suggested new typology has been shown to cover a total of over 40 commonly used primary metrics Recommendations for Practitioners: Presented findings can be used to facilitate teaching performance metrics to university students and expedite metrics selection and implementation processes for practitioners Recommendation for Researchers: By using the proposed typology, researchers can streamline development of new metrics with predetermined properties Impact on Society: The outcomes of this study could be used for improving evaluation results in machine learning regression, forecasting and prognostics with direct or indirect positive impacts on innovation and productivity in a societal sense Future Research: Future research is needed to examine the properties of the extended metrics, composite metrics, and hybrid sets of metrics. Empirical study of the metrics is needed using R Studio or Azure Machine Learning Studio, to find associations between the properties of primary metrics and their “numerical” behavior in a wide spectrum of data characteristics and business or research requirements Full Article
chin A Knowledge Transfer Perspective on Front/Back-Office Structure and New Service Development Performance: An Empirical Study of Retail Banking in China By Published On :: 2022-01-07 Aim/Purpose: The purpose of this study is to investigate the mechanism of the front/back-office structure affecting new service development (NSD) performance and examine the role of knowledge transfer in the relationship between front/back-office structure and NSD. Background: The separation of front and back-office has become the prevailing trend of the organizational transformation of modern service enterprises in the digital era. Yet, the influence of front and back-office separation dealing with new service development has not been widely researched. Methodology: Building on the internal social capital perspective, a multivariate regression analysis was conducted to investigate the impact of front/back-office structure on the NSD performance through knowledge transfer as an intermediate variable. The data was collected through a survey questionnaire from 198 project-level officers in the commercial banking industry of China. Contribution: This study advances the understanding of front/back-office structure’s influence mechanism on new service development activity. It reveals that knowledge transfer plays a critical role in bridging the impact of front and back-office separation to NSD performance under the trend of digitalization of service organizations. Findings: This study verified the positive effects of front/back-office social capital on NSD performance. Moreover, knowledge transfer predicted the variation in NSD performance and fully mediated the effect of front/back-office social capital on NSD performance. Recommendations for Practitioners: Service organizations should optimize knowledge transfer by promoting the social capital between front and back-office to overcome the negative effect organizational separation brings to NSD. Service and other organizations could explore developing an internal social network management platform, by which the internal social network could be visualized and dynamically managed. Recommendation for Researchers: The introduction of information and communications technology not only divides the organization into front and back-office, but also reduces the face-to-face customer contact. The impacts of new forms of customer contact to new service development and knowledge transfer between customer and service organizations call for further research. Along with the digital servitization, some manufacturing organizations also separate front and back-offices. The current model can be applied and assessed further in manufacturing and other service sectors. Impact on Society: The conclusion of this study guides us to pay attention to the construction of social capital inside organizations with front/back-office structure and implicates introducing and developing sociotechnical theory in front/back-office issue undergoing technological revolution. Future Research: As this study is based on the retail banking industry, similar studies are called upon in other service sectors to identify differences and draw more general conclusions. In addition, as the front and back-offices are being replaced increasingly by information technology such as artificial intelligence (AI), it is necessary to advance the research on front/back-office research with a new theoretical perspective, such as sociotechnical theory. Full Article
chin China’s Halal Food Industry: The Link Between Knowledge Management Capacity, Supply Chain Practices, and Company Performance By Published On :: 2021-07-20 Aim/Purpose: The study attempts to analyse the influences of knowledge management capacity on company performance and supply chain practices. It also examines whether supply chain practices significantly and positively impact company performance. Background: Knowledge management capacity is an essential tactical resource that enables the integration and coordination among supply chain stakeholders, but research examining the link between knowledge management capacity and supply chain practices and their impacts on company performance remains scarce. Methodology: The study uses correlation analysis and factor analysis to confirm the theoretical framework’s validity and structural equation modelling to test hypotheses. The data are obtained from 115 halal food firms in China (with a response rate of 82.7%). Contribution: This study’s findings contribute to the Social Capital Theory by presenting the impacts of different supply chain practices on company performance. The findings also suggest the impact of intangible resources on enhancing company performance, contributing to the Resource-based View Theory. These results are a crucial contribution to both academicians and corporate managers working in the Halal food industry. Managers can apply these findings to discover and adopt knowledge management capacity with practical anticipation that these concepts will align with their company strategies. Also, the research motivates managers to concentrate their knowledge management on enhancing companies’ supply chain practices to achieve improved company performance. Findings: This study is an initial effort that provides empirical evidence regarding the relationships among supply chain, knowledge management, and company performance from the perspective of China’s halal food industry. The results prove that knowledge management capacity is the supply chains’ primary success determinant and influencer. Besides, knowledge management capacity positively influences company performance, and supply chain practices directly influence company performance. Recommendations for Practitioners: Managers can apply these study findings to determine and increase knowledge management capacity with practical anticipation that these concepts will align with their company strategies. Also, the research motivates managers to concentrate their knowledge management on enhancing companies’ supply chain practices to achieve improved company performance. Recommendation for Researchers: The study presents a new theoretical framework and empirical evidence for surveying halal food businesses in China. Impact on Society: These results are a significant contribution to the research field and industry focusing on halal foods. Future Research: First, this research focuses only on halal food businesses in China; thus, it is essential to re-examine the hypothesized relations between the constructs in other Chinese business segments and regions. Next, the effect of variables and practices on the theorized framework should be taken into account and examined in other industries and nations. Full Article
chin Predicting Software Change-Proneness From Software Evolution Using Machine Learning Methods By Published On :: 2023-10-08 Aim/Purpose: To predict the change-proneness of software from the continuous evolution using machine learning methods. To identify when software changes become statistically significant and how metrics change. Background: Software evolution is the most time-consuming activity after a software release. Understanding evolution patterns aids in understanding post-release software activities. Many methodologies have been proposed to comprehend software evolution and growth. As a result, change prediction is critical for future software maintenance. Methodology: I propose using machine learning methods to predict change-prone classes. Classes that are expected to change in future releases were defined as change-prone. The previous release was only considered by the researchers to define change-proneness. In this study, I use the evolution of software to redefine change-proneness. Many snapshots of software were studied to determine when changes became statistically significant, and snapshots were taken biweekly. The research was validated by looking at the evolution of five large open-source systems. Contribution: In this study, I use the evolution of software to redefine change-proneness. The research was validated by looking at the evolution of five large open-source systems. Findings: Software metrics can measure the significance of evolution in software. In addition, metric values change within different periods and the significance of change should be considered for each metric separately. For five classifiers, change-proneness prediction models were trained on one snapshot and tested on the next. In most snapshots, the prediction performance was excellent. For example, for Eclipse, the F-measure values were between 80 and 94. For other systems, the F-measure values were higher than 75 for most snapshots. Recommendations for Practitioners: Software change happens frequently in the evolution of software; however, the significance of change happens over a considerable length of time and this time should be considered when evaluating the quality of software. Recommendation for Researchers: Researchers should consider the significance of change when studying software evolution. Software changes should be taken from different perspectives besides the size or length of the code. Impact on Society: Software quality management is affected by the continuous evolution of projects. Knowing the appropriate time for software maintenance reduces the costs and impacts of software changes. Future Research: Studying the significance of software evolution for software refactoring helps improve the internal quality of software code. Full Article
