alp

AT#301 - Travel to Chihuahua, Mexico with Photographer Ralph Velasco

Chihuahua is also known for the beautiful Cooper Canyon which is best seen from the train that transverses it. Copper Canyon is a popular tourist destination with Mexicans. Copper Canyon is larger and portions are deeper than the Grande Canyon.




alp

N{alpha}-Acetylation of the virulence factor EsxA is required for mycobacterial cytosolic translocation and virulence [Molecular Bases of Disease]

The Mycobacterium tuberculosis virulence factor EsxA and its chaperone EsxB are secreted as a heterodimer (EsxA:B) and are crucial for mycobacterial escape from phagosomes and cytosolic translocation. Current findings support the idea that for EsxA to interact with host membranes, EsxA must dissociate from EsxB at low pH. However, the molecular mechanism by which the EsxA:B heterodimer separates is not clear. In the present study, using liposome-leakage and cytotoxicity assays, LC-MS/MS–based proteomics, and CCF-4 FRET analysis, we obtained evidence that the Nα-acetylation of the Thr-2 residue on EsxA, a post-translational modification that is present in mycobacteria but absent in Escherichia coli, is required for the EsxA:B separation. Substitutions at Thr-2 that precluded Nα-acetylation inhibited the heterodimer separation and hence prevented EsxA from interacting with the host membrane, resulting in attenuated mycobacterial cytosolic translocation and virulence. Molecular dynamics simulations revealed that at low pH, the Nα-acetylated Thr-2 makes direct and frequent “bind-and-release” contacts with EsxB, which generates a force that pulls EsxB away from EsxA. In summary, our findings provide evidence that the Nα-acetylation at Thr-2 of EsxA facilitates dissociation of the EsxA:B heterodimer required for EsxA membrane permeabilization and mycobacterial cytosolic translocation and virulence.




alp

{alpha}-Synuclein filaments from transgenic mouse and human synucleinopathy-containing brains are maȷor seed-competent species [Molecular Bases of Disease]

Assembled α-synuclein in nerve cells and glial cells is the defining pathological feature of neurodegenerative diseases called synucleinopathies. Seeds of α-synuclein can induce the assembly of monomeric protein. Here, we used sucrose gradient centrifugation and transiently transfected HEK 293T cells to identify the species of α-synuclein from the brains of homozygous, symptomatic mice transgenic for human mutant A53T α-synuclein (line M83) that seed aggregation. The most potent fractions contained Sarkosyl-insoluble assemblies enriched in filaments. We also analyzed six cases of idiopathic Parkinson's disease (PD), one case of familial PD, and six cases of multiple system atrophy (MSA) for their ability to induce α-synuclein aggregation. The MSA samples were more potent than those of idiopathic PD in seeding aggregation. We found that following sucrose gradient centrifugation, the most seed-competent fractions from PD and MSA brains are those that contain Sarkosyl-insoluble α-synuclein. The fractions differed between PD and MSA, consistent with the presence of distinct conformers of assembled α-synuclein in these different samples. We conclude that α-synuclein filaments are the main driving force for amplification and propagation of pathology in synucleinopathies.




alp

Inflammatory and mitogenic signals drive interleukin 23 subunit alpha (IL23A) secretion independent of IL12B in intestinal epithelial cells [Signal Transduction]

The heterodimeric cytokine interleukin-23 (IL-23 or IL23A/IL12B) is produced by dendritic cells and macrophages and promotes the proinflammatory and regenerative activities of T helper 17 (Th17) and innate lymphoid cells. A recent study has reported that IL-23 is also secreted by lung adenoma cells and generates an inflammatory and immune-suppressed stroma. Here, we observed that proinflammatory tumor necrosis factor (TNF)/NF-κB and mitogen-activated protein kinase (MAPK) signaling strongly induce IL23A expression in intestinal epithelial cells. Moreover, we identified a strong crosstalk between the NF-κB and MAPK/ERK kinase (MEK) pathways, involving the formation of a transcriptional enhancer complex consisting of proto-oncogene c-Jun (c-Jun), RELA proto-oncogene NF-κB subunit (RelA), RUNX family transcription factor 1 (RUNX1), and RUNX3. Collectively, these proteins induced IL23A secretion, confirmed by immunoprecipitation of endogenous IL23A from activated human colorectal cancer (CRC) cell culture supernatants. Interestingly, IL23A was likely secreted in a noncanonical form, as it was not detected by an ELISA specific for heterodimeric IL-23 likely because IL12B expression is absent in CRC cells. Given recent evidence that IL23A promotes tumor formation, we evaluated the efficacy of MAPK/NF-κB inhibitors in attenuating IL23A expression and found that the MEK inhibitor trametinib and BAY 11–7082 (an IKKα/IκB inhibitor) effectively inhibited IL23A in a subset of human CRC lines with mutant KRAS or BRAFV600E mutations. Together, these results indicate that proinflammatory and mitogenic signals dynamically regulate IL23A in epithelial cells. They further reveal its secretion in a noncanonical form independent of IL12B and that small-molecule inhibitors can attenuate IL23A secretion.




alp

G{alpha}q splice variants mediate phototransduction, rhodopsin synthesis, and retinal integrity in Drosophila [Signal Transduction]

Heterotrimeric G proteins mediate a variety of signaling processes by coupling G protein–coupled receptors to intracellular effector molecules. In Drosophila, the Gαq gene encodes several Gαq splice variants, with the Gαq1 isoform protein playing a major role in fly phototransduction. However, Gαq1 null mutant flies still exhibit a residual light response, indicating that other Gαq splice variants or additional Gq α subunits are involved in phototransduction. Here, we isolated a mutant fly with no detectable light responses, decreased rhodopsin (Rh) levels, and rapid retinal degeneration. Using electrophysiological and genetic studies, biochemical assays, immunoblotting, real-time RT-PCR, and EM analysis, we found that mutations in the Gαq gene disrupt light responses and demonstrate that the Gαq3 isoform protein is responsible for the residual light response in Gαq1 null mutants. Moreover, we report that Gαq3 mediates rhodopsin synthesis. Depletion of all Gαq splice variants led to rapid light-dependent retinal degeneration, due to the formation stable Rh1-arrestin 2 (Arr2) complexes. Our findings clarify essential roles of several different Gαq splice variants in phototransduction and retinal integrity in Drosophila and reveal that Gαq3 functions in rhodopsin synthesis.




alp

The focal adhesion protein kindlin-2 controls mitotic spindle assembly by inhibiting histone deacetylase 6 and maintaining {alpha}-tubulin acetylation [Signal Transduction]

Kindlins are focal adhesion proteins that regulate integrin activation and outside-in signaling. The kindlin family consists of three members, kindlin-1, -2, and -3. Kindlin-2 is widely expressed in multiple cell types, except those from the hematopoietic lineage. A previous study has reported that the Drosophila Fit1 protein (an ortholog of kindlin-2) prevents abnormal spindle assembly; however, the mechanism remains unknown. Here, we show that kindlin-2 maintains spindle integrity in mitotic human cells. The human neuroblastoma SH-SY5Y cell line expresses only kindlin-2, and we found that when SH-SY5Y cells are depleted of kindlin-2, they exhibit pronounced spindle abnormalities and delayed mitosis. Of note, acetylation of α-tubulin, which maintains microtubule flexibility and stability, was diminished in the kindlin-2–depleted cells. Mechanistically, we found that kindlin-2 maintains α-tubulin acetylation by inhibiting the microtubule-associated deacetylase histone deacetylase 6 (HDAC6) via a signaling pathway involving AKT Ser/Thr kinase (AKT)/glycogen synthase kinase 3β (GSK3β) or paxillin. We also provide evidence that prolonged hypoxia down-regulates kindlin-2 expression, leading to spindle abnormalities not only in the SH-SY5Y cell line, but also cell lines derived from colon and breast tissues. The findings of our study highlight that kindlin-2 regulates mitotic spindle assembly and that this process is perturbed in cancer cells in a hypoxic environment.




alp

Inflammatory and mitogenic signals drive interleukin 23 subunit alpha (IL23A) secretion independent of IL12B in intestinal epithelial cells [Signal Transduction]

The heterodimeric cytokine interleukin-23 (IL-23 or IL23A/IL12B) is produced by dendritic cells and macrophages and promotes the proinflammatory and regenerative activities of T helper 17 (Th17) and innate lymphoid cells. A recent study has reported that IL-23 is also secreted by lung adenoma cells and generates an inflammatory and immune-suppressed stroma. Here, we observed that proinflammatory tumor necrosis factor (TNF)/NF-κB and mitogen-activated protein kinase (MAPK) signaling strongly induce IL23A expression in intestinal epithelial cells. Moreover, we identified a strong crosstalk between the NF-κB and MAPK/ERK kinase (MEK) pathways, involving the formation of a transcriptional enhancer complex consisting of proto-oncogene c-Jun (c-Jun), RELA proto-oncogene NF-κB subunit (RelA), RUNX family transcription factor 1 (RUNX1), and RUNX3. Collectively, these proteins induced IL23A secretion, confirmed by immunoprecipitation of endogenous IL23A from activated human colorectal cancer (CRC) cell culture supernatants. Interestingly, IL23A was likely secreted in a noncanonical form, as it was not detected by an ELISA specific for heterodimeric IL-23 likely because IL12B expression is absent in CRC cells. Given recent evidence that IL23A promotes tumor formation, we evaluated the efficacy of MAPK/NF-κB inhibitors in attenuating IL23A expression and found that the MEK inhibitor trametinib and BAY 11–7082 (an IKKα/IκB inhibitor) effectively inhibited IL23A in a subset of human CRC lines with mutant KRAS or BRAFV600E mutations. Together, these results indicate that proinflammatory and mitogenic signals dynamically regulate IL23A in epithelial cells. They further reveal its secretion in a noncanonical form independent of IL12B and that small-molecule inhibitors can attenuate IL23A secretion.




alp

Marked reduction in bile acid synthesis in cholesterol 7{alpha}-hydroxylase-deficient mice does not lead to diminished tissue cholesterol turnover or to hypercholesterolemia

Margrit Schwarz
Sep 1, 1998; 39:1833-1843
Articles




alp

G{alpha}q splice variants mediate phototransduction, rhodopsin synthesis, and retinal integrity in Drosophila [Signal Transduction]

Heterotrimeric G proteins mediate a variety of signaling processes by coupling G protein–coupled receptors to intracellular effector molecules. In Drosophila, the Gαq gene encodes several Gαq splice variants, with the Gαq1 isoform protein playing a major role in fly phototransduction. However, Gαq1 null mutant flies still exhibit a residual light response, indicating that other Gαq splice variants or additional Gq α subunits are involved in phototransduction. Here, we isolated a mutant fly with no detectable light responses, decreased rhodopsin (Rh) levels, and rapid retinal degeneration. Using electrophysiological and genetic studies, biochemical assays, immunoblotting, real-time RT-PCR, and EM analysis, we found that mutations in the Gαq gene disrupt light responses and demonstrate that the Gαq3 isoform protein is responsible for the residual light response in Gαq1 null mutants. Moreover, we report that Gαq3 mediates rhodopsin synthesis. Depletion of all Gαq splice variants led to rapid light-dependent retinal degeneration, due to the formation stable Rh1-arrestin 2 (Arr2) complexes. Our findings clarify essential roles of several different Gαq splice variants in phototransduction and retinal integrity in Drosophila and reveal that Gαq3 functions in rhodopsin synthesis.




alp

{alpha}-Synuclein filaments from transgenic mouse and human synucleinopathy-containing brains are maȷor seed-competent species [Molecular Bases of Disease]

Assembled α-synuclein in nerve cells and glial cells is the defining pathological feature of neurodegenerative diseases called synucleinopathies. Seeds of α-synuclein can induce the assembly of monomeric protein. Here, we used sucrose gradient centrifugation and transiently transfected HEK 293T cells to identify the species of α-synuclein from the brains of homozygous, symptomatic mice transgenic for human mutant A53T α-synuclein (line M83) that seed aggregation. The most potent fractions contained Sarkosyl-insoluble assemblies enriched in filaments. We also analyzed six cases of idiopathic Parkinson's disease (PD), one case of familial PD, and six cases of multiple system atrophy (MSA) for their ability to induce α-synuclein aggregation. The MSA samples were more potent than those of idiopathic PD in seeding aggregation. We found that following sucrose gradient centrifugation, the most seed-competent fractions from PD and MSA brains are those that contain Sarkosyl-insoluble α-synuclein. The fractions differed between PD and MSA, consistent with the presence of distinct conformers of assembled α-synuclein in these different samples. We conclude that α-synuclein filaments are the main driving force for amplification and propagation of pathology in synucleinopathies.




alp

Human Hepatocyte Nuclear Factor 4-{alpha} Encodes Isoforms with Distinct Transcriptional Functions [Research]

HNF4α is a nuclear receptor produced as 12 isoforms from two promoters by alternative splicing. To characterize the transcriptional capacities of all 12 HNF4α isoforms, stable lines expressing each isoform were generated. The entire transcriptome associated with each isoform was analyzed as well as their respective interacting proteome. Major differences were noted in the transcriptional function of these isoforms. The α1 and α2 isoforms were the strongest regulators of gene expression whereas the α3 isoform exhibited significantly reduced activity. The α4, α5, and α6 isoforms, which use an alternative first exon, were characterized for the first time, and showed a greatly reduced transcriptional potential with an inability to recognize the consensus response element of HNF4α. Several transcription factors and coregulators were identified as potential specific partners for certain HNF4α isoforms. An analysis integrating the vast amount of omics data enabled the identification of transcriptional regulatory mechanisms specific to certain HNF4α isoforms, hence demonstrating the importance of considering all isoforms given their seemingly diverse functions.




alp

CBD News: Discours du Secretaire executif, M. Ahmed Djoghlaf, à l'occasion de la dixieme Conference Alpine, Evian, France, 12 Mars, 2009.




alp

CBD News: The seventh meeting of the Conference of the Parties to the Convention on Biological Diversity serving as the meeting of the Parties to the Cartagena Protocol on Biosafety (or COP-MOP 7) opened today at the Alpensia Convention Center in Pyeongch




alp

Reply to Alphabet Game

Jeniverse Photography posted a reply:

Q is for Queerlesque




alp

Inter-{alpha}-inhibitor heavy chain-1 has an integrin-like 3D structure mediating immune regulatory activities and matrix stabilization during ovulation [Glycobiology and Extracellular Matrices]

Inter-α-inhibitor is a proteoglycan essential for mammalian reproduction and also plays a less well-characterized role in inflammation. It comprises two homologous “heavy chains” (HC1 and HC2) covalently attached to chondroitin sulfate on the bikunin core protein. Before ovulation, HCs are transferred onto the polysaccharide hyaluronan (HA) to form covalent HC·HA complexes, thereby stabilizing an extracellular matrix around the oocyte required for fertilization. Additionally, such complexes form during inflammatory processes and mediate leukocyte adhesion in the synovial fluids of arthritis patients and protect against sepsis. Here using X-ray crystallography, we show that human HC1 has a structure similar to integrin β-chains, with a von Willebrand factor A domain containing a functional metal ion-dependent adhesion site (MIDAS) and an associated hybrid domain. A comparison of the WT protein and a variant with an impaired MIDAS (but otherwise structurally identical) by small-angle X-ray scattering and analytical ultracentrifugation revealed that HC1 self-associates in a cation-dependent manner, providing a mechanism for HC·HA cross-linking and matrix stabilization. Surprisingly, unlike integrins, HC1 interacted with RGD-containing ligands, such as fibronectin, vitronectin, and the latency-associated peptides of transforming growth factor β, in a MIDAS/cation-independent manner. However, HC1 utilizes its MIDAS motif to bind to and inhibit the cleavage of complement C3, and small-angle X-ray scattering–based modeling indicates that this occurs through the inhibition of the alternative pathway C3 convertase. These findings provide detailed structural and functional insights into HC1 as a regulator of innate immunity and further elucidate the role of HC·HA complexes in inflammation and ovulation.




alp

N{alpha}-Acetylation of the virulence factor EsxA is required for mycobacterial cytosolic translocation and virulence [Molecular Bases of Disease]

The Mycobacterium tuberculosis virulence factor EsxA and its chaperone EsxB are secreted as a heterodimer (EsxA:B) and are crucial for mycobacterial escape from phagosomes and cytosolic translocation. Current findings support the idea that for EsxA to interact with host membranes, EsxA must dissociate from EsxB at low pH. However, the molecular mechanism by which the EsxA:B heterodimer separates is not clear. In the present study, using liposome-leakage and cytotoxicity assays, LC-MS/MS–based proteomics, and CCF-4 FRET analysis, we obtained evidence that the Nα-acetylation of the Thr-2 residue on EsxA, a post-translational modification that is present in mycobacteria but absent in Escherichia coli, is required for the EsxA:B separation. Substitutions at Thr-2 that precluded Nα-acetylation inhibited the heterodimer separation and hence prevented EsxA from interacting with the host membrane, resulting in attenuated mycobacterial cytosolic translocation and virulence. Molecular dynamics simulations revealed that at low pH, the Nα-acetylated Thr-2 makes direct and frequent “bind-and-release” contacts with EsxB, which generates a force that pulls EsxB away from EsxA. In summary, our findings provide evidence that the Nα-acetylation at Thr-2 of EsxA facilitates dissociation of the EsxA:B heterodimer required for EsxA membrane permeabilization and mycobacterial cytosolic translocation and virulence.




alp

Deletion of fatty acid transport protein 2 (FATP2) in the mouse liver changes the metabolic landscape by increasing the expression of PPAR{alpha}-regulated genes [Lipids]

Fatty acid transport protein 2 (FATP2) is highly expressed in the liver, small intestine, and kidney, where it functions in both the transport of exogenous long-chain fatty acids and the activation of very-long-chain fatty acids. Here, using a murine model, we investigated the phenotypic impacts of deleting FATP2, followed by a transcriptomic analysis using unbiased RNA-Seq to identify concomitant changes in the liver transcriptome. WT and FATP2-null (Fatp2−/−) mice (5 weeks) were maintained on a standard chow diet for 6 weeks. The Fatp2−/− mice had reduced weight gain, lowered serum triglyceride, and increased serum cholesterol levels and attenuated dietary fatty acid absorption. Transcriptomic analysis of the liver revealed 258 differentially expressed genes in male Fatp2−/− mice and a total of 91 in female Fatp2−/− mice. These genes mapped to the following gene ontology categories: fatty acid degradation, peroxisome biogenesis, fatty acid synthesis, and retinol and arachidonic acid metabolism. Targeted RT-quantitative PCR verified the altered expression of selected genes. Of note, most of the genes with increased expression were known to be regulated by peroxisome proliferator–activated receptor α (PPARα), suggesting that FATP2 activity is linked to a PPARα-specific proximal ligand. Targeted metabolomic experiments in the Fatp2−/− liver revealed increases of total C16:0, C16:1, and C18:1 fatty acids; increases in lipoxin A4 and prostaglandin J2; and a decrease in 20-hydroxyeicosatetraenoic acid. We conclude that the expression of FATP2 in the liver broadly affects the metabolic landscape through PPARα, indicating that FATP2 provides an important role in liver lipid metabolism through its transport or activation activities.




alp

Glycation-mediated inter-protein cross-linking is promoted by chaperone-client complexes of {alpha}-crystallin: Implications for lens aging and presbyopia [Glycobiology and Extracellular Matrices]

Lens proteins become increasingly cross-linked through nondisulfide linkages during aging and cataract formation. One mechanism that has been implicated in this cross-linking is glycation through formation of advanced glycation end products (AGEs). Here, we found an age-associated increase in stiffness in human lenses that was directly correlated with levels of protein–cross-linking AGEs. α-Crystallin in the lens binds to other proteins and prevents their denaturation and aggregation through its chaperone-like activity. Using a FRET-based assay, we examined the stability of the αA-crystallin–γD-crystallin complex for up to 12 days and observed that this complex is stable in PBS and upon incubation with human lens–epithelial cell lysate or lens homogenate. Addition of 2 mm ATP to the lysate or homogenate did not decrease the stability of the complex. We also generated complexes of human αA-crystallin or αB-crystallin with alcohol dehydrogenase or citrate synthase by applying thermal stress. Upon glycation under physiological conditions, the chaperone–client complexes underwent greater extents of cross-linking than did uncomplexed protein mixtures. LC-MS/MS analyses revealed that the levels of cross-linking AGEs were significantly higher in the glycated chaperone–client complexes than in glycated but uncomplexed protein mixtures. Mouse lenses subjected to thermal stress followed by glycation lost resilience more extensively than lenses subjected to thermal stress or glycation alone, and this loss was accompanied by higher protein cross-linking and higher cross-linking AGE levels. These results uncover a protein cross-linking mechanism in the lens and suggest that AGE-mediated cross-linking of α-crystallin–client complexes could contribute to lens aging and presbyopia.




alp

G{alpha}q splice variants mediate phototransduction, rhodopsin synthesis, and retinal integrity in Drosophila [Signal Transduction]

Heterotrimeric G proteins mediate a variety of signaling processes by coupling G protein–coupled receptors to intracellular effector molecules. In Drosophila, the Gαq gene encodes several Gαq splice variants, with the Gαq1 isoform protein playing a major role in fly phototransduction. However, Gαq1 null mutant flies still exhibit a residual light response, indicating that other Gαq splice variants or additional Gq α subunits are involved in phototransduction. Here, we isolated a mutant fly with no detectable light responses, decreased rhodopsin (Rh) levels, and rapid retinal degeneration. Using electrophysiological and genetic studies, biochemical assays, immunoblotting, real-time RT-PCR, and EM analysis, we found that mutations in the Gαq gene disrupt light responses and demonstrate that the Gαq3 isoform protein is responsible for the residual light response in Gαq1 null mutants. Moreover, we report that Gαq3 mediates rhodopsin synthesis. Depletion of all Gαq splice variants led to rapid light-dependent retinal degeneration, due to the formation stable Rh1-arrestin 2 (Arr2) complexes. Our findings clarify essential roles of several different Gαq splice variants in phototransduction and retinal integrity in Drosophila and reveal that Gαq3 functions in rhodopsin synthesis.




alp

The focal adhesion protein kindlin-2 controls mitotic spindle assembly by inhibiting histone deacetylase 6 and maintaining {alpha}-tubulin acetylation [Signal Transduction]

Kindlins are focal adhesion proteins that regulate integrin activation and outside-in signaling. The kindlin family consists of three members, kindlin-1, -2, and -3. Kindlin-2 is widely expressed in multiple cell types, except those from the hematopoietic lineage. A previous study has reported that the Drosophila Fit1 protein (an ortholog of kindlin-2) prevents abnormal spindle assembly; however, the mechanism remains unknown. Here, we show that kindlin-2 maintains spindle integrity in mitotic human cells. The human neuroblastoma SH-SY5Y cell line expresses only kindlin-2, and we found that when SH-SY5Y cells are depleted of kindlin-2, they exhibit pronounced spindle abnormalities and delayed mitosis. Of note, acetylation of α-tubulin, which maintains microtubule flexibility and stability, was diminished in the kindlin-2–depleted cells. Mechanistically, we found that kindlin-2 maintains α-tubulin acetylation by inhibiting the microtubule-associated deacetylase histone deacetylase 6 (HDAC6) via a signaling pathway involving AKT Ser/Thr kinase (AKT)/glycogen synthase kinase 3β (GSK3β) or paxillin. We also provide evidence that prolonged hypoxia down-regulates kindlin-2 expression, leading to spindle abnormalities not only in the SH-SY5Y cell line, but also cell lines derived from colon and breast tissues. The findings of our study highlight that kindlin-2 regulates mitotic spindle assembly and that this process is perturbed in cancer cells in a hypoxic environment.




alp

Deletion of fatty acid transport protein 2 (FATP2) in the mouse liver changes the metabolic landscape by increasing the expression of PPAR{alpha}-regulated genes [Lipids]

Fatty acid transport protein 2 (FATP2) is highly expressed in the liver, small intestine, and kidney, where it functions in both the transport of exogenous long-chain fatty acids and the activation of very-long-chain fatty acids. Here, using a murine model, we investigated the phenotypic impacts of deleting FATP2, followed by a transcriptomic analysis using unbiased RNA-Seq to identify concomitant changes in the liver transcriptome. WT and FATP2-null (Fatp2−/−) mice (5 weeks) were maintained on a standard chow diet for 6 weeks. The Fatp2−/− mice had reduced weight gain, lowered serum triglyceride, and increased serum cholesterol levels and attenuated dietary fatty acid absorption. Transcriptomic analysis of the liver revealed 258 differentially expressed genes in male Fatp2−/− mice and a total of 91 in female Fatp2−/− mice. These genes mapped to the following gene ontology categories: fatty acid degradation, peroxisome biogenesis, fatty acid synthesis, and retinol and arachidonic acid metabolism. Targeted RT-quantitative PCR verified the altered expression of selected genes. Of note, most of the genes with increased expression were known to be regulated by peroxisome proliferator–activated receptor α (PPARα), suggesting that FATP2 activity is linked to a PPARα-specific proximal ligand. Targeted metabolomic experiments in the Fatp2−/− liver revealed increases of total C16:0, C16:1, and C18:1 fatty acids; increases in lipoxin A4 and prostaglandin J2; and a decrease in 20-hydroxyeicosatetraenoic acid. We conclude that the expression of FATP2 in the liver broadly affects the metabolic landscape through PPARα, indicating that FATP2 provides an important role in liver lipid metabolism through its transport or activation activities.




alp

Human Hepatocyte Nuclear Factor 4-{alpha} Encodes Isoforms with Distinct Transcriptional Functions

Élie Lambert
May 1, 2020; 19:808-827
Research




alp

212Pb Alpha-Radioimmunotherapy targeting CD38 in Multiple Myeloma: a preclinical study.

Multiple myeloma (MM) is a plasma cell cancer and represents the second most frequent hematological malignancy. Despite new treatments and protocols including high doses chemotherapy associated with autologous stem cell transplantation, the prognosis of MM patients is still poor. Alpha-radioimmunotherapy (alpha-RIT) represents an attractive treatment strategy due to the high linear energy transfer and short path length of alpha-radiation in tissues, resulting in high tumor cell killing and low toxicity to surrounding tissues. In this study, we investigated the potential of alpha-RIT with 212Pb-Daratumumab (anti-CD38), in both in vitro and in vivo models, as well as an anti-mouse CD38 antibody using in vivo models. Methods: Inhibition of cell proliferation after incubation of RPMI8226 cell line with increasing activities (0.185-3.7 kBq/ml) of 212Pb-isotypic control or 212Pb-Daratumumab was evaluated. Biodistribution was performed in vivo by SPECT-CT imaging and post-mortem. Dose range finding (DRF) and acute toxicity studies were conducted. As Daratumumab does not bind the murine CD38, biodistribution and DRF were also determined using an anti-murine CD38 antibody. To evaluate in vivo efficacy of 212Pb-Daratumumab, mice were engrafted subcutaneously with 5.106 RPMI8226 cells. Mice were treated 13 days post-engraftment with an intravenous injection of 212Pb-Daratumumab or control solutions. Therapeutic efficacy was monitored by tumor volume measurements and overall survival. Results: Significant inhibition of proliferation of the human myeloma RPMI8226 cell line was observed after three days of incubation with 212Pb-Daratumumab compared to 212Pb-Isotypic Control or cold antibodies. Biodistribution studies showed a specific tumoral accumulation of Daratumumab. No toxicity was observed with 212Pb-Daratumumab up to 370 kBq due to the lack of cross-reactivity. Nevertheless, acute toxicity experiments with 212Pb-anti-mCD38 established a toxic activity of 277.5 kBq. To remain within realistically safe treatment activities for efficacy studies, mice were treated with 185 kBq or 277.5 kBq of 212Pb-Daratumumab. Marked tumor growth inhibition compared to controls was observed, with a median survival of 55 days for 277.5 kBq of 212Pb-Daratumumab instead of 11 for PBS control groups. Conclusion: These results showed 212Pb-Daratumumab efficacy on xenografted mice with significant tumor regression and increased survival. This study highlights alpha-RIT potency in MM treatment.




alp

Clinical Translation of a 68Ga-labeled Integrin {alpha}v{beta}6-targeting Cyclic Radiotracer for PET Imaging of Pancreatic Cancer

The overexpression of integrin αvβ6 in pancreatic cancer makes it a promising target for noninvasive positron emission tomography (PET) imaging. However, currently, most integrin αvβ6-targeting radiotracers are based on linear peptides, which are quickly degraded in the serum by proteinases. Herein, we aimed to develop and assess a 68Ga-labeled integrin αvβ6-targeting cyclic peptide (68Ga-cycratide) for PET imaging of pancreatic cancer. Methods: 68Ga-cycratide was prepared, and its PET imaging profile was compared with that of the linear peptide (68Ga-linear-pep) in an integrin αvβ6-positive BxPC-3 human pancreatic cancer mouse model. Five healthy volunteers (two women and three men) underwent whole-body PET/CT imaging after injection of 68Ga-cycratide, and biodistribution and dosimetry calculations were determined. PET/CT imaging of two patients was performed to investigate the potential role of 68Ga-cycratide in pancreatic cancer diagnosis and treatment monitoring. Results: 68Ga-cycratide exhibited significantly higher tumor uptake than did 68Ga-linear-pep in BxPC-3 tumor-bearing mice, owing—at least in part—to markedly improved in vivo stability. 68Ga-cycratide could sensitively detect the pancreatic cancer lesions in an orthotopic mouse model and was well tolerated in all healthy volunteers. Preliminary PET/CT imaging in patients with pancreatic cancer demonstrated that 68Ga-cycratide was comparable to 18F-fludeoxyglucose for diagnostic imaging and post-surgery tumor relapse monitoring. Conclusion: 68Ga-cycratide is an integrin αvβ6-specific PET radiotracer with favorable pharmacokinetics and dosimetry profile. 68Ga-cycratide is expected to provide an effective noninvasive PET strategy for pancreatic cancer lesion detection and therapy response monitoring.




alp

Deletion of fatty acid transport protein 2 (FATP2) in the mouse liver changes the metabolic landscape by increasing the expression of PPAR{alpha}-regulated genes [Lipids]

Fatty acid transport protein 2 (FATP2) is highly expressed in the liver, small intestine, and kidney, where it functions in both the transport of exogenous long-chain fatty acids and the activation of very-long-chain fatty acids. Here, using a murine model, we investigated the phenotypic impacts of deleting FATP2, followed by a transcriptomic analysis using unbiased RNA-Seq to identify concomitant changes in the liver transcriptome. WT and FATP2-null (Fatp2−/−) mice (5 weeks) were maintained on a standard chow diet for 6 weeks. The Fatp2−/− mice had reduced weight gain, lowered serum triglyceride, and increased serum cholesterol levels and attenuated dietary fatty acid absorption. Transcriptomic analysis of the liver revealed 258 differentially expressed genes in male Fatp2−/− mice and a total of 91 in female Fatp2−/− mice. These genes mapped to the following gene ontology categories: fatty acid degradation, peroxisome biogenesis, fatty acid synthesis, and retinol and arachidonic acid metabolism. Targeted RT-quantitative PCR verified the altered expression of selected genes. Of note, most of the genes with increased expression were known to be regulated by peroxisome proliferator–activated receptor α (PPARα), suggesting that FATP2 activity is linked to a PPARα-specific proximal ligand. Targeted metabolomic experiments in the Fatp2−/− liver revealed increases of total C16:0, C16:1, and C18:1 fatty acids; increases in lipoxin A4 and prostaglandin J2; and a decrease in 20-hydroxyeicosatetraenoic acid. We conclude that the expression of FATP2 in the liver broadly affects the metabolic landscape through PPARα, indicating that FATP2 provides an important role in liver lipid metabolism through its transport or activation activities.




alp

Human Hepatocyte Nuclear Factor 4-{alpha} Encodes Isoforms with Distinct Transcriptional Functions [Research]

HNF4α is a nuclear receptor produced as 12 isoforms from two promoters by alternative splicing. To characterize the transcriptional capacities of all 12 HNF4α isoforms, stable lines expressing each isoform were generated. The entire transcriptome associated with each isoform was analyzed as well as their respective interacting proteome. Major differences were noted in the transcriptional function of these isoforms. The α1 and α2 isoforms were the strongest regulators of gene expression whereas the α3 isoform exhibited significantly reduced activity. The α4, α5, and α6 isoforms, which use an alternative first exon, were characterized for the first time, and showed a greatly reduced transcriptional potential with an inability to recognize the consensus response element of HNF4α. Several transcription factors and coregulators were identified as potential specific partners for certain HNF4α isoforms. An analysis integrating the vast amount of omics data enabled the identification of transcriptional regulatory mechanisms specific to certain HNF4α isoforms, hence demonstrating the importance of considering all isoforms given their seemingly diverse functions.




alp

UK Tech Weekly Podcast - Episode Six: The Internet of Board Games (IoBG) + The Budget & AlphaGo

In this week's UK Tech Weekly Podcast host Matt Egan is joined by first time podder Tamlin Magee (1:50), online editor at ComputerworldUK.com, to discuss the UK tech implications of this year's Budget, including rural broadband and driverless cars. Then Christina Mercer, assistant online editor at Techworld.com, chats AlphaGo (10:00) and board games following the AI's historic win over world Go champion Lee Sedol. Later, resident Virtual Reality (VR) enthusiast and PCAdvisor.co.uk staff writer Lewis Painter discussed "the big three" VR headset release dates, pricing and features from HTC, Sony Playstation and Oculus Rift (19:00). Finally, UKTW Podcast regular David Price, acting editor at Macworld.co.uk chats about Apple's big upcoming event (28:45).  


See acast.com/privacy for privacy and opt-out information.




alp

A nematode sterol C4{alpha}-methyltransferase catalyzes a new methylation reaction responsible for sterol diversity [Research Articles]

Primitive sterol evolution plays an important role in fossil record interpretation and offers potential therapeutic avenues for human disease resulting from nematode infections. Recognizing that C4-methyl stenol products [8(14)-lophenol] can be synthesized in bacteria while C4-methyl stanol products (dinosterol) can be synthesized in dinoflagellates and preserved as sterane biomarkers in ancient sedimentary rock is key to eukaryotic sterol evolution. In this regard, nematodes have been proposed to convert dietary cholesterol to 8(14)-lophenol by a secondary metabolism pathway that could involve sterol C4 methylation analogous to the C2 methylation of hopanoids (radicle-type mechanism) or C24 methylation of sterols (carbocation-type mechanism). Here, we characterized dichotomous cholesterol metabolic pathways in Caenorhabditis elegans that generate 3-oxo sterol intermediates in separate paths to lophanol (4-methyl stanol) and 8(14)-lophenol (4-methyl stenol). We uncovered alternate C3-sterol oxidation and 7 desaturation steps that regulate sterol flux from which branching metabolite networks arise, while lophanol/8(14)-lophenol formation is shown to be dependent on a sterol C4α-methyltransferse (4-SMT) that requires 3-oxo sterol substrates and catalyzes a newly discovered 3-keto-enol tautomerism mechanism linked to S-adenosyl-l-methionine-dependent methylation. Alignment-specific substrate-binding domains similarly conserved in 4-SMT and 24-SMT enzymes, despite minimal amino acid sequence identity, suggests divergence from a common, primordial ancestor in the evolution of methyl sterols. The combination of these results provides evolutionary leads to sterol diversity and points to cryptic C4-methyl steroidogenic pathways of targeted convergence that mediate lineage-specific adaptations.­­




alp

Pathogenic Role of PPAR{alpha} Down-Regulation in Corneal Nerve Degeneration and Impaired Corneal Sensitivity in Diabetes

The purpose of this study was to investigate the protective role of Peroxisome Proliferator-Activated Receptor-alpha (PPARα) against diabetic keratopathy and corneal neuropathy. Corneal samples were obtained from diabetic and non-diabetic human donors. Streptozotocin-induced diabetic rats and mice were orally treated with PPARα agonist fenofibrate. As shown by immunohistochemistry and Western blotting, PPARα was down-regulated in the corneas of diabetic humans and rats. Immunostaining of β-III tubulin demonstrated that corneal nerve fiber metrics were decreased significantly in diabetic rats and mice, which was partially prevented by fenofibrate treatment. As evaluated using a Cochet-Bonnet aesthesiometer, corneal sensitivity was significantly decreased in diabetic mice, which was prevented by fenofibrate. PPARα-/- mice displayed progressive decreases in the corneal nerve fiber density. Consistently, corneal sensitivity was decreased in PPARα-/- mice relative to wild-type mice by nine months of age. Diabetic mice showed increased incidence of spontaneous corneal epithelial lesion, which was prevented by fenofibrate while exacerbated by PPARα knockout. Western blot analysis revealed significantly altered neurotrophic factor levels in diabetic rat corneas, which were partially restored by fenofibrate treatment. These results indicate that PPARα protects corneal nerve from degeneration induced by diabetes, and PPARα agonists have therapeutic potential in the treatment of diabetic keratopathy.




alp

Central {alpha}-Klotho Suppresses NPY/AgRP Neuron Activity and Regulates Metabolism in Mice

α-Klotho is a circulating factor with well-documented anti-aging properties; however, the central role of α-klotho in metabolism remains largely unexplored. The current study investigated the potential role of central α-klotho to modulate NPY/AgRP neurons, energy balance, and glucose homeostasis. Intracerebroventricular (ICV) administration of α-klotho suppressed food intake, improved glucose profiles, and reduced body weight in mouse models of Type I and II diabetes. Furthermore, central α-klotho inhibition via an anti-α-klotho antibody impaired glucose tolerance. Ex vivo patch clamp electrophysiology and immunohistochemical analysis revealed that α-klotho suppresses NPY/AgRP neuron activity, at least in part, by enhancing mIPSC’s. Experiments in hypothalamic GT1-7 cells observed α-klotho induces phosphorylation of AKTser473, ERKthr202/tyr204, and FOXO1ser256, as well as blunts AgRP gene transcription. Mechanistically, fibroblast growth factor 1 (FGFR1) inhibition abolished the downstream signaling of α-klotho, negated its ability to modulate NPY/AgRP neurons, and blunted its therapeutic effects. PI3 kinase inhibition also abolished α-klotho’s ability to suppress food intake and improve glucose clearance. These results indicate a prominent role of hypothalamic α-klotho/FGFR1/PI3K signaling in the modulation of NPY/AgRP neuron activity and maintenance of energy homeostasis, thus providing new insight into the pathophysiology of metabolic disease.




alp

Motifs of Three HLA-DQ Amino Acid Residues ({alpha}44, {beta}57, {beta}135) Capture Full Association with the Risk of Type 1 Diabetes in DQ2 and DQ8 Children

HLA-DQA1 and -DQB1 are strongly associated with type 1 diabetes (T1D), and DQ8.1 and DQ2.5 are major risk haplotypes. Next generation targeted sequencing of HLA-DQA1 and -DQB1 in Swedish newly diagnosed 1-18 year-old patients (n=962) and controls (n=636) was used to construct abbreviated DQ haplotypes, converted into amino acid (AA) residues, and assessed for their associations with T1D. A hierarchically-organized haplotype (HOH) association analysis, allowed 45 unique DQ haplotypes to be categorized into seven clusters. The DQ8/9 cluster included two DQ8.1 risk and the DQ9 resistant haplotypes, and the DQ2 cluster, included the DQ2.5 risk and DQ2.2 resistant haplotypes. Within each cluster, HOH found residues α44Q (OR 3.29, p=2.38*10-85 ) and β57A (OR 3.44, p=3.80*10-84) to be associated with T1D in the DQ8/9 cluster representing all ten residues (α22, α23, α44, α49, α51, α53, α54, α73, α184, β57) due to complete linkage-disequilibrium (LD) of α44 with eight such residues. Within the DQ2 cluster and due to LD, HOH analysis found α44C and β135D to share the risk for T1D (OR 2.10, p=1.96*10-20). The motif "QAD" of α44, β57, and β135 captured the T1D risk association of DQ8.1 (OR 3.44, p=3.80*10-84), the corresponding motif "CAD" captured the risk association of DQ2.5 (OR 2.10, p=1.96*10-20). Two risk associations were related to GADA and IA-2A, but in opposite directions. "CAD" was positively associated with GADA (OR 1.56; p=6.35*10-8) but negatively with IA-2A (OR 0.59, p= 6.55*10-11). "QAD" was negatively associated with GADA (OR 0.88; p= 3.70*10-3) but positively with IA-2A (OR 1.64; p= 2.40*10-14), despite a single difference at α44. The residues are found in and around anchor pockets 1 and 9, as potential TCR contacts, in the areas for CD4 binding and putative homodimer formation. The identification of three HLA-DQ AA (α44, β57, β135) conferring T1D risk should sharpen functional and translational studies.




alp

The focal adhesion protein kindlin-2 controls mitotic spindle assembly by inhibiting histone deacetylase 6 and maintaining {alpha}-tubulin acetylation [Signal Transduction]

Kindlins are focal adhesion proteins that regulate integrin activation and outside-in signaling. The kindlin family consists of three members, kindlin-1, -2, and -3. Kindlin-2 is widely expressed in multiple cell types, except those from the hematopoietic lineage. A previous study has reported that the Drosophila Fit1 protein (an ortholog of kindlin-2) prevents abnormal spindle assembly; however, the mechanism remains unknown. Here, we show that kindlin-2 maintains spindle integrity in mitotic human cells. The human neuroblastoma SH-SY5Y cell line expresses only kindlin-2, and we found that when SH-SY5Y cells are depleted of kindlin-2, they exhibit pronounced spindle abnormalities and delayed mitosis. Of note, acetylation of α-tubulin, which maintains microtubule flexibility and stability, was diminished in the kindlin-2–depleted cells. Mechanistically, we found that kindlin-2 maintains α-tubulin acetylation by inhibiting the microtubule-associated deacetylase histone deacetylase 6 (HDAC6) via a signaling pathway involving AKT Ser/Thr kinase (AKT)/glycogen synthase kinase 3β (GSK3β) or paxillin. We also provide evidence that prolonged hypoxia down-regulates kindlin-2 expression, leading to spindle abnormalities not only in the SH-SY5Y cell line, but also cell lines derived from colon and breast tissues. The findings of our study highlight that kindlin-2 regulates mitotic spindle assembly and that this process is perturbed in cancer cells in a hypoxic environment.




alp

Glycation-mediated inter-protein cross-linking is promoted by chaperone-client complexes of {alpha}-crystallin: Implications for lens aging and presbyopia [Glycobiology and Extracellular Matrices]

Lens proteins become increasingly cross-linked through nondisulfide linkages during aging and cataract formation. One mechanism that has been implicated in this cross-linking is glycation through formation of advanced glycation end products (AGEs). Here, we found an age-associated increase in stiffness in human lenses that was directly correlated with levels of protein–cross-linking AGEs. α-Crystallin in the lens binds to other proteins and prevents their denaturation and aggregation through its chaperone-like activity. Using a FRET-based assay, we examined the stability of the αA-crystallin–γD-crystallin complex for up to 12 days and observed that this complex is stable in PBS and upon incubation with human lens–epithelial cell lysate or lens homogenate. Addition of 2 mm ATP to the lysate or homogenate did not decrease the stability of the complex. We also generated complexes of human αA-crystallin or αB-crystallin with alcohol dehydrogenase or citrate synthase by applying thermal stress. Upon glycation under physiological conditions, the chaperone–client complexes underwent greater extents of cross-linking than did uncomplexed protein mixtures. LC-MS/MS analyses revealed that the levels of cross-linking AGEs were significantly higher in the glycated chaperone–client complexes than in glycated but uncomplexed protein mixtures. Mouse lenses subjected to thermal stress followed by glycation lost resilience more extensively than lenses subjected to thermal stress or glycation alone, and this loss was accompanied by higher protein cross-linking and higher cross-linking AGE levels. These results uncover a protein cross-linking mechanism in the lens and suggest that AGE-mediated cross-linking of α-crystallin–client complexes could contribute to lens aging and presbyopia.




alp

Tumor Necrosis Factor {alpha}: A Key Component of the Obesity-Diabetes Link

Gökhan S Hotamisligil
Nov 1, 1994; 43:1271-1278
Perspectives in Diabetes




alp

Lipid-Induced Insulin Resistance in Human Muscle Is Associated With Changes in Diacylglycerol, Protein Kinase C, and I{kappa}B-{alpha}

Samar I. Itani
Jul 1, 2002; 51:2005-2011
Rapid Publications




alp

Plasma and Dietary Linoleic Acid and 3-Year Risk of Type 2 Diabetes After Myocardial Infarction: A Prospective Analysis in the Alpha Omega Cohort

OBJECTIVE

To study plasma and dietary linoleic acid (LA) in relation to type 2 diabetes risk in post–myocardial infarction (MI) patients.

RESEARCH DESIGN AND METHODS

We included 3,257 patients aged 60–80 years (80% male) with a median time since MI of 3.5 years from the Alpha Omega Cohort and who were initially free of type 2 diabetes. At baseline (2002–2006), plasma LA was measured in cholesteryl esters, and dietary LA was estimated with a 203-item food-frequency questionnaire. Incident type 2 diabetes was ascertained through self-reported physician diagnosis and medication use. Hazard ratios (with 95% CIs) were calculated by Cox regressions, in which dietary LA isocalorically replaced the sum of saturated (SFA) and trans fatty acids (TFA).

RESULTS

Mean ± SD circulating and dietary LA was 50.1 ± 4.9% and 5.9 ± 2.1% energy, respectively. Plasma and dietary LA were weakly correlated (Spearman r = 0.13, P < 0.001). During a median follow-up of 41 months, 171 patients developed type 2 diabetes. Plasma LA was inversely associated with type 2 diabetes risk (quintile [Q]5 vs. Q1: 0.44 [0.26, 0.75]; per 5%: 0.73 [0.62, 0.86]). Substitution of dietary LA for SFA+TFA showed no association with type 2 diabetes risk (Q5 vs. Q1: 0.78 [0.36, 1.72]; per 5% energy: 1.18 [0.59, 2.35]). Adjustment for markers of de novo lipogenesis attenuated plasma LA associations.

CONCLUSIONS

In our cohort of post-MI patients, plasma LA was inversely related to type 2 diabetes risk, whereas dietary LA was not related. Further research is needed to assess whether plasma LA indicates metabolic state rather than dietary LA in these patients.




alp

Mango Alphonso Recipe

This recipe for Mango Alphonso featured on Foodie Tuesday, a weekly segment with Raf Epsteion on Drive, 774 ABC Melbourne, 3.30PM, courtesy of Christy Tania, head chef at the Aldelphi Hotel's Om Nom restaurant.




alp

[Wellcome MS Hindi (Indic) alpha 1460]

1769




alp

Des maladies foetales qui peuvent faire obstacle à l'accouchement : thèse ... / par Alphonse Herrgott.

Paris : O. Doin, 1878.




alp

Die methodische Intestinalpalpation mittels der topographischen Gleit- und Tiefenpalpation und ihre Ergebnisse / von Dr. Theodor Hausmann.

Berlin : Karger, 1910.




alp

Die Schwindsucht im Lichte der Statistik und Socialpolitik : mit besonderer Berücksichtigung der staatlichen und privaten Versicherung ; eine Arbeit aus dem königlichen Versicherungsseminar der Universität Göttingen / von Wilhelm Kley.

Leipzig : Duncker & Humblot, 1898.




alp

Du palper abdominal appliqué à la recherche du volume du foetus par rapport aux dimensions du bassin (palper mensurateur) / par Albert Le Cudennec.

Paris : G. Steinheil, 1891.




alp

Cupid learning to read the letters of the alphabet. Engraving after A. Allegri, il Corrreggio.

[London] (at the Historic Gallery, 87 Pall Mall) : Pub.d by Mr Stone.




alp

The ARMA alphabet soup: A tour of ARMA model variants

Scott H. Holan, Robert Lund, Ginger Davis

Source: Statist. Surv., Volume 4, 232--274.

Abstract:
Autoregressive moving-average (ARMA) difference equations are ubiquitous models for short memory time series and have parsimoniously described many stationary series. Variants of ARMA models have been proposed to describe more exotic series features such as long memory autocovariances, periodic autocovariances, and count support set structures. This review paper enumerates, compares, and contrasts the common variants of ARMA models in today’s literature. After the basic properties of ARMA models are reviewed, we tour ARMA variants that describe seasonal features, long memory behavior, multivariate series, changing variances (stochastic volatility) and integer counts. A list of ARMA variant acronyms is provided.

References:
Aknouche, A. and Guerbyenne, H. (2006). Recursive estimation of GARCH models. Communications in Statistics-Simulation and Computation 35 925–938.

Alzaid, A. A. and Al-Osh, M. (1990). An integer-valued pth-order autoregressive structure (INAR (p)) process. Journal of Applied Probability 27 314–324.

Anderson, P. L., Tesfaye, Y. G. and Meerschaert, M. M. (2007). Fourier-PARMA models and their application to river flows. Journal of Hydrologic Engineering 12 462–472.

Ansley, C. F. (1979). An algorithm for the exact likelihood of a mixed autoregressive-moving average process. Biometrika 66 59–65.

Basawa, I. V. and Lund, R. (2001). Large sample properties of parameter estimates for periodic ARMA models. Journal of Time Series Analysis 22 651–663.

Bauwens, L., Laurent, S. and Rombouts, J. V. K. (2006). Multivariate GARCH models: A survey. Journal of Applied Econometrics 21 79–109.

Bertelli, S. and Caporin, M. (2002). A note on calculating autocovariances of long-memory processes. Journal of Time Series Analysis 23 503–508.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31 307–327.

Bollerslev, T. (2008). Glossary to ARCH (GARCH). CREATES Research Paper 2008-49.

Bollerslev, T., Engle, R. F. and Wooldridge, J. M. (1988). A capital asset pricing model with time-varying covariances. The Journal of Political Economy 96 116–131.

Bondon, P. and Palma, W. (2007). A class of antipersistent processes. Journal of Time Series Analysis 28 261–273.

Bougerol, P. and Picard, N. (1992). Strict stationarity of generalized autoregressive processes. The Annals of Probability 20 1714–1730.

Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (2008). Time Series Analysis: Forecasting and Control, 4th ed. Wiley, New Jersey.

Breidt, F. J., Davis, R. A. and Trindade, A. A. (2001). Least absolute deviation estimation for all-pass time series models. Annals of Statistics 29 919–946.

Brockwell, P. J. (1994). On continuous-time threshold ARMA processes. Journal of Statistical Planning and Inference 39 291–303.

Brockwell, P. J. (2001). Continuous-time ARMA processes. In Stochastic Processes: Theory and Methods, ( D. N. Shanbhag and C. R. Rao, eds.). Handbook of Statistics 19 249–276. Elsevier.

Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods, 2nd ed. Springer, New York.

Brockwell, P. J. and Davis, R. A. (2002). Introduction to Time Series and Forecasting, 2nd ed. Springer, New York.

Brockwell, P. J. and Marquardt, T. (2005). Lèvy-driven and fractionally integrated ARMA processes with continuous-time paramaters. Statistica Sinica 15 477–494.

Chan, K. S. (1990). Testing for threshold autoregression. Annals of Statistics 18 1886–1894.

Chan, N. H. (2002). Time Series: Applications to Finance. John Wiley & Sons, New York.

Chan, N. H. and Palma, W. (1998). State space modeling of long-memory processes. Annals of Statistics 26 719–740.

Chan, N. H. and Palma, W. (2006). Estimation of long-memory time series models: A survey of different likelihood-based methods. Advances in Econometrics 20 89–121.

Chatfield, C. (2003). The Analysis of Time Series: An Introduction, 6th ed. Chapman & Hall/CRC, Boca Raton.

Chen, W., Hurvich, C. M. and Lu, Y. (2006). On the correlation matrix of the discrete Fourier transform and the fast solution of large Toeplitz systems for long-memory time series. Journal of the American Statistical Association 101 812–822.

Chernick, M. R., Hsing, T. and McCormick, W. P. (1991). Calculating the extremal index for a class of stationary sequences. Advances in Applied Probability 23 835–850.

Chib, S., Nardari, F. and Shephard, N. (2006). Analysis of high dimensional multivariate stochastic volatility models. Journal of Econometrics 134 341–371.

Cryer, J. D. and Chan, K. S. (2008). Time Series Analysis: With Applications in R. Springer, New York.

Cui, Y. and Lund, R. (2009). A new look at time series of counts. Biometrika 96 781–792.

Davis, R. A., Dunsmuir, W. T. M. and Wang, Y. (1999). Modeling time series of count data. In Asymptotics, Nonparametrics and Time Series, ( S. Ghosh, ed.). Statistics Textbooks Monograph 63–113. Marcel Dekker, New York.

Davis, R. A., Dunsmuir, W. and Streett, S. B. (2003). Observation-driven models for Poisson counts. Biometrika 90 777–790.

Davis, R. A. and Resnick, S. I. (1996). Limit theory for bilinear processes with heavy-tailed noise. The Annals of Applied Probability 6 1191–1210.

Deistler, M. and Hannan, E. J. (1981). Some properties of the parameterization of ARMA systems with unknown order. Journal of Multivariate Analysis 11 474–484.

Dufour, J. M. and Jouini, T. (2005). Asymptotic distribution of a simple linear estimator for VARMA models in echelon form. Statistical Modeling and Analysis for Complex Data Problems 209–240.

Dunsmuir, W. and Hannan, E. J. (1976). Vector linear time series models. Advances in Applied Probability 8 339–364.

Durbin, J. and Koopman, S. J. (2001). Time Series Analysis by State Space Methods. Oxford University Press, Oxford.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50 987–1007.

Engle, R. F. (2002). Dynamic conditional correlation. Journal of Business and Economic Statistics 20 339–350.

Engle, R. F. and Bollerslev, T. (1986). Modelling the persistence of conditional variances. Econometric Reviews 5 1–50.

Fuller, W. A. (1996). Introduction to Statistical Time Series, 2nd ed. John Wiley & Sons, New York.

Geweke, J. and Porter-Hudak, S. (1983). The estimation and application of long memory time series models. Journal of Time Series Analysis 4 221–238.

Gladyšhev, E. G. (1961). Periodically correlated random sequences. Soviet Math 2 385–388.

Granger, C. W. J. (1982). Acronyms in time series analysis (ATSA). Journal of Time Series Analysis 3 103–107.

Granger, C. W. J. and Andersen, A. P. (1978). An Introduction to Bilinear Time Series Models. Vandenhoeck and Ruprecht Göttingen.

Granger, C. W. J. and Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis 1 15–29.

Gray, H. L., Zhang, N. F. and Woodward, W. A. (1989). On generalized fractional processes. Journal of Time Series Analysis 10 233–257.

Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press, Princeton, New Jersey.

Hannan, E. J. (1955). A test for singularities in Sydney rainfall. Australian Journal of Physics 8 289–297.

Hannan, E. J. (1969). The identification of vector mixed autoregressive-moving average system. Biometrika 56 223–225.

Hannan, E. J. (1970). Multiple Time Series. John Wiley & Sons, New York.

Hannan, E. J. (1976). The identification and parameterization of ARMAX and state space forms. Econometrica 44 713–723.

Hannan, E. J. (1979). The Statistical Theory of Linear Systems. In Developments in Statistics ( P. R. Krishnaiah, ed.) 83–121. Academic Press, New York.

Hannan, E. J. and Deistler, M. (1987). The Statistical Theory of Linear Systems. John Wiley & Sons, New York.

Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press, Cambridge.

Haslett, J. and Raftery, A. E. (1989). Space-time modelling with long-memory dependence: Assessing Ireland’s wind power resource. Applied Statistics 38 1–50.

Hosking, J. R. M. (1981). Fractional differencing. Biometrika 68 165–176.

Hui, Y. V. and Li, W. K. (1995). On fractionally differenced periodic processes. Sankhyā: The Indian Journal of Statistics, Series B 57 19–31.

Jacobs, P. A. and Lewis, P. A. W. (1978a). Discrete time series generated by mixtures. I: Correlational and runs properties. Journal of the Royal Statistical Society. Series B (Methodological) 40 94–105.

Jacobs, P. A. and Lewis, P. A. W. (1978b). Discrete time series generated by mixtures II: Asymptotic properties. Journal of the Royal Statistical Society. Series B (Methodological) 40 222–228.

Jacobs, P. A. and Lewis, P. A. W. (1983). Stationary discrete autoregressive-moving average time series generated by mixtures. Journal of Time Series Analysis 4 19–36.

Jones, R. H. (1980). Maximum likelihood fitting of ARMA models to time series with missing observations. Technometrics 22 389–395.

Jones, R. H. and Brelsford, W. M. (1967). Time series with periodic structure. Biometrika 54 403–408.

Kedem, B. and Fokianos, K. (2002). Regression Models for Time Series Analysis. John Wiley & Sons, New Jersey.

Ko, K. and Vannucci, M. (2006). Bayesian wavelet-based methods for the detection of multiple changes of the long memory parameter. IEEE Transactions on Signal Processing 54 4461–4470.

Kohn, R. (1979). Asymptotic estimation and hypothesis testing results for vector linear time series models. Econometrica 47 1005–1030.

Kokoszka, P. S. and Taqqu, M. S. (1995). Fractional ARIMA with stable innovations. Stochastic Processes and their Applications 60 19–47.

Kokoszka, P. S. and Taqqu, M. S. (1996). Parameter estimation for infinite variance fractional ARIMA. Annals of Statistics 24 1880–1913.

Lawrance, A. J. and Lewis, P. A. W. (1980). The exponential autoregressive-moving average EARMA(p,q) process. Journal of the Royal Statistical Society. Series B (Methodological) 42 150–161.

Ling, S. and Li, W. K. (1997). On fractionally integrated autoregressive moving-average time series models with conditional heteroscedasticity. Journal of the American Statistical Association 92 1184–1194.

Liu, J. and Brockwell, P. J. (1988). On the general bilinear time series model. Journal of Applied Probability 25 553–564.

Lund, R. and Basawa, I. V. (2000). Recursive prediction and likelihood evaluation for periodic ARMA models. Journal of Time Series Analysis 21 75–93.

Lund, R., Shao, Q. and Basawa, I. (2006). Parsimonious periodic time series modeling. Australian & New Zealand Journal of Statistics 48 33–47.

Lütkepohl, H. (1991). Introduction to Multiple Time Series Analysis. Springer-Verlag, New York.

Lütkepohl, H. (2005). New Introduction to Multiple Time Series Analysis. Springer, New York.

MacDonald, I. L. and Zucchini, W. (1997). Hidden Markov and Other Models for Discrete-Valued Time Series. Chapman & Hall/CRC, Boca Raton.

Mann, H. B. and Wald, A. (1943). On the statistical treatment of linear stochastic difference equations. Econometrica 11 173–220.

Marriott, J., Ravishanker, N., Gelfand, A. and Pai, J. (1996). Bayesian analysis of ARMA processes: Complete sampling-based inference under exact likelihoods. In Bayesian Analysis in Statistics and Econometrics: Essays in Honor of Arnold Zellner ( D. Berry, K. Challoner and J. Geweke, eds.) 243–256. Wiley, New York.

McKenzie, E. (1988). Some ARMA models for dependent sequences of Poisson counts. Advances in Applied Probability 20 822–835.

Mikosch, T. and Starica, C. (2004). Nonstationarities in financial time series, the long-range dependence, and the IGARCH effects. Review of Economics and Statistics 86 378–390.

Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59 347–370.

Nelson, D. B. and Cao, C. Q. (1992). Inequality constraints in the univariate GARCH model. Journal of Business and Economic Statistics 10 229–235.

Ooms, M. and Franses, P. H. (2001). A seasonal periodic long memory model for monthly river flows. Environmental Modelling & Software 16 559–569.

Pagano, M. (1978). On periodic and multiple autoregressions. Annals of Statistics 6 1310–1317.

Pai, J. S. and Ravishanker, N. (1998). Bayesian analysis of autoregressive fractionally integrated moving-average processes. Journal of Time Series Analysis 19 99–112.

Palma, W. (2007). Long-Memory Time Series: Theory and Methods. John Wiley & Sons, New Jersey.

Palma, W. and Chan, N. H. (2005). Efficient estimation of seasonal long-range-dependent processes. Journal of Time Series Analysis 26 863–892.

Pfeifer, P. E. and Deutsch, S. J. (1980). A three-stage iterative procedure for space-time modeling. Technometrics 22 35–47.

Prado, R. and West, M. (2010). Time Series Modeling, Computation and Inference. Chapman & Hall/CRC, Boca Raton.

Quoreshi, A. M. M. S. (2008). A long memory count data time series model for financial application. Preprint.

R Development Core Team, (2010). R: A Language and Environment for Statistical Computing. http://www.R-project.org.

Ravishanker, N. and Ray, B. K. (1997). Bayesian analysis of vector ARMA models using Gibbs sampling. Journal of Forecasting 16 177–194.

Ravishanker, N. and Ray, B. K. (2002). Bayesian prediction for vector ARFIMA processes. International Journal of Forecasting 18 207–214.

Reinsel, G. C. (1997). Elements of Multivariate Time Series Analysis. Springer, New York.

Resnick, S. I. and Willekens, E. (1991). Moving averages with random coefficients and random coefficient autoregressive models. Communications in Statistics. Stochastic Models 7 511–525.

Rootzén, H. (1986). Extreme value theory for moving average processes. The Annals of Probability 14 612–652.

Scotto, M. G. (2007). Extremes for solutions to stochastic difference equations with regularly varying tails. REVSTAT–Statistical Journal 5 229–247.

Shao, Q. and Lund, R. (2004). Computation and characterization of autocorrelations and partial autocorrelations in periodic ARMA models. Journal of Time Series Analysis 25 359–372.

Shumway, R. H. and Stoffer, D. S. (2006). Time Series Analysis and its Applications: With R Examples, 2nd ed. Springer, New York.

Silvennoinen, A. and Teräsvirta, T. (2009). Multivariate GARCH models. In Handbook of Financial Time Series ( T. Andersen, R. Davis, J. Kreib, and T. Mikosch, eds.) Springer, New York.

Sowell, F. (1992). Maximum likelihood estimation of stationary univariate fractionally integrated time series models. Journal of Econometrics 53 165–188.

Startz, R. (2008). Binomial autoregressive moving average models with an application to U.S. recessions. Journal of Business and Economic Statistics 26 1–8.

Stramer, O., Tweedie, R. L. and Brockwell, P. J. (1996). Existence and stability of continuous time threshold ARMA processes. Statistica Sinica 6 715–732.

Subba Rao, T. (1981). On the theory of bilinear time series models. Journal of the Royal Statistical Society. Series B (Methodological) 43 244–255.

Tong, H. and Lim, K. S. (1980). Threshold autoregression, limit cycles and cyclical data. Journal of the Royal Statistical Society. Series B (Methodological) 42 245–292.

Troutman, B. M. (1979). Some results in periodic autoregression. Biometrika 66 219–228.

Tsai, H. (2009). On continuous-time autoregressive fractionally integrated moving average processes. Bernoulli 15 178–194.

Tsai, H. and Chan, K. S. (2000). A note on the covariance structure of a continuous-time ARMA process. Statistica Sinica 10 989–998.

Tsai, H. and Chan, K. S. (2005). Maximum likelihood estimation of linear continuous time long memory processes with discrete time data. Journal of the Royal Statistical Society. Series B (Statistical Methodology) 67 703–716.

Tsai, H. and Chan, K. S. (2008). A note on inequality constraints in the GARCH model. Econometric Theory 24 823–828.

Tsay, R. S. (1989). Parsimonious parameterization of vector autoregressive moving average models. Journal of Business and Economic Statistics 7 327–341.

Tunnicliffe-Wilson, G. (1979). Some efficient computational procedures for high order ARMA models. Journal of Statistical Computation and Simulation 8 301–309.

Ursu, E. and Duchesne, P. (2009). On modelling and diagnostic checking of vector periodic autoregressive time series models. Journal of Time Series Analysis 30 70–96.

Vecchia, A. V. (1985a). Maximum likelihood estimation for periodic autoregressive moving average models. Technometrics 27 375–384.

Vecchia, A. V. (1985b). Periodic autoregressive-moving average (PARMA) modeling with applications to water resources. Journal of the American Water Resources Association 21 721–730.

Vidakovic, B. (1999). Statistical Modeling by Wavelets. John Wiley & Sons, New York.

West, M. and Harrison, J. (1997). Bayesian Forecasting and Dynamic Models, 2nd ed. Springer, New York.

Wold, H. (1954). A Study in the Analysis of Stationary Time Series. Almquist & Wiksell, Stockholm.

Woodward, W. A., Cheng, Q. C. and Gray, H. L. (1998). A k-factor GARMA long-memory model. Journal of Time Series Analysis 19 485–504.

Zivot, E. and Wang, J. (2006). Modeling Financial Time Series with S-PLUS, 2nd ed. Springer, New York.




alp

{alpha}-Band Electroencephalographic Activity over Occipital Cortex Indexes Visuospatial Attention Bias and Predicts Visual Target Detection

Gregor Thut
Sep 13, 2006; 26:9494-9502
BehavioralSystemsCognitive




alp

Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium

P Seguela
Feb 1, 1993; 13:596-604
Articles




alp

STATEMENTS 0029 TO MY GOOD AND LOYAL SUBJECTS AND 0063 AFTER RECENT SURGERY ON MY SCALP.html U




alp

statements 0029 to my good and loyal subjects and 0063 after recent surgery on my scalp




alp

Alpha Activity Reflects the Magnitude of an Individual Bias in Human Perception

Biases in sensory perception can arise from both experimental manipulations and personal trait-like features. These idiosyncratic biases and their neural underpinnings are often overlooked in studies on the physiology underlying perception. A potential candidate mechanism reflecting such idiosyncratic biases could be spontaneous alpha band activity, a prominent brain rhythm known to influence perceptual reports in general. Using a temporal order judgment task, we here tested the hypothesis that alpha power reflects the overcoming of an idiosyncratic bias. Importantly, to understand the interplay between idiosyncratic biases and contextual (temporary) biases induced by experimental manipulations, we quantified this relation before and after temporal recalibration. Using EEG recordings in human participants (male and female), we find that prestimulus frontal alpha power correlates with the tendency to respond relative to an own idiosyncratic bias, with stronger α leading to responses matching the bias. In contrast, alpha power does not predict response correctness. These results also hold after temporal recalibration and are specific to the alpha band, suggesting that alpha band activity reflects, directly or indirectly, processes that help to overcome an individual's momentary bias in perception. We propose that combined with established roles of parietal α in the encoding of sensory information frontal α reflects complementary mechanisms influencing perceptual decisions.

SIGNIFICANCE STATEMENT The brain is a biased organ, frequently generating systematically distorted percepts of the world, leading each of us to evolve in our own subjective reality. However, such biases are often overlooked or considered noise when studying the neural mechanisms underlying perception. We show that spontaneous alpha band activity predicts the degree of biasedness of human choices in a time perception task, suggesting that alpha activity indexes processes needed to overcome an individual's idiosyncratic bias. This result provides a window onto the neural underpinnings of subjective perception, and offers the possibility to quantify or manipulate such priors in future studies.




alp

Calcineurin Inhibition Causes {alpha}2{delta}-1-Mediated Tonic Activation of Synaptic NMDA Receptors and Pain Hypersensitivity

Calcineurin inhibitors, such as tacrolimus (FK506) and cyclosporine, are widely used as standard immunosuppressants in organ transplantation recipients. However, these drugs can cause severe pain in patients, commonly referred to as calcineurin inhibitor-induced pain syndrome (CIPS). Although calcineurin inhibition increases NMDAR activity in the spinal cord, the underlying mechanism remains enigmatic. Using an animal model of CIPS, we found that systemic administration of FK506 in male and female mice significantly increased the amount of α2-1–GluN1 complexes in the spinal cord and the level of α2-1–bound GluN1 proteins in spinal synaptosomes. Treatment with FK506 significantly increased the frequency of mEPSCs and the amplitudes of monosynaptic EPSCs evoked from the dorsal root and puff NMDAR currents in spinal dorsal horn neurons. Inhibiting α2-1 with gabapentin or disrupting the α2-1–NMDAR interaction with α2-1Tat peptide completely reversed the effects of FK506. In α2-1 gene KO mice, treatment with FK506 failed to increase the frequency of NMDAR-mediated mEPSCs and the amplitudes of evoked EPSCs and puff NMDAR currents in spinal dorsal horn neurons. Furthermore, systemic administration of gabapentin or intrathecal injection of α2-1Tat peptide reversed thermal and mechanical hypersensitivity in FK506-treated mice. In addition, genetically deleting GluN1 in dorsal root ganglion neurons or α2-1 genetic KO similarly attenuated FK506-induced thermal and mechanical hypersensitivity. Together, our findings indicate that α2-1–bound NMDARs mediate calcineurin inhibitor-induced tonic activation of presynaptic and postsynaptic NMDARs at the spinal cord level and that presynaptic NMDARs play a prominent role in the development of CIPS.

SIGNIFICANCE STATEMENT Calcineurin inhibitors are immunosuppressants used to prevent rejection of transplanted organs and tissues. However, these drugs can cause severe, unexplained pain. We showed that calcineurin inhibition enhances physical interaction between α2-1 and NMDARs and their synaptic trafficking in the spinal cord. α2-1 is essential for calcineurin inhibitor-induced aberrant activation of presynaptic and postsynaptic NMDARs in the spinal cord. Furthermore, inhibiting α2-1 or disrupting α2-1–NMDAR interaction reduces calcineurin inhibitor-induced pain hypersensitivity. Eliminating NMDARs in primary sensory neurons or α2-1 KO also attenuates calcineurin inhibitor-induced pain hypersensitivity. This new information extends our mechanistic understanding of the role of endogenous calcineurin in regulating synaptic plasticity and nociceptive transmission and suggests new strategies for treating this painful condition.