character

CHINESE WEBSITE CLASSIFICATION METHOD AND SYSTEM BASED ON CHARACTERISTIC ANALYSIS OF WEBSITE HOMEPAGE

Disclosed are a Chinese website classification method and system based on characteristic analysis of a website homepage. The method specifically comprises the following steps: S1, crawling website content; S2, labeling a website type; S3, extracting website information; S4, calculating a weight and representing the weight in the form of a characteristic vector; and S5, classifying the website by comparing the characteristic vector. By utilizing the above Chinese website classification method and system, the noise interference can be alleviated to the greatest extent by only extracting a title and meta-information of the website; by means of pre-processing and characteristic vector expression, the characteristics of the website are accurately expressed with the vector, so that the accuracy of classification is increased; and since only the title and meta-information of the website need to be processed, the quantity of data to be processed is small, and the processing speed is high.




character

FILTRATION, FILTER CHARACTERIZATION, AND METHODS AND APPARATUSES THEREFOR

Aspects of the disclosure are directed to apparatuses and methods involving filters and detection of operation thereof. As may be consistent with one or more embodiments, an apparatus includes a fixture having mechanical components that hold a filter. Gas flow componentry operates with the fixture to eject particles from the filter by subjecting the filter to gas flow. A flow metering circuit meters the gas flow, and a particulate counter detects the ejected particles.




character

CONTROLLER AND SYSTEM FOR VOICE GENERATION BASED ON CHARACTERS

A voice generation device (10b) is configured to generate a voice corresponding to one or a plurality of characters designated in a pre-defined character string. A controller (10a) for the voice generation device is provided with a character selector (60a) configured to be operable by a user to designate the one or a plurality of characters in the character string, and a voice control operator (60b) configured to be operable by the user to control the state of the voice to be generated by the voice generation device. The controller (10a) is provided with a grip (G) suitable for being held with a hand of the user, and the character selector and the voice control operator are provided on the grip. The character selector and the voice control operator are provided on the grip at such positions as to be operable with different fingers of the user holding the grip.




character

ELECTRONIC ARRANGEMENT AND VECTOR NETWORK ANALYZER CHARACTERIZED BY REDUCED PHASE NOISE

An electronic arrangement and method for providing a signal characterized by reduced phase noise having a signal source for providing a stimulus signal, a modulator coupled to the signal source for generating a modulated signal as function of the stimulus signal and a local oscillator signal, and a mixer combining the stimulus and modulated signals to generate a mixed signal that includes a component characterized by a mathematical difference of the stimulus signal and the modulated signal. The modulated signal is substantially identical to the stimulus signal and offset by a frequency of the local oscillator signal, so that the difference component of the mixed signal results in a local oscillator signal wherein the stimulus signal phase noise generated by the signal source has been mathematically cancelled.




character

DEVICES AND METHODS FOR SAMPLE CHARACTERIZATION

Devices and methods for characterization of analyte mixtures are provided. Some methods described herein include performing enrichment steps on a device before expelling enriched analyte fractions from the device for subsequent analysis. Also included are devices for performing these enrichment steps.




character

PATHWAY CHARACTERIZATION OF CELLS

The present invention provides methods, compositions and kits for the characterization of cellular pathways in cells containing genetic alterations.




character

The Eclipse Inn is a small pub big in character (review)

IT may be small in size but for what The Eclipse Inn lacks in square feet it makes up for with an abundance of character and charm.




character

Mira Sorvino Fears Mistress Character on 'Hollywood' Linked Her Back to Harvey Weinstein

During a recent SAG Foundation Conversations at Home interview, the Oscar winner talks about the main differences between what happens to her Jeanne Crandall character and herself in real life.




character

Now mobile games based on ACK and Tinkle characters

ACK has roped in game developer Nazara Games to develop mobile games based on ACK and Tinkle characters, and the games would be launched in the next six months, said Mohan.




character

Designing Characters Using Adobe Fresco

Learn how to approach character design and get a better understanding of the powerful illustration tools in Adobe Fresco. In this course, instructor Renee di Cherri explains how to use this digital drawing and painting app—optimized for touch-based devices like the iPad—to bring your character to life. Learn how to use a mindmap to build your imagined world and guide the ideation process of creating your character and what they look like. Then discover how to sketch thumbnail drawings directly in Fresco and turn them into crisp linework with its vector brushes and painting tools. Finally, find out how to add color and final touches to your character, such as realistic fur and lighting, and use companion apps like Photoshop for the iPad to create variations on your character.




character

Just two UW Huskies selected in uncharacteristically disappointing NFL draft


Just two Washington Huskies were selected in the NFL draft this week, the program's lowest output since 2016. Quarterback Jacob Eason went to the Indianapolis Colts in the fourth round and center Nick Harris was selected by the Cleveland Browns in the fifth.




character

Just two UW Huskies selected in uncharacteristically disappointing NFL draft


Just two Washington Huskies were selected in the NFL draft this week, the program's lowest output since 2016. Quarterback Jacob Eason went to the Indianapolis Colts in the fourth round and center Nick Harris was selected by the Cleveland Browns in the fifth.




character

Three character traits can tell if working from home, or working remotely, works for you

Remote working means you can work in your pyjamas, avoid peak-hour traffic and pick and choose your hours. But would you miss the office gossip and, even worse, would the boss forget about you?




character

Silo art brightens up rural town with local farm characters Whisky the kelpie, Diamond the sheep

Whisky the kelpie and Diamond the sheep are making a splash at Karoonda in South Australia's Mallee region, after being painted on the town's silos.




character

Cosplayers and comic characters converge on Cairns convention

Comic superheroes and villainous characters put their differences aside over the weekend, uniting for far north Queensland's first ever pop culture and comic convention, Tropicon.



  • ABC Local
  • farnorth
  • Arts and Entertainment:All:All
  • Arts and Entertainment:Books (Literature):Crime Fiction
  • Arts and Entertainment:Books (Literature):Fantasy
  • Arts and Entertainment:Books (Literature):Fiction
  • Arts and Entertainment:Books (Literature):Horror
  • Arts and Entertainment:Books (Literature):Science Fiction
  • Arts and Entertainment:Books (Literature):Thriller
  • Arts and Entertainment:Visual Art:All
  • Arts and Entertainment:Events:All
  • Arts and Entertainment:Events:Carnivals and Festivals
  • Arts and Entertainment:Film (Movies):All
  • Arts and Entertainment:Games:All
  • Arts and Entertainment:Popular Culture:All
  • Arts and Entertainment:Television:All
  • Lifestyle and Leisure:All:All
  • Australia:QLD:All
  • Australia:QLD:Cairns 4870

character

Capturing the characters of Denmark, Western Australia

South coast photographer, Nic Duncan, has been named Western Australia's 2015 Portrait Photographer of the Year by industry body, the Australian Institute of Professional Photography (AIPP). Her environmental portraits offer a glimpse into the lives of diverse individuals, centred around a unique Great Southern town.





character

Gold Coast has 'lost its mojo' as development and population boom throws character into question

With an influx of 350,000 new residents expected by 2041, locals are concerned the planning and development will continue to alter the Gold Coast's unique identity.





character

QUIZ: Test your knowledge of sports movie characters




character

Venice Coalition to Preserve Unique Community Character v. City of Los Angeles

(California Court of Appeal) - Held that a citizen group could not proceed with its claims that the City of Los Angeles engaged in a pattern and practice of illegally exempting certain development projects in Venice from permitting requirements contained in the California Coastal Act and the Venice Land Use Plan. Affirmed summary judgment for city.




character

Which 'Dear White People' Character Are You?



"Excuse me? Were you saying something?"



  • BET Star Cinema

character

Distinct immune characteristics distinguish hereditary and idiopathic chronic pancreatitis

Chronic pancreatitis (CP) is considered an irreversible fibroinflammatory pancreatic disease. Despite numerous animal model studies, questions remain about local immune characteristics in human CP. We profiled pancreatic immune cell characteristics in control organ donors and CP patients including those with hereditary and idiopathic CP undergoing total pancreatectomy with islet autotransplantation. Flow cytometric analysis revealed a significant increase in the frequency of CD68+ macrophages in idiopathic CP. In contrast, hereditary CP samples showed a significant increase in CD3+ T cell frequency, which prompted us to investigate the T cell receptor β (TCRβ) repertoire in the CP and control groups. TCRβ sequencing revealed a significant increase in TCRβ repertoire diversity and reduced clonality in both CP groups versus controls. Interestingly, we observed differences in Vβ-Jβ gene family usage between hereditary and idiopathic CP and a positive correlation of TCRβ rearrangements with disease severity scores. Immunophenotyping analyses in hereditary and idiopathic CP pancreases indicate differences in innate and adaptive immune responses, which highlights differences in immunopathogenic mechanisms of disease among subtypes of CP. TCR repertoire analysis further suggests a role for specific T cell responses in hereditary versus idiopathic CP pathogenesis, providing insights into immune responses associated with human CP.





character

Hilary Duff’s ‘Younger’ character is getting a spinoff

“Younger” isn’t getting old yet.




character

Albert Uderzo, a creator of the beloved comic book character Asterix, dies at 92

His character Asterix captured the spirit of the French of the 1960s and grew into a worldwide phenomenon.




character

'Once Upon a Time' costumes shun the 1960s stereotypes and find the characters

Costume designer Arianne Phillips and Quentin Tarantino had a no tie-dye mindset going into the late-'60s-set film 'Once Upon a Time... in Hollywood.'




character

Building characters starts in this 'Watchmen' actor's kitchen

For actor Andrew Howard, who played Red Scare in HBO's 'Watchmen,' food is a sense-memory trigger when he prepares for a role.




character

Many Star Wars fans are upset the new movie sidelines Kelly Marie Tran’s character. The writer is trying to explain.

Writer Chris Terrio has responded to the controversy in interviews, pointing to issues over cut scenes between Rose Tico (Tran) and Leia (Carrie Fisher).




character

‘The Clone Wars’ proves yet again that Darth Maul is the most tragic Star Wars character

Darth Maul could have saved the galaxy in 'Star Wars: The Clone Wars," and lived on in the movies. Neither happened.




character

How ‘The Clone Wars’ turned Ahsoka Tano into a legendary Star Wars character

"Star Wars: The Clone Wars" is coming to an end on Disney Plus, but voice actress Ashley Eckstein helped assure that Ahsoka will live on.




character

Global Identification and Characterization of Both O-GlcNAcylation and Phosphorylation at the Murine Synapse

Jonathan C. Trinidad
Aug 1, 2012; 11:215-229
Research




character

The Human Plasma Proteome: History, Character, and Diagnostic Prospects

N. Leigh Anderson
Nov 1, 2002; 1:845-867
Reviews/Perspectives




character

Biophysical characterization of SARAH domain-mediated multimerization of Hippo pathway complexes in Drosophila [Signal Transduction]

Hippo pathway signaling limits cell growth and proliferation and maintains the stem-cell niche. These cellular events result from the coordinated activity of a core kinase cassette that is regulated, in part, by interactions involving Hippo, Salvador, and dRassF. These interactions are mediated by a conserved coiled-coil domain, termed SARAH, in each of these proteins. SARAH domain–mediated homodimerization of Hippo kinase leads to autophosphorylation and activation. Paradoxically, SARAH domain–mediated heterodimerization between Hippo and Salvador enhances Hippo kinase activity in cells, whereas complex formation with dRassF inhibits it. To better understand the mechanism by which each complex distinctly modulates Hippo kinase and pathway activity, here we biophysically characterized the entire suite of SARAH domain–mediated complexes. We purified the three SARAH domains from Drosophila melanogaster and performed an unbiased pulldown assay to identify all possible interactions, revealing that isolated SARAH domains are sufficient to recapitulate the cellular assemblies and that Hippo is a universal binding partner. Additionally, we found that the Salvador SARAH domain homodimerizes and demonstrate that this interaction is conserved in Salvador's mammalian homolog. Using native MS, we show that each of these complexes is dimeric in solution. We also measured the stability of each SARAH domain complex, finding that despite similarities at both the sequence and structural levels, SARAH domain complexes differ in stability. The identity, stoichiometry, and stability of these interactions characterized here comprehensively reveal the nature of SARAH domain–mediated complex formation and provide mechanistic insights into how SARAH domain–mediated interactions influence Hippo pathway activity.




character

Phosphoproteomic characterization of the signaling network resulting from activation of the chemokine receptor CCR2 [Genomics and Proteomics]

Leukocyte recruitment is a universal feature of tissue inflammation and regulated by the interactions of chemokines with their G protein–coupled receptors. Activation of CC chemokine receptor 2 (CCR2) by its cognate chemokine ligands, including CC chemokine ligand 2 (CCL2), plays a central role in recruitment of monocytes in several inflammatory diseases. In this study, we used phosphoproteomics to conduct an unbiased characterization of the signaling network resulting from CCL2 activation of CCR2. Using data-independent acquisition MS analysis, we quantified both the proteome and phosphoproteome in FlpIn-HEK293T cells stably expressing CCR2 at six time points after activation with CCL2. Differential expression analysis identified 699 significantly regulated phosphorylation sites on 441 proteins. As expected, many of these proteins are known to participate in canonical signal transduction pathways and in the regulation of actin cytoskeleton dynamics, including numerous guanine nucleotide exchange factors and GTPase-activating proteins. Moreover, we identified regulated phosphorylation sites in numerous proteins that function in the nucleus, including several constituents of the nuclear pore complex. The results of this study provide an unprecedented level of detail of CCR2 signaling and identify potential targets for regulation of CCR2 function.




character

Biophysical characterization of SARAH domain-mediated multimerization of Hippo pathway complexes in Drosophila [Signal Transduction]

Hippo pathway signaling limits cell growth and proliferation and maintains the stem-cell niche. These cellular events result from the coordinated activity of a core kinase cassette that is regulated, in part, by interactions involving Hippo, Salvador, and dRassF. These interactions are mediated by a conserved coiled-coil domain, termed SARAH, in each of these proteins. SARAH domain–mediated homodimerization of Hippo kinase leads to autophosphorylation and activation. Paradoxically, SARAH domain–mediated heterodimerization between Hippo and Salvador enhances Hippo kinase activity in cells, whereas complex formation with dRassF inhibits it. To better understand the mechanism by which each complex distinctly modulates Hippo kinase and pathway activity, here we biophysically characterized the entire suite of SARAH domain–mediated complexes. We purified the three SARAH domains from Drosophila melanogaster and performed an unbiased pulldown assay to identify all possible interactions, revealing that isolated SARAH domains are sufficient to recapitulate the cellular assemblies and that Hippo is a universal binding partner. Additionally, we found that the Salvador SARAH domain homodimerizes and demonstrate that this interaction is conserved in Salvador's mammalian homolog. Using native MS, we show that each of these complexes is dimeric in solution. We also measured the stability of each SARAH domain complex, finding that despite similarities at both the sequence and structural levels, SARAH domain complexes differ in stability. The identity, stoichiometry, and stability of these interactions characterized here comprehensively reveal the nature of SARAH domain–mediated complex formation and provide mechanistic insights into how SARAH domain–mediated interactions influence Hippo pathway activity.




character

Atomic force microscopy-based characterization of the interaction of PriA helicase with stalled DNA replication forks [DNA and Chromosomes]

In bacteria, the restart of stalled DNA replication forks requires the DNA helicase PriA. PriA can recognize and remodel abandoned DNA replication forks, unwind DNA in the 3'-to-5' direction, and facilitate the loading of the helicase DnaB onto the DNA to restart replication. Single-stranded DNA–binding protein (SSB) is typically present at the abandoned forks, but it is unclear how SSB and PriA interact, although it has been shown that the two proteins interact both physically and functionally. Here, we used atomic force microscopy to visualize the interaction of PriA with DNA substrates with or without SSB. These experiments were done in the absence of ATP to delineate the substrate recognition pattern of PriA before its ATP-catalyzed DNA-unwinding reaction. These analyses revealed that in the absence of SSB, PriA binds preferentially to a fork substrate with a gap in the leading strand. Such a preference has not been observed for 5'- and 3'-tailed duplexes, suggesting that it is the fork structure that plays an essential role in PriA's selection of DNA substrates. Furthermore, we found that in the absence of SSB, PriA binds exclusively to the fork regions of the DNA substrates. In contrast, fork-bound SSB loads PriA onto the duplex DNA arms of forks, suggesting a remodeling of PriA by SSB. We also demonstrate that the remodeling of PriA requires a functional C-terminal domain of SSB. In summary, our atomic force microscopy analyses reveal key details in the interactions between PriA and stalled DNA replication forks with or without SSB.







character

Biophysical characterization of SARAH domain-mediated multimerization of Hippo pathway complexes in Drosophila [Signal Transduction]

Hippo pathway signaling limits cell growth and proliferation and maintains the stem-cell niche. These cellular events result from the coordinated activity of a core kinase cassette that is regulated, in part, by interactions involving Hippo, Salvador, and dRassF. These interactions are mediated by a conserved coiled-coil domain, termed SARAH, in each of these proteins. SARAH domain–mediated homodimerization of Hippo kinase leads to autophosphorylation and activation. Paradoxically, SARAH domain–mediated heterodimerization between Hippo and Salvador enhances Hippo kinase activity in cells, whereas complex formation with dRassF inhibits it. To better understand the mechanism by which each complex distinctly modulates Hippo kinase and pathway activity, here we biophysically characterized the entire suite of SARAH domain–mediated complexes. We purified the three SARAH domains from Drosophila melanogaster and performed an unbiased pulldown assay to identify all possible interactions, revealing that isolated SARAH domains are sufficient to recapitulate the cellular assemblies and that Hippo is a universal binding partner. Additionally, we found that the Salvador SARAH domain homodimerizes and demonstrate that this interaction is conserved in Salvador's mammalian homolog. Using native MS, we show that each of these complexes is dimeric in solution. We also measured the stability of each SARAH domain complex, finding that despite similarities at both the sequence and structural levels, SARAH domain complexes differ in stability. The identity, stoichiometry, and stability of these interactions characterized here comprehensively reveal the nature of SARAH domain–mediated complex formation and provide mechanistic insights into how SARAH domain–mediated interactions influence Hippo pathway activity.




character

Atomic force microscopy-based characterization of the interaction of PriA helicase with stalled DNA replication forks [DNA and Chromosomes]

In bacteria, the restart of stalled DNA replication forks requires the DNA helicase PriA. PriA can recognize and remodel abandoned DNA replication forks, unwind DNA in the 3'-to-5' direction, and facilitate the loading of the helicase DnaB onto the DNA to restart replication. Single-stranded DNA–binding protein (SSB) is typically present at the abandoned forks, but it is unclear how SSB and PriA interact, although it has been shown that the two proteins interact both physically and functionally. Here, we used atomic force microscopy to visualize the interaction of PriA with DNA substrates with or without SSB. These experiments were done in the absence of ATP to delineate the substrate recognition pattern of PriA before its ATP-catalyzed DNA-unwinding reaction. These analyses revealed that in the absence of SSB, PriA binds preferentially to a fork substrate with a gap in the leading strand. Such a preference has not been observed for 5'- and 3'-tailed duplexes, suggesting that it is the fork structure that plays an essential role in PriA's selection of DNA substrates. Furthermore, we found that in the absence of SSB, PriA binds exclusively to the fork regions of the DNA substrates. In contrast, fork-bound SSB loads PriA onto the duplex DNA arms of forks, suggesting a remodeling of PriA by SSB. We also demonstrate that the remodeling of PriA requires a functional C-terminal domain of SSB. In summary, our atomic force microscopy analyses reveal key details in the interactions between PriA and stalled DNA replication forks with or without SSB.




character

Tandem Mass Tag Approach Utilizing Pervanadate BOOST Channels Delivers Deeper Quantitative Characterization of the Tyrosine Phosphoproteome

Xien Yu Chua
Apr 1, 2020; 19:730-743
Technological Innovation and Resources




character

Characterization of Prenylated C-terminal Peptides Using a Thiopropyl-based Capture Technique and LC-MS/MS

James A. Wilkins
Apr 13, 2020; 0:RA120.001944v1-mcp.RA120.001944
Research




character

Characterization of signaling pathways associated with pancreatic {beta}-cell adaptive flexibility in compensation of obesity-linked diabetes in db/db mice

Taewook Kang
Apr 7, 2020; 0:RA119.001882v1-mcp.RA119.001882
Research




character

Phosphoproteomic characterization of the signaling network resulting from activation of the chemokine receptor CCR2 [Genomics and Proteomics]

Leukocyte recruitment is a universal feature of tissue inflammation and regulated by the interactions of chemokines with their G protein–coupled receptors. Activation of CC chemokine receptor 2 (CCR2) by its cognate chemokine ligands, including CC chemokine ligand 2 (CCL2), plays a central role in recruitment of monocytes in several inflammatory diseases. In this study, we used phosphoproteomics to conduct an unbiased characterization of the signaling network resulting from CCL2 activation of CCR2. Using data-independent acquisition MS analysis, we quantified both the proteome and phosphoproteome in FlpIn-HEK293T cells stably expressing CCR2 at six time points after activation with CCL2. Differential expression analysis identified 699 significantly regulated phosphorylation sites on 441 proteins. As expected, many of these proteins are known to participate in canonical signal transduction pathways and in the regulation of actin cytoskeleton dynamics, including numerous guanine nucleotide exchange factors and GTPase-activating proteins. Moreover, we identified regulated phosphorylation sites in numerous proteins that function in the nucleus, including several constituents of the nuclear pore complex. The results of this study provide an unprecedented level of detail of CCR2 signaling and identify potential targets for regulation of CCR2 function.




character

Multi-omic Characterization of the Mode of Action of a Potent New Antimalarial Compound, JPC-3210, Against Plasmodium falciparum [Research]

The increasing incidence of antimalarial drug resistance to the first-line artemisinin combination therapies underpins an urgent need for new antimalarial drugs, ideally with a novel mode of action. The recently developed 2-aminomethylphenol, JPC-3210, (MMV 892646) is an erythrocytic schizonticide with potent in vitro antimalarial activity against multidrug-resistant Plasmodium falciparum lines, low cytotoxicity, potent in vivo efficacy against murine malaria, and favorable preclinical pharmacokinetics including a lengthy plasma elimination half-life. To investigate the impact of JPC-3210 on biochemical pathways within P. falciparum-infected red blood cells, we have applied a "multi-omics" workflow based on high resolution orbitrap mass spectrometry combined with biochemical approaches. Metabolomics, peptidomics and hemoglobin fractionation analyses revealed a perturbation in hemoglobin metabolism following JPC-3210 exposure. The metabolomics data demonstrated a specific depletion of short hemoglobin-derived peptides, peptidomics analysis revealed a depletion of longer hemoglobin-derived peptides, and the hemoglobin fractionation assay demonstrated decreases in hemoglobin, heme and hemozoin levels. To further elucidate the mechanism responsible for inhibition of hemoglobin metabolism, we used in vitro β-hematin polymerization assays and showed JPC-3210 to be an intermediate inhibitor of β-hematin polymerization, about 10-fold less potent then the quinoline antimalarials, such as chloroquine and mefloquine. Further, quantitative proteomics analysis showed that JPC-3210 treatment results in a distinct proteomic signature compared with other known antimalarials. While JPC-3210 clustered closely with mefloquine in the metabolomics and proteomics analyses, a key differentiating signature for JPC-3210 was the significant enrichment of parasite proteins involved in regulation of translation. These studies revealed that the mode of action for JPC-3210 involves inhibition of the hemoglobin digestion pathway and elevation of regulators of protein translation. Importantly, JPC-3210 demonstrated rapid parasite killing kinetics compared with other quinolones, suggesting that JPC-3210 warrants further investigation as a potentially long acting partner drug for malaria treatment.




character

Deep Characterization of the Human Antibody Response to Natural Infection Using Longitudinal Immune Repertoire Sequencing [Research]

Human antibody response studies are largely restricted to periods of high immune activity (e.g. vaccination). To comprehensively understand the healthy B cell immune repertoire and how this changes over time and through natural infection, we conducted immune repertoire RNA sequencing on flow cytometry-sorted B cell subsets to profile a single individual's antibodies over 11 months through two periods of natural viral infection. We found that 1) a baseline of healthy variable (V) gene usage in antibodies exists and is stable over time, but antibodies in memory cells consistently have a different usage profile relative to earlier B cell stages; 2) a single complementarity-determining region 3 (CDR3) is potentially generated from more than one VJ gene combination; and 3) IgG and IgA antibody transcripts are found at low levels in early human B cell development, suggesting that class switching may occur earlier than previously realized. These findings provide insight into immune repertoire stability, response to natural infections, and human B cell development.




character

Characterizing Patients with Recurrent Urinary Tract Infections in Vesicoureteral Reflux: A Pilot Study of the Urinary Proteome [Research]

Recurrent urinary tract infections (UTIs) pose a significant burden on the health care system. Underlying mechanisms predisposing children to UTIs and associated changes in the urinary proteome are not well understood. We aimed to investigate the urinary proteome of a subset of children who have vesicoureteral reflux (VUR) and recurrent UTIs because of their risk of developing infection-related renal damage. Improving diagnostic modalities to identify UTI risk factors would significantly alter the clinical management of children with VUR. We profiled the urinary proteomes of 22 VUR patients with low grade VUR (1–3 out of 5), a history of recurrent UTIs, and renal scarring, comparing them to those obtained from 22 age-matched controls. Urinary proteins were analyzed by mass spectrometry followed by protein quantitation based on spectral counting. Of the 2,551 proteins identified across both cohorts, 964 were robustly quantified, as defined by meeting criteria with spectral count (SC) ≥2 in at least 7 patients in either VUR or control cohort. Eighty proteins had differential expression between the two cohorts, with 44 proteins significantly up-regulated and 36 downregulated (q <0.075, FC ≥1.2). Urinary proteins involved in inflammation, acute phase response (APR), modulation of extracellular matrix (ECM), and carbohydrate metabolism were altered among the study cohort.




character

Tandem Mass Tag Approach Utilizing Pervanadate BOOST Channels Delivers Deeper Quantitative Characterization of the Tyrosine Phosphoproteome [Technological Innovation and Resources]

Dynamic tyrosine phosphorylation is fundamental to a myriad of cellular processes. However, the inherently low abundance of tyrosine phosphorylation in the proteome and the inefficient enrichment of phosphotyrosine(pTyr)-containing peptides has led to poor pTyr peptide identification and quantitation, critically hindering researchers' ability to elucidate signaling pathways regulated by tyrosine phosphorylation in systems where cellular material is limited. The most popular approaches to wide-scale characterization of the tyrosine phosphoproteome use pTyr enrichment with pan-specific, anti-pTyr antibodies from a large amount of starting material. Methods that decrease the amount of starting material and increase the characterization depth of the tyrosine phosphoproteome while maintaining quantitative accuracy and precision would enable the discovery of tyrosine phosphorylation networks in rarer cell populations. To achieve these goals, the BOOST (Broad-spectrum Optimization Of Selective Triggering) method leveraging the multiplexing capability of tandem mass tags (TMT) and the use of pervanadate (PV) boost channels (cells treated with the broad-spectrum tyrosine phosphatase inhibitor PV) selectively increased the relative abundance of pTyr-containing peptides. After PV boost channels facilitated selective fragmentation of pTyr-containing peptides, TMT reporter ions delivered accurate quantitation of each peptide for the experimental samples while the quantitation from PV boost channels was ignored. This method yielded up to 6.3-fold boost in pTyr quantification depth of statistically significant data derived from contrived ratios, compared with TMT without PV boost channels or intensity-based label-free (LF) quantitation while maintaining quantitative accuracy and precision, allowing quantitation of over 2300 unique pTyr peptides from only 1 mg of T cell receptor-stimulated Jurkat T cells. The BOOST strategy can potentially be applied in analyses of other post-translational modifications where treatments that broadly elevate the levels of those modifications across the proteome are available.