chin Investigating Factors Affecting the Intention to Use Mobile Health from a Holistic Perspective: The Case of Small Cities in China By Published On :: 2023-10-07 Aim/Purpose: This study aims to develop a comprehensive conceptual framework that incorporates personal characteristics, social context, and technological features as significant factors that influence the intention of small-city users in China to use mobile health. Background: Mobile health has become an integral part of China’s health management system innovation, the transformation of the health service model, and a necessary government measure for promoting health service parity. However, mobile health has not yet been widely adopted in small cities in China. Methodology: The study utilized a quantitative approach whereby web-based questionnaires were used to collect data from 319 potential users in China using China’s health management system. The data was analyzed using the PLS-SEM (the partial least squares-structural equation modeling) approach. Contribution: This study integrates the protection motivation theory (PMT), which compensates for the limitations of the unified theory of acceptance and use of technology theory (UTAUT) and is a re-examination of PMT and UTAUT in a small city context in China. Findings: The findings indicate that attitude and perceived vulnerability in the personal characteristic factors, social influence and facilitating conditions in the social context factors, and performance expectancy in the technological feature factors influence users’ intention to use mobile health in small cities in China. Recommendations for Practitioners: This study provides feasible recommendations for mobile health service providers, medical institutions, and government agencies based on the empirical results. Recommendation for Researchers: As for health behavior, researchers should fully explain the intention of mobile health use in terms of holism and health behavior theory. Impact on Society: This study aims to increase users’ intention to use mobile health in small cities in China and to maximize the social value of mobile health. Future Research: Future research should concentrate on the actual usage behavior of users and simultaneously conduct a series of longitudinal studies, including studies on continued usage behavior, abandonment behavior, and abandoned-and-used behavior. Full Article
chin Enhancing Consumer Value Co-Creation Through Social Commerce Features in China’s Retail Industry By Published On :: 2023-07-20 Aim/Purpose: Based on the stimulus-organism-response (SOR) model, the current study investigated social commerce functions as an innovative retailing technological support by selecting the three most appropriate features for the Chinese online shopping environment with respective value co-creation intentions. Background: Social commerce is the customers’ online shopping touchpoint in the latest retail era, which serves as a corporate technological tool to extend specific customer services. Although social commerce is a relatively novel platform, limited theoretical attention was provided to determine retailers’ approaches in employing relevant functions to improve consumer experience and value co-creation. Methodology: A questionnaire was distributed to Chinese customers, with 408 valid questionnaires being returned and analyzed through Structural Equation Modeling (SEM). Contribution: The current study investigated the new retail concept and value co-creation from the consumer’s perspective by developing a theoretical model encompassing new retail traits and consumer value, which contributed to an alternative theoretical understanding of value creation, marketing, and consumer behaviour in the new retail business model. Findings: The results demonstrated that value co-creation intention was determined by customer experience, hedonic experience, and trust. Simultaneously, the three factors were significantly influenced by interactivity, personalisation, and sociability features. Specifically, customers’ perceptions of the new retail idea and the consumer co-creation value were examined. Resultantly, this study constructed a model bridging new retail characteristics with consumer value. Recommendations for Practitioners: Nonetheless, past new retail management practice studies mainly focused on superficial happiness in the process of human-computer interaction, which engendered a computer system design solely satisfying consumers’ sensory stimulation and experience while neglecting consumers’ hidden value demands. As such, a shift from the subjective perspective to the realisation perspective is required to express and further understand the actual meaning and depth of consumer happiness. Recommendation for Researchers: New retailers could incorporate social characteristics on social commerce platforms to improve the effectiveness of marketing strategies while increasing user trust to generate higher profitability. Impact on Society: The new retail enterprises should prioritise consumers’ acquisition of happiness meaning and deep experience through self-realisation, cognitive improvement, identity identification, and other aspects of consumer experiences and purchase processes. By accurately revealing and matching consumers’ fundamental perspectives, new retailers could continuously satisfy consumer requirements in optimally obtaining happiness. Future Research: Future comparative studies could be conducted on diverse companies within the same industry for comprehensive findings. Moreover, other underlying factors with significant influences, such as social convenience, group cognitive ability, individual family environment, and other external stimuli were not included in the present study examinations. Full Article
chin Investigating the Impact of Dual Network Embedding and Dual Entrepreneurial Bricolage on Knowledge-Creation Performance: An Empirical Study in Fujian, China By Published On :: 2023-05-11 Aim/Purpose: This study investigates the relationship between dual network embedding, dual entrepreneurial bricolage, and knowledge-creation performance. Background: The importance of new ventures for innovation and economic growth has been fully endorsed. Establishing incubation organizations to help new startups overcome constraints and dilemmas has become the consensus of various countries. In particular, the number of Chinese makerspaces has rapidly increased. Startups in the makerspaces form a loosely coupled dual network to cooperate and share resources, especially knowledge. Methodology: By convenience sampling, 400 startups in the makerspaces in Fujian Province, China were selected for the questionnaire survey study. In total, 307 valid responses were collected, yielding a response rate of 76.8%. The survey data were analyzed for hypothesis testing, using the PL-SEM technique with the AMOS20.0 software. Contribution: At the theoretical level, this research supplements the exploration of the influencing factors of the entrepreneurial bricolage of startups at the network level. It deepens the research on the internal mechanism of the dual network embeddedness affecting the knowledge-creation performance. In practice, it provides a theoretical basis and management inspiration for startups in makerspaces to overcome the inherent disadvantage of being too small and weak to explore innovative paths. Findings: First, relational embedding of startups in makerspaces directly affects knowledge-creation performance. Second, dual entrepreneurial bricolage plays a mediating role in diversity. Selective entrepreneurial bricolage plays a partial mediating role between relationship embedding and knowledge-creation performance. Parallel entrepreneurial bricolage plays a complete intermediary role between structural embedding and knowledge-creation performance. Dual entrepreneurial bricolage plays a complete intermediary role between knowledge embedding and knowledge-creation performance. Recommendations for Practitioners: Enterprises in the makerspaces should make dynamic adjustments to the network embedded state and dual entrepreneurial bricolage to improve knowledge-creation performance. When startups conduct selective entrepreneurship bricolage, they should strengthen relational and knowledge embeddedness to improve their relationship strength and tacit knowledge acquisition. When startups conduct parallel entrepreneurship bricolage, structural and knowledge embedding should be strengthened to improve the position of enterprises in the network to acquire diversified knowledge to explore and discover new business opportunities and project resources. Recommendation for Researchers: The heterogeneity of industries and regions may impact the dual network embedding mechanism of startups. Researchers can choose a wider range of regions and industries for sampling. Impact on Society: This study provides a theoretical basis and management inspiration for startups to overcome the inherent disadvantage of being too small and weak to explore innovative paths. It provides a basis to support startups in unleashing innovation vitality and achieving healthy growth. Future Research: Previous studies have shown that network relationships and bricolage behavior have a certain relationship with the enterprise life cycle. Future research can adopt a longitudinal research design across time points, which will increase the explanatory power of research conclusions. Full Article
chin Customer Churn Prediction in the Banking Sector Using Machine Learning-Based Classification Models By Published On :: 2023-02-28 Aim/Purpose: Previous research has generally concentrated on identifying the variables that most significantly influence customer churn or has used customer segmentation to identify a subset of potential consumers, excluding its effects on forecast accuracy. Consequently, there are two primary research goals in this work. The initial goal was to examine the impact of customer segmentation on the accuracy of customer churn prediction in the banking sector using machine learning models. The second objective is to experiment, contrast, and assess which machine learning approaches are most effective in predicting customer churn. Background: This paper reviews the theoretical basis of customer churn, and customer segmentation, and suggests using supervised machine-learning techniques for customer attrition prediction. Methodology: In this study, we use different machine learning models such as k-means clustering to segment customers, k-nearest neighbors, logistic regression, decision tree, random forest, and support vector machine to apply to the dataset to predict customer churn. Contribution: The results demonstrate that the dataset performs well with the random forest model, with an accuracy of about 97%, and that, following customer segmentation, the mean accuracy of each model performed well, with logistic regression having the lowest accuracy (87.27%) and random forest having the best (97.25%). Findings: Customer segmentation does not have much impact on the precision of predictions. It is dependent on the dataset and the models we choose. Recommendations for Practitioners: The practitioners can apply the proposed solutions to build a predictive system or apply them in other fields such as education, tourism, marketing, and human resources. Recommendation for Researchers: The research paradigm is also applicable in other areas such as artificial intelligence, machine learning, and churn prediction. Impact on Society: Customer churn will cause the value flowing from customers to enterprises to decrease. If customer churn continues to occur, the enterprise will gradually lose its competitive advantage. Future Research: Build a real-time or near real-time application to provide close information to make good decisions. Furthermore, handle the imbalanced data using new techniques. Full Article
chin Unveiling the Secrets of Big Data Projects: Harnessing Machine Learning Algorithms and Maturity Domains to Predict Success By Published On :: 2024-08-19 Aim/Purpose: While existing literature has extensively explored factors influencing the success of big data projects and proposed big data maturity models, no study has harnessed machine learning to predict project success and identify the critical features contributing significantly to that success. The purpose of this paper is to offer fresh insights into the realm of big data projects by leveraging machine-learning algorithms. Background: Previously, we introduced the Global Big Data Maturity Model (GBDMM), which encompassed various domains inspired by the success factors of big data projects. In this paper, we transformed these maturity domains into a survey and collected feedback from 90 big data experts across the Middle East, Gulf, Africa, and Turkey regions regarding their own projects. This approach aims to gather firsthand insights from practitioners and experts in the field. Methodology: To analyze the feedback obtained from the survey, we applied several algorithms suitable for small datasets and categorical features. Our approach included cross-validation and feature selection techniques to mitigate overfitting and enhance model performance. Notably, the best-performing algorithms in our study were the Decision Tree (achieving an F1 score of 67%) and the Cat Boost classifier (also achieving an F1 score of 67%). Contribution: This research makes a significant contribution to the field of big data projects. By utilizing machine-learning techniques, we predict the success or failure of such projects and identify the key features that significantly contribute to their success. This provides companies with a valuable model for predicting their own big data project outcomes. Findings: Our analysis revealed that the domains of strategy and data have the most influential impact on the success of big data projects. Therefore, companies should prioritize these domains when undertaking such projects. Furthermore, we now have an initial model capable of predicting project success or failure, which can be invaluable for companies. Recommendations for Practitioners: Based on our findings, we recommend that practitioners concentrate on developing robust strategies and prioritize data management to enhance the outcomes of their big data projects. Additionally, practitioners can leverage machine-learning techniques to predict the success rate of these projects. Recommendation for Researchers: For further research in this field, we suggest exploring additional algorithms and techniques and refining existing models to enhance the accuracy and reliability of predicting the success of big data projects. Researchers may also investigate further into the interplay between strategy, data, and the success of such projects. Impact on Society: By improving the success rate of big data projects, our findings enable organizations to create more efficient and impactful data-driven solutions across various sectors. This, in turn, facilitates informed decision-making, effective resource allocation, improved operational efficiency, and overall performance enhancement. Future Research: In the future, gathering additional feedback from a broader range of big data experts will be valuable and help refine the prediction algorithm. Conducting longitudinal studies to analyze the long-term success and outcomes of Big Data projects would be beneficial. Furthermore, exploring the applicability of our model across different regions and industries will provide further insights into the field. Full Article
chin Data Lost, Decisions Made: Teachers in Routine and Emergency Remote Teaching By Published On :: 2024-07-15 Aim/Purpose: This study explored teachers’ data-driven decision-making processes during routine and emergency remote teaching, as experienced during the COVID-19 pandemic. Background: Decision-making is essential in teaching, with informed decisions promoting student learning and teachers’ professional development most effectively. However, obstacles to the use of data have been identified in many studies. Methodology: Using a qualitative methodology (N=20), we studied how teachers make decisions, what data is available, and what data they would like to have to improve their decision-making. We used an inductive approach (bottom-up), utilizing teachers’ statements related to decision-making as the unit of analysis. Contribution: Our findings shed an important light on teachers’ Data-Driven Decision-Making (DDDM), highlighting the differences between routine and Emergency Remote Teaching (ERT). Findings: Overall, we found that teachers make teaching decisions in three main areas: pedagogy, discipline-related issues, and appearance and behavior. They shift between making decisions based on data and making decisions based on intuition. Academic-related decisions are the most prominent in routine teaching, and during ERT, they were almost the only area in which teachers’ decisions were made. Teachers reported collecting data about students’ academic achievements and emotional state and considered the organizational culture, consultation with colleagues, and parents’ involvement before decision-making. Recommendations for Practitioners: Promote a culture of data-driven decision-making across the education system; Make diverse and rich data of different types accessible to teachers; Increase professional and emotional support for teachers. Recommendation for Researchers: Researchers have the potential to expand the scope of this study by conducting research using other methodologies and in different countries. Impact on Society: This study highlights the importance of teachers’ data-driven decision-making in improving teaching practices and promoting students’ achievement. Future Research: Additional research is required to examine data-driven decision-making in diverse circumstances. Full Article