tm

Diseases and injuries of the eye : their medical and surgical treatment / by George Lawson.

London : H. Renshaw, 1885.




tm

Diseases of the mouth, throat, and nose : including rhinoscopy and methods of local treatment / by Philip Schech ; translated by R.H. Blaikie.

Edinburgh : Young J. Pentland, 1886.




tm

Diseases of the skin : their description, pathology, diagnosis, and treatment / by H. Radcliffe Crocker.

London : H.K. Lewis, 1903.




tm

Diseases of the veins, more especially of venosity, varicocele, haemorrhoids, and varicose veins, and their treatment by medicines / by J. Compton Burnett.

London : James Epps & Co., Limited, 1894.




tm

Diseases of the womb : uterine catarrh frequently the cause of sterility : new treatment / by H.E. Gantillon.

London : J. Churchill, [1868]




tm

Diseases of women : a clinical guide to their diagnosis and treatment / by George Ernest Herman.

London : Cassell, 1898.




tm

Diseases of women : a clinical guide to their diagnosis and treatment / by George Ernest Herman.

London : Cassell, 1902.




tm

Diseases of women, including their pathology, causation, symptoms, diagnosis and treatment : a manual for students and practitioners / by Arthur W. Edis.

London : Smith, Elder, 1881.




tm

Domestic medicine : plain and brief directions for the treatment requisite before advice can be obtained / by Offley Bohun Shore.

Edinburgh : W.P. Nimmo, [1867]




tm

Dr. Webster's remarks on the health of London : read before the Westminster Medical Society, April 13, 1850.

[London?] : [publisher not identified], [1850]




tm

Ectopic pregnancy : its etiology, classification, embryology, diagnosis and treatment / by J. Clarence Webster.

Edinburgh : Young J. Pentland, 1895.




tm

Einführung in die Dermatologie / von S. Bettmann.

Wiesbaden : J.F. Bergmann, 1914.




tm

Elements of obstetric medicine : with the description and treatment of some of the principal diseases of children / by David D. Davis.

London : Taylor and Walton, 1841.




tm

Enteric fever : its prevalence and modifications, aetiology, pathology and treatment as illustrated by Army data at home and abroad / by Francis H. Welch.

London : H.K. Lewis, 1883.




tm

Epilepsy : its pathology and treatment : being an essay to which was awarded a prize of four thousand francs by the Academie Royale de Médécine de Belgique, December 31, 1889 / by Hobart Amory Hare.

London : Philadelphia, 1890.




tm

Epilepsy : its symptoms, treatment, and relation to other chronic convulsive diseases / by J. Russell Reynolds.

London : J. Churchill, 1861.




tm

Eruptions of the face, head, and hands : with the latest improvements in the treatment of diseases of the skin / by T.H. Burgess.

London : H. Renshaw, 1849.




tm

Tackling Teacher Recruitment and Retention Challenges in Idaho

Representatives from school districts, state education agencies, and institutions of higher education in Idaho convene to discuss teacher recruitment and retention.




tm

First report of the British Association Committee on the treatment and utilization of sewage : drawn up at the request of the Committee / by Dr. Benjamin H. Paul.

London : Longmans, Green, Reader and Dyer, 1870.




tm

Report of the Committee on the treatment and utilization of sewage : reappointed at Exeter, 1869.

London : [Published not identified], 1871.




tm

Report of the Committee on the treatment and utilization of sewage : reappointed at Liverpool, 1870.

London : [Published not identified], 1872.




tm

Report of the Committee on the treatment and utilization of sewage : reappointed at Edinburgh, 1871.

London : [Published not identified], 1873.




tm

Fifth report of the Committee on the treatment and utilization of sewage : reappointed at Brighton, 1872.

London : [Published not identified], 1874.




tm

Sixth report of the Committee on the treatment and utilization of sewage : reappointed at Bradford, 1873.

London : [Published not identified], 1875.




tm

Seventh report of the Committee on the treatment and utilization of sewage : reappointed at Belfast, 1874.

London : [Published not identified], 1876.




tm

Report on the treatment and utilization of sewage.

[London] : [Published not identified], [1877]




tm

Integrated treatment of eating disorders : beyond the body betrayed / Kathryn J. Zerbe.

New York ; London : W.W. Norton, 2008.




tm

New approaches to treatment of chronic pain : a review of multidisciplinary pain clinics and pain centers / editor, Lorenz K.Y. Ng.

Rockville, Maryland : National Institute on Drug Abuse, 1981.




tm

Cocaine : pharmacology, effects, and treatment of abuse / editor, John Grabowski.

Rockville, Maryland : National Institute on Drug Abuse, 1984.




tm

Adolescent drug abuse : analyses of treatment research / editors, Elizabeth R. Rahdert, John Grabowski.

Rockville, Maryland : National Institute on Drug Abuse, 1988.




tm

Compulsory treatment of drug abuse : research and clinical practice / editors, Carl G. Leukefeld, Frank M. Tims.

Rockville, Maryland : National Institute on Drug Abuse, 1988.




tm

Integrating behavioral therapies with medications in the treatment of drug dependence / editors, Lisa Simon Onken, Jack D. Blaine, John J. Boren.

Rockville, Maryland : National Institute on Drug Abuse, 1995.




tm

The therapeutic community : study of effectiveness : social and psychological adjustment of 400 dropouts and 100 graduates from the Phoenix House Therapeutic Community / by George De Leon.

Rockville, Maryland : National Institute on Drug Abuse, 1984.




tm

Drug abuse treatment client characteristics and pretreatment behaviors : 1979-1981 TOPS admission cohorts / Robert L. Hubbard, Robert M. Bray, Elizabeth R. Cavanaugh, J. Valley Rachal, S. Gail Craddock, James J. Collins, Margaret Allison ; Research Triang

Rockville, Maryland : National Institute on Drug Abuse, 1986.




tm

Drug and alcohol abuse : implications for treatment / edited by Stephen E. Gardner.

Rockville, Maryland : National Institute on Drug Abuse, 1981.




tm

Treatment process in methadone, residential, and outpatient drug free programs / Margaret Allison, Robert L. Hubbard, J. Valley Rachal.

Rockville, Maryland : National Institute on Drug Abuse, 1985.




tm

Drug use before and during drug abuse treatment : 1979-1981 TOPS admission cohorts / S. Gail Craddock, Robert M. Bray, Robert L. Hubbard.

Rockville, Maryland : National Institute on Drug Abuse, 1985.




tm

Drug treatment in New York City and Washington, D.C. : followup studies.

Rockville, Maryland : National Institute on Drug Abuse, 1978.




tm

Inhalant use and treatment / by Terry Mason.

Rockville, Maryland : National Institute on Drug Abuse, 1979.




tm

Evaluation of drug abuse treatments : based on first year followup : national followup study of admissions to drug abuse treatments in the DARP during 1969-1972.

Rockville, Maryland : National Institute on Drug Abuse, 1978.




tm

National polydrug collaborative project : treatment manual I : medical treatment for complications of polydrug abuse.

Rockville, Maryland : National Institute on Drug Abuse, 1978.




tm

National polydrug collaborative project : treatment manual 3 : referral strategies for polydrug abusers.

Rockville, Maryland : National Institute on Drug Abuse, 1977.




tm

Drug abuse treatment evaluation : strategies, progress, and prospects / editors Frank M. Tims, Jacqueline P. Ludford.

Springfield, Virginia. : National Technical Information Service, 1984.




tm

The nature and treatment of nonopiate abuse : a review of the literature. Volume 2 / Wynne Associates for Division of Research, National Institute on Drug Abuse, Alcohol, Drug Abuse and Mental Health Administration, Department of Health, Education and Wel

Washington, D.C. : Wynne Associates, 1974.




tm

Evaluation of treatment programs for abusers of nonopiate drugs : problems and approaches. Volume 3 / Wynne Associates for Division of Research, National Institute on Drug Abuse, Alcohol, Drug Abuse and Mental Health Administration, Department of Health,

Washington, D.C. : Wynne Associates, [1974]




tm

Co-ordinating drugs services : the role of regional and district drug advisory committees : a preliminary study for the Department of Health / by Peter Baker and Dorothy Runnicles.

London : London Research Centre, 1991.




tm

Adaptive two-treatment three-period crossover design for normal responses

Uttam Bandyopