ni

DISPLAY DEVICE, PROJECTOR, AND COMMUNICATION DEVICE

A projector includes a wireless communication unit which wirelessly receives image data from a transmitting device, and a display unit which displays an image based on the image data received by the wireless communication unit. The wireless communication unit includes a first communication unit which has a first array antenna, and a second communication unit which has a second array antenna. The first communication unit transmits and receives wireless radio waves of a first frequency in a millimeter wave band via the first array antenna, and the second communication unit transmits and receives wireless radio waves of a second frequency in a millimeter wave band that is different from the first frequency via the second array antenna. A plane including the second array antenna is tilted at an angle of 10 degrees or more and 30 degrees or less to a plane including the first array antenna.




ni

Antenna Component and Electronic Device

An antenna and an electronic device are disclosed, which relates to an antenna. The antenna component includes an antenna body, two feed circuits, and at least one ground circuit. The two feed circuits are connected to the antenna body through respective feed points. The at least one ground circuit is connected to the antenna body through respective one of ground points, and at least one of the ground points is located between the two feed points.




ni

FLAT ANTENNA FOR SATELLITE COMMUNICATION

A flat antenna for satellite communication includes a radiating board. The radiating board includes at least one radiating line, and an adapter configured to modify the delay of the fields transmitted or received by the radiating line. The adapter includes a horn mobile in rotation between the two metal plates containing a sensor array. The horn is also mobile in rotation between at least one coaxial cable connected between at least one sensor of the network and the radiating line. The length of the coaxial cable is suitable for introducing a delay required to focus the wave radiated by the radiating line.




ni

FLAT ANTENNA FOR SATELLITE COMMUNICATION

A flat antenna for satellite communication includes a radiating board. The radiating board includes at least one radiating line, and an adapter configured to modify the delay of the fields transmitted or received by the radiating line. The adapter includes a horn mobile in rotation between the two metal plates, and a multilayer power supply circuit. The first layer of the multilayer power supply circuit is formed at least one metal plate containing an array of slot sensors and the last layer of the multilayer power supply circuit is provided with at least one coupling slot connected to the radiating line. The first layer and the last layer is linked by at least one transmission line. The length of the transmission line is suitable for introducing a delay required to focus the wave radiated by the radiating line.




ni

ELECTRONIC COMPONENT

An electronic component is provided, which includes a substrate having opposite first and second surfaces and an antenna structure combined with the substrate. The antenna structure has at least a first extending portion disposed on the first surface of the substrate, at least a second extending portion disposed on the second surface of the substrate, and a plurality of connecting portions disposed in the substrate for electrically connecting the first extending portion and the second extending portion. Any adjacent ones of the connecting portions are connected through one of the first extending portion and the second extending portion. As such, the antenna structure becomes three-dimensional. The present invention does not need to provide an additional region on the substrate for disposing the antenna structure, thereby reducing the width of the substrate so as to meet the miniaturization requirement of the electronic component.




ni

MINIATURIZED PLANAR INVERTED FOLDED ANTENNA (PIFA) FOR MOUNTABLE UHF TAGS DESIGN

A folded planar antenna device for radio frequency identification (RFID) reading is provided. The folded planar antenna device includes an RFID chip, a conductor member comprising a binocular-shaped slot; and a substrate. The conductor member is mounted on the substrate and the substrate is connected to the RFID chip through the binocular-shaped slot. The folded planar antenna device can be mounted on different objects, such as metal, meat, or liquid container, without being completely de-tuned.




ni

WAVEGUIDE DEVICE, SLOT ANTENNA, AND RADAR, RADAR SYSTEM, AND WIRELESS COMMUNICATION SYSTEM INCLUDING THE SLOT ANTENNA

A waveguide device includes a first electrically conductive member having a first electrically conductive surface; a second electrically conductive member having a second electrically conductive surface which opposes the first electrically conductive surface; and a ridge-shaped waveguide member on the second electrically conductive member. The second electrically conductive member has a throughhole which splits the waveguide member into first and second ridges. The first and second ridges each have an electrically conductive end face, the end faces opposing each other via the throughhole. The opposing end faces and the throughhole together define a hollow waveguide. The hollow waveguide is connected to a first waveguide extending between the waveguide face of the first ridge and the first electrically conductive surface, and to a second waveguide extending between the waveguide face of the second ridge and the second electrically conductive surface.




ni

SLOT ARRAY ANTENNA, AND RADAR, RADAR SYSTEM, AND WIRELESS COMMUNICATION SYSTEM INCLUDING THE SLOT ARRAY ANTENNA

A slot array antenna includes: a first conductive member having a first conductive surface and a plurality of slots therein, the slots being arrayed in a first direction and in a second direction which intersects the first direction; a second conductive member having a second conductive surface which opposes the first conductive surface; a plurality of waveguide members arrayed between the first and second conductive members along a direction which intersects the first direction, each waveguide member having an conductive waveguide face which extends along the first direction so as to oppose at least one of the slots; and an artificial magnetic conductor in a subregion which is within a region between the first and second conductive members but outside of a subregion containing the waveguide members. Neither an electric wall nor an artificial magnetic conductor exists in a space between two adjacent waveguide faces among the waveguide members.




ni

LIQUID CRYSTAL DISPLAY DEVICE, MANUFACTURING METHOD OF THE SAME AND ELECTRONIC EQUIPMENT

A liquid crystal display device includes first and second substrates, liquid crystal layer, and first and second spacer sections. The first substrate has a first surface including a light-shielding region in a lattice form and a plurality of opening regions surrounded by the light-shielding region. The light-shielding region includes a plurality of first extended portions extending in a first direction and a plurality of second extended portions extending in a second direction that intersects the first direction. The first substrate has a plurality of transistors formed thereon. The second substrate has a second surface that is opposed to and spaced from the first surface. The liquid crystal layer is arranged between the first and second surfaces. The first spacer section has long sides oriented in the second direction, and the second spacer section has long sides oriented in the first direction. The spacer sections protrude into the liquid crystal layer.




ni

ELECTROOPTIC DEVICE AND ELECTRONIC DEVICE

An electrooptic device includes a liquid crystal panel as an electrooptic panel, a first terminal group provided on the liquid crystal panel, the first terminal group including a plurality of terminals arranged in an X direction, and a second terminal group provided on the liquid crystal panel at a position separated from the first terminal group in a Y direction different from the X direction, the second terminal group including a plurality of terminals arranged in the X direction at a terminal arrangement pitch different from that of the first terminal group.




ni

BACKLIGHT UNIT AND LIQUID CRYSTAL DISPLAY DEVICE INCLUDING THE SAME

A backlight unit includes a bottom cover; a plurality of light sources on the bottom cover; a first support side at an area directly along a first edge of the bottom cover adjacent to a corner of the bottom cover; and a second support side directly adjacent to the first support side and along the first edge of the bottom cover. The first support side includes a first vertical portion, and a first inclined portion connected to a top of the first vertical portion. The second support side includes a second vertical portion, and a second inclined portion connected to a top of the second vertical portion.




ni

QUANTUM DOTS, PRODUCTION METHODS THEREOF, AND ELECTRONIC DEVICES INCLUDING THE SAME

An electronic device includes, a light source having a peak emission at a wavelength between about 440 nm to about 480 nm; and a photoconversion layer disposed on the light source, wherein the photoconversion layer includes a first quantum dot which emits red light and a second quantum dot which emits green light,wherein at least one of the first quantum dot and the second quantum dot has a perovskite crystal structure and includes a compound represented by Chemical Formula 1: AB'X3+α Chemical Formula 1 wherein A is a Group IA metal, NR4+, or a combination thereof, B' is a Group IVA metal, X is a halogen, BF4−, or a combination thereof, and α is 0 to 3.




ni

Composite material used for catalyzing and degrading nitrogen oxide and preparation method and application thereof

The invention discloses a composite material used for catalyzing and degrading nitrogen oxide and its preparation method and application thereof. The invention of the hollow g-C3N4 nanospheres/reduced graphene oxide composite-polymer carbonized nanofiber material is prepared as follow: 1) the preparation of silica nanospheres; 2) the preparation of hollow g-C3N4 nanospheres; 3) the preparation of graphene oxide; 4) the preparation of surface modified hollow g-C3N4 nanoparticles preparation; 5) the preparation of composites; 6) the preparation of composite-polymer carbon nanofiber material. The raw materials used in the process is low cost and easy to get; the operation of the invention is simple and convenient without the use of expensive equipment in the whole process; the composite has high adsorption efficiency of ppb level nitrogen oxide with good repeatability.




ni

LIGHT-ADDRESSABLE POTENTIOMETRIC SENSING UNITS

Light-addressable potentiometric sensing units are provided. A light-addressable potentiometric sensing unit comprises a conductive substrate, a metal oxide semiconductor layer, and a sensing layer. The metal oxide semiconductor layer is made of indium gallium zinc oxide, indium gallium oxide, indium zinc oxide, indium oxide co-doped with tin and zinc, tin oxide, or zinc oxide. The wide-band gap characteristic of the metal oxide semiconductor layer enables the light-addressable potentiometric sensing unit to resist the interference from visible light. The light-addressable potentiometric sensing unit therefore exhibits a more stable performance.




ni

DEVICES AND METHODS FOR CONTAINING MOLECULES

The present invention generally relates to devices and methods for containing molecules. In some embodiments, the device comprises a nanopore, a pore, and a cavity capable of entropically containing (e.g., trapping) a molecule (e.g., a biomolecule), e.g., for minutes, hours, or days. In certain embodiments, the method comprises urging a molecule into a cavity of a device by application of an electric field, and/or by deposition of fluids having different ionic strengths. The molecule may comprise, in some cases, nucleic acids (e.g., DNA). The molecule, when present in the cavity and/or the nanopore, may be capable of being analyzed, determined, or chemically modified. In some instances, a second molecule (e.g., a second molecule which interacts the first molecule) may also be urged into the cavity. In some embodiments, the interaction of the second molecule with the first molecule (e.g., the second molecule binding to or chemically modifying the first molecule) may be determined by, for example, a change in voltage measured across the device.




ni

Electrically and Magnetically Enhanced Ionized Physical Vapor Deposition Unbalanced Sputtering Source

An electrically and magnetically enhanced ionized physical vapor deposition (I-PVD) magnetron apparatus and method is provided for sputtering material from a cathode target on a substrate, and in particular, for sputtering ceramic and diamond-like coatings. The electrically and magnetically enhanced magnetron sputtering source has unbalanced magnetic fields that couple the cathode target and additional electrode together. The additional electrode is electrically isolated from ground and connected to a power supply that can generate positive, negative, or bipolar high frequency voltages, and is preferably a radio frequency (RF) power supply. RF discharge near the additional electrode increases plasma density and a degree of ionization of sputtered material atoms.




ni

NICKEL ALLOYS FOR BIOSENSORS

The present disclosure relates to metal alloys for biosensors. An electrode is made from the metal alloy, which more specifically can be a nickel-based alloy. The alloy provides physical and electrical property advantages when compared with existing pure metal electrodes.




ni

Arrangement and Method for Determining a Stopper Position

The invention relates to an arrangement for determining a position (x) of a stopper relative to a container in a drug delivery device, comprising an acoustic source configured to emit an acoustic signal and an acoustic sensor configured to detect an acoustic signal, a processing unit for controlling the acoustic source and processing the detected acoustic signal for determining characteristics of the acoustic signal correlated with the position (x) of the stopper. Furthermore, the invention relates to a method for determining a position (x) of a stopper relative to a container in a drug delivery device, the method comprising the steps of emitting an acoustic signal from an acoustic source, detecting an acoustic signal caused by the emitted acoustic signal by means of an acoustic sensor, and processing the detected acoustic signal for determining characteristics of the acoustic signal correlated with the position (x) of the stopper by means of a processing unit.




ni

DOSE INDICATING MECHANISM FOR A DRUG DELIVERY DEVICE AND DRUG DELIVERY DEVICE

The invention is directed to a dose indicating mechanism for drug delivery device (1) configured for the delivery of a medicament contained in single medicament cartridge (2), the medicament comprising at least one first drug and one second drug, wherein the dose indicating mechanism comprises a body (3), a dose dial component (7) configured to move relative to the body (3) during dose setting and first dose indicator means (10) configured to display a set dose of the medicament and/or of first drug in dependence of the displacement of dose dial component (7) during dose setting. In order to provide the user with further information, a second dose indicator means (15) is provided that is configured to display a set dose of the second drug during dose setting. The invention is also directed to a respective drug delivery device.




ni

ADJUNCT DEVICE AND SYSTEM FOR AN INJECTOR FOR MONITORING INJECTED AMOUNTS

In some embodiments, an adjunct device for tracks time and/or dosage of a medicine. The device may include a connector for mounting the device to a deposable pen injector. The device may be configured to allow use of the native controls and injectors of the injector. For example the device may include a view port for viewing a dose indicator of the injector. The device may include one or more vibration sensors. A processor may be configured to differentiate increasing a dose, decreasing a dose and/or discharging the medicine based on the output of the sensors. Optionally a display of the device may be positioned for simultaneous viewing with the dosage indicator of the injector. For example a user may verify the accuracy of the adjunct device before performing a discharge.




ni

DEVICES AND METHODS FOR INHIBITING OR PREVENTING COLONIZATION OF FLUID FLOW NETWORKS BY MICROORGANISMS

The invention includes novel devices and methods for inhibiting or preventing colonization of fluid flow networks by bacteria that have upstream surface motility. In certain aspects, the devices and methods of the invention prevent or minimize undesirable bacterial colonization of medical devices and/or treat or prevent bacterial infections.




ni

MEDICAL DEVICES WITH ANTITHROMBOGENIC COATINGS

Pressure sensing guidewires are disclosed. The pressure sensing guidewires may include a tubular member having a proximal portion and a distal portion. The distal portion may have a plurality of slots formed therein. The distal portion may have a first wall thickness along a first region and a second wall thickness smaller than the first wall thickness along a second region. A pressure sensor may be disposed within the distal portion of the tubular member and housed within the second region. An anti-thrombogenic coating may be disposed on an inner surface, an outer surface, or both of the second region of the distal portion of the tubular member.




ni

METHOD AND APPRATUS FOR TREATMENT OF INTRACRANIAL HEMORRHAGES

An ultrasound catheter with a lumen for fluid delivery and fluid evacuation, and an ultrasound source is used for the treatment of intracerebral or intraventricular hemorrhages. After the catheter is inserted into a blood clot, a lytic drug can be delivered to the blood clot via the lumen while applying ultrasonic energy to the treatment site. As the blood clot is dissolved, the liquefied blood clot can be removed by evacuation through the lumen.




ni

INTELLIGENTLY-ANALGESIC INFUSION PUMP MONITORING SYSTEM AND METHOD

The present invention discloses a system and method for monitoring an infusion pump capable of intelligently easing pain. Each infusion pump control terminal is connected with a monitoring server through a wireless AP and a local area network respectively; each human body vital sign sensor is connected with the signal input end of a field programmable gate array FPGA through a sensor interface circuit respectively, an infusion control device is connected with the control signal output end of the field programmable gate array FPGA, the field programmable gate array FPGA is in communication with an ARM processor in a bus coding mode, and the ARM processor is in communication connection with the wireless AP through a WIFI communication module. By means of the system and method for monitoring infusion pump capable of intelligently easing pain, a plurality of basic vital sign data of a patient is collected in real time, corresponding infusion schemes are generated through analysis of the data, the infusion pump is controlled to achieve automatic infusion, monitoring and pain-easing infusion are combined together for coordinative work, and infusion control is more scientific and reliable; patient online perception and feedback is supported, self-improvement of a system is facilitated, and more accurate and reliable infusion schemes can be acquired.




ni

Movement Detection Unit

A movement detection unit includes a movable body, a first sensor, a second sensor, and a signal processor. The movable body performs a movement in a first direction. The first sensor detects a first magnetic field change which is caused by the movement of the movable body and outputs a first signal. The second sensor is provided in the first direction at a location different from a location of the first sensor. The second sensor detects a second magnetic fled change which is caused by the movement of the movable body and outputting a second signal. The signal processor includes a signal generating circuit that generates a third signal and a fourth signal on a basis of the first signal. The third signal and the fourth signal have waveforms different from each other.




ni

BRANCH CURRENT MONITOR WITH RECONFIGURATION

A branch current monitor that includes reconfiguration.




ni

ELECTRONIC ARRANGEMENT AND VECTOR NETWORK ANALYZER CHARACTERIZED BY REDUCED PHASE NOISE

An electronic arrangement and method for providing a signal characterized by reduced phase noise having a signal source for providing a stimulus signal, a modulator coupled to the signal source for generating a modulated signal as function of the stimulus signal and a local oscillator signal, and a mixer combining the stimulus and modulated signals to generate a mixed signal that includes a component characterized by a mathematical difference of the stimulus signal and the modulated signal. The modulated signal is substantially identical to the stimulus signal and offset by a frequency of the local oscillator signal, so that the difference component of the mixed signal results in a local oscillator signal wherein the stimulus signal phase noise generated by the signal source has been mathematically cancelled.




ni

METHOD FOR PREPARING AN OBJECT TO BE TESTED AND METHOD FOR IMPROVING THE UNIFORMITY AND INTENSITY OF AN ELECTRIC FIELD INDUCED IN SAID OBJECT ILLUMINATED BY AN INCIDENT ELECTROMAGNETIC WAVE

A method for preparing an object to be tested, having a given relative permittivity, intended to be illuminated by an incident electromagnetic wave. The method includes: providing a part including a cavity for housing the object and at least one extension element made from a material having a relative permittivity that is preferably equal to that of the object, the extension element at least partially delimiting the cavity and extending to either side of the cavity in a passage direction of the cavity, over a length at least equal, on either side of the cavity, to one third of the length of the cavity in the passage direction, and placing the object in the cavity, such that the object is in contact with the extension element in the passage direction.




ni

HIGH-VOLTAGE DRY APPARATUS PROVIDED WITH A CONTINUOUS MONITORING DEVICE

The invention relates to a high-voltage dry apparatus having a semiconductor layer (2) covered by a metal screen (3), this screen (3) being eliminated so as to expose this semiconductor layer (2) over a length, this cable being connected to an element of equipment having an outer envelope (6) mechanically connected to said screen. According to the invention, an electronic monitoring arrangement (20) is contained within said envelope (6), this electronic arrangement (20) being electrically connected to an electrical power supply arrangement (21) surrounding said semiconductor layer (2) and to the metal screen (3) of said cable on either side of said length of the exposed semiconductor layer.




ni

MONITORING OF INSULATION CONDITIONS DURING ELECTRICAL SYSTEM EVENTS USING DIFFERENTIAL CURRENT SENSOR

Systems and methods are disclosed for on-line monitoring of the condition of insulation in electrical devices employing a differential current sensor. In certain embodiments a monitor that can be fitted to existing electrical devices by attachment of the sensor to a pair of phase cables is provided. In other embodiments, an electrical device configured with an insulation monitor is provided.




ni

METHODS AND SYSTEMS FOR MONITORING A FLUID LIFTING DEVICE

A system (100, 200) is presented. The system includes a fluid lifting device (102, 202) located inside a well (106, 206), and comprising an electrical motor (108, 208), a three phase cable (114, 214) for coupling the fluid lifting device to a power source (112, 212), at least one high sensitivity differential current transformer (104, 203, 204) for generating imbalance signals (128, 227) representative of an imbalance current in at least one of the electrical motor and the three phase cable, wherein the at least one high sensitivity differential current transformer is disposed such that the at least one high sensitivity differential current transformer surrounds at least a portion of the three phase cable, and a processing subsystem (136, 236) for monitoring the health of at least one of the fluid lifting device and the three phase cable based on the imbalance signals.




ni

SEMICONDUCTOR DEVICE, ELECTRONIC CONTROL UNIT AND VEHICLE APPARATUS

A semiconductor device includes first and second semiconductor chips mounted on one package. In the first semiconductor chip, a current generation circuit generates a sense current in accordance with a load current and a fault current indicating that an abnormality detection circuit has detected an abnormality, and allows either one of the currents to flow through a current detecting resistor in accordance with presence or absence of detection of the abnormality. In the second semiconductor chip, a storage circuit stores a current value of the fault current obtained in an inspection process of the semiconductor device as a determination reference value. An arithmetic processing circuit sets a standard range based on the determination reference value, and determines presence or absence of detection of the abnormality based on whether or not a current value indicated by a digital signal of an analog-digital conversion circuit is included within the standard range.




ni

PROGNOSTIC AND HEALTH MONITORING SYSTEMS FOR CIRCUIT BREAKERS

A system can include at least one circuit breaker. The system can also include a prognostic and health monitoring (PHM) system. The PHM system can include at least one measuring device that measures at least one parameter associated with the at least one circuit breaker. The PHM system can also include a controller that receives measurements made by the at least one measuring device and analyzes the measurements to evaluate a performance of the at least one circuit breaker. The measurements can be made while the at least one circuit breaker is in service.




ni

SEMICONDUCTOR DEVICE, BATTERY MONITORING SYSTEM, AND SEMICONDUCTOR DEVICE DIAGNOSING METHOD

The present disclosure provides a semiconductor device including: a power supply input section to which a first voltage from a battery cell is input; a boosting section including one end to which the first voltage from the power supply input section is input, and another end that, based on a control signal from a controller, outputs the first voltage or a second voltage boosted from the first voltage from as a power supply voltage; and a comparison section including an output section, a first input section connected to the power supply input section and the one end of the boosting section, and a second input section connected to the another end of the boosting section, the comparison section outputting a voltage from the output section that corresponds to a difference between voltages input to the first input section and the second input section.




ni

SEMICONDUCTOR DEVICE, BATTERY MONITORING SYSTEM, AND DIAGNOSTIC METHOD FOR SEMICONDUCTOR DEVICE

A semiconductor device for measuring a voltage of a battery cell, including first and second nodes, and first and second battery voltage measurement units. The first node is configured to receive a first voltage, the first voltage being a voltage of a capacitor that accumulates an electric charge based on the voltage of the battery cell. The first battery voltage measurement unit measures the first voltage through a first path. The second node is configured to receive a second voltage based on the voltage of the battery cell, the second node being different from the first node. The second battery voltage measurement unit measures the second voltage through a second path that is different from the first path.




ni

DETERMINING POSITION OF RADIO FREQUENCY COIL IN MAGNETIC RESONANCE IMAGING SYSTEM

A method for determining a position of an RF coil in a magnetic resonance imaging (MRI) system is disclosed. As an example, a center of a field of view (FOV) to be scanned may be adjusted to a magnetic field center of an MRI system, and coordinate values in a coordinate system for shape-characteristic points of the FOV may be determined, where an origin of the coordinate system is located at the magnetic field center of the MRI system. A preset gradient magnetic field may be applied to the FOV, and coil units respectively covering the shape-characteristic points may be determined. An effective region may be obtained by connecting the determined coil units according to the shape of the FOV, and a coil unit located in the effective region may be determined as an effective coil unit for imaging the FOV by the MRI system.




ni

UNIVERSAL, MODULAR TEMPERATURE CONTROLLED MRI PHANTOM FOR CALIBRATED ANISOTROPIC AND ISOTROPIC IMAGING INCLUDING HOLLOW FLUID FILLED TUBULAR TEXTILES FOR CALIBRATED ANISOTROPIC IMAGING

A universal, modular, temperature controlled MRI phantom for calibration and validation for anisotropic and isotropic imaging comprises an outer insulating shell configured to be received within an MRI chamber; an inner shell received within the outer insulating shell; a fluid conduits adjacent the inner shell for receiving temperature controlling fluid or gas cycling there-through; and a series of stacked layers of frames containing test points for the MRI phantom, each layer including at least one fiducial and including at least some anisotropic imaging test points in at least one frame and at least one isotropic imaging test point in at least one frame. The anisotropic imaging comprises hollow tubular textile fibers, wherein each hollow tubular fiber has an outer diameter of less than 50 microns and an inner diameter of less than 20 microns, wherein at least some hollow tubular fibers are filled with a fluid.




ni

Valve Unit With Purge Air Pump

The present disclosure relates to internal combustion engines in general. Some embodiments of the teaching may include valve units for use in a fuel tank system of an internal combustion engine having a fuel tank and a storage element for temporary storage of hydrocarbons, wherein the fuel tank and the storage element are connected together such that the hydrocarbons which gasify out of a fuel in the fuel tank are stored in the storage element. They may include a purge air pump connected to the storage element and conveying fresh air to the storage element, thereby releasing the stored hydrocarbons and supplying them to a combustion chamber of the internal combustion engine and a movable adjustment element with at least two positions. The first position may connect a pressure side of the purge air pump to a first line and a suction side of the purge air pump to a second line. The second position may connect the pressure side to the second line and the suction side to the first line.




ni

MICROELECTROMECHANICAL GYROSCOPE WITH REJECTION OF DISTURBANCES AND METHOD OF SENSING AN ANGULAR RATE

A gyroscope includes a substrate, a first structure, a second structure and a third structure elastically coupled to the substrate and movable along a first axis. The first and second structure are arranged at opposite sides of the third structure with respect to the first axis A driving system is configured to oscillate the first and second structure along the first axis in phase with one another and in phase opposition with the third structure. The first, second and third structure are provided with respective sets of sensing electrodes, configured to be displaced along a second axis perpendicular to the first axis in response to rotations of the substrate about a third axis perpendicular to the first axis and to the second axis.




ni

Ultrasonic Measurement System and Measurement Method Thereof

An ultrasonic measurement system and a measurement method thereof are disclosed. The system includes a subsystem summarization processing device, and at least two measurement subsystems mounted on different regions to be measured, each measurement subsystem includes a primary measurement sensor and a secondary measurement sensor, the primary measurement sensor includes a first housing, and a first transduction element, a measurement processing element and a signal control element mounted within the first housing respectively, the signal control element is coupled to the first transduction element and the measurement processing element respectively, the first transduction element is mounted on a bottom end surface of the first housing, the secondary measurement sensor includes a second housing and a second transduction element mounted on a bottom end surface of the second housing, the second transduction element is coupled to the signal control element, and the measurement processing element of each of the measurement subsystems is coupled to the subsystem summarization processing device respectively. The measurement accuracy can be improved by implementing the present invention.




ni

METHOD FOR DETERMINING A LIQUID LEVEL AND QUALITY IN A TANK

The invention relates to a method for determining a liquid level in a tank (1) comprised in a vehicle, wherein said method uses an ultrasonic sensor (4) for emitting and receiving ultrasonic waves (11). Basically the liquid level is determined based upon measuring the transition time of an ultrasonic wave (11) emitted by the ultrasonic sensor, wherein said emitted wave is deflected two times before being reflected by the surface (2) of the liquid contained in the tank.




ni

FORCE DETECTOR, ROBOT, ELECTRONIC COMPONENT CARRYING APPARATUS, ELECTRONIC COMPONENT TESTING APPARATUS, PART PROCESSING APPARATUS, AND MOVING OBJECT

A force detector includes a first substrate, a second substrate, a circuit board provided between the first substrate and the second substrate, and an element mounted on the circuit board and outputting a signal in response to an external force, wherein a hole is formed in the circuit board at a location where the element is placed, and a first convex part inserted into the hole and protruding toward the element is provided on the first substrate. Further, the element is placed within a periphery of the first convex part as seen from a direction perpendicular to the first substrate.




ni

Maintaining a Measurement Gap in a Rheometer

A rheometer includes a drive shaft, a drag cup motor for rotating the drive shaft, a first measuring object supported by the drive shaft, a second measuring object, a linear position sensor, and processing and control electronics. The linear position sensor includes a target (e.g., an aluminum target) mounted to the drive shaft, and a pair of coils. The linear position sensor is configured to measure thermal expansion of the drive shaft based on a change in impedance of the coils resulting from a displacement of the target relative to the coils. The processing and control electronics are in communication with the coils and are configured to adjust a position of one of the measuring objects relative to the other based on a change in impedance of the coils resulting from a displacement of the target relative to the coils, thereby to maintain a substantially constant measurement gap therebetween.




ni

SYSTEMS AND METHODS FOR ULTRASONIC INSPECTION OF TURBINE COMPONENTS

Embodiments of the disclosure relate to ultrasonic inspection of turbine components. In one embodiment, a method for ultrasonic inspection of a turbine component can include mounting at least one array of transducer elements to the turbine component, (a) separately pulsing a transducer element of the at least one array of transducer elements to transmit a signal to the turbine component, (b) capturing reflected signals from the turbine component at each transducer element in the at least one array of transducer elements, repeating (a) and (b) for each of the other transducer elements in the at least one array of transducer elements, maintaining a constant relative position of the array of transducer elements with respect to the turbine component, analyzing the captured reflected signals using a computer, generating an image of the interior volume of the turbine component by reconstruction of the captured reflected signals and based at least in part on detecting an anomaly in the image of the interior volume of the turbine component, identifying at least one defect or failure in the turbine component.




ni

VACUUM-ASSISTED IN-NEEDLE CAPPLICARY ADSORPTION TRAP WITH MULTIWALLED POLYANILINE/CARBON NANOTUBE NANOCOMPOSITE SORBENT

A vacuum-assisted in-needle capillary adsorption trap (VA-INCAT) device for sampling and delivering materials to an analytical device is disclosed. A sorbent is multiwall carbon nanotube/polyaniline (PANI/MWCNT) nanocomposite and is coated within an interior space of the needle between the second end and the side aperture to entrap an analyte within a sample. The VA-INCAT device also includes a vacuum device configured to vacuum the vacuum flask to improve the extraction of the analytes vapors from the sample matrix to the sorbent bed.




ni

MULTI-PARAMETRIC ENVIRONMENTAL DIAGNOSTICS AND MONITORING SENSOR NODE

The multi-parametric environmental diagnostics and monitoring sensor node (10) provides monitoring and diagnostics of a variety of different ambient environmental factors and is powered by multiple sources of renewable energy. The multi-parametric environmental diagnostics and monitoring sensor node (10) includes a base (38) and a plurality of environmental condition sensors (36a, 36b, 36c, 36d, 36e, 36f) mounted thereon. A controller (47) is also mounted on the base (38), the plurality of environmental condition sensors (36a, 36b, 36c, 36d, 36e, 36f) being in communication therewith. An external photovoltaic cell (18) is mounted to the base and an internal photovoltaic cell (34) is mounted in an opposed orientation on a cover (32). The external photovoltaic cell (18) and the internal photovoltaic cell (34) charge a power storage module (52), which powers the plurality of environmental condition sensors (36a, 36b, 36c, 36d, 36e, 36f) and the controller (47).




ni

APPARATUS, METHOD, AND SYSTEM FOR DETECTING ACCELERATION AND MOTOR MONITORING

Described is a system which includes: a cable including: a first fiber optic interconnect to provide an input light; and a second fiber optic interconnect to provide an output light; and a first housing coupled to the cable, the first housing including: a first deflection circuit to deflect the input light received from the first fiber optic interconnect in response to a vibration or movement of the first housing; and a second housing coupled to the cable, the second housing including: a light source to generate the input light for transmission to the first deflection circuit via the first fiber optic interconnect; and a photo detector to receive the output light from the first deflection circuit via the second fiber optic interconnect.




ni

SUBSTRATE FOR SENSOR, PHYSICAL QUANTITY DETECTION SENSOR, ACCELERATION SENSOR, ELECTRONIC APPARATUS, AND MOVING OBJECT

A substrate for a sensor includes: a base section; a movable section connected to the base section; an arm portion as a support portion extending along the movable section from the base section; a first gap portion having a protrusion portion in which one of the movable section and the arm portion protrudes toward the other of the movable section and the arm portion, and having a predetermined gap between the protrusion portion on one side and the other of the movable section and the support portion; and a second gap portion which is located further toward the base section side than the first gap portion has a gap wider than the predetermined gap, in which in the first gap portion, one of the movable section and the arm portion has a ridge portion on the side facing the first gap portion.




ni

MICRO-ELECTROMECHANICAL APPARATUS HAVING CENTRAL ANCHOR

A micro-electromechanical (MEMS) apparatus includes a substrate, two first anchors, a frame, and two elastic members. The substrate is provided with a reference point thereon. The frame surrounds the two first anchors, and each of the elastic members connects the corresponding first anchor and the frame. Each of the first anchors is disposed near the center of the MEMS apparatus to decrease an effect caused by warpage of the substrate. The MEMS apparatus can be applied to an MEMS sensor having a rotatable mass, such as a three-axis accelerometer or a magnetometer, to improve process yield, reliability, and measurement accuracy.




ni

AMPLIFYING ELECTRONIC CIRCUIT WITH REDUCED START-UP TIME FOR A SIGNAL INCLUDING QUADRATURE COMPONENTS

An electronic circuit for amplifying signals with two components in phase quadrature, which includes: a feedback amplifier with a feedback capacitor; a switch that drives charging and discharging of the feedback capacitor; an additional capacitor; and a coupling circuit, which alternatively connects the additional capacitor in parallel to the feedback capacitor or else decouples the additional capacitor from the feedback capacitor. The switch opens at a first instant, where a first one of the two components assumes a first zero value; the coupling circuit decouples the additional capacitor from the feedback capacitor in a way synchronous with a second instant, where the first component assumes a second zero value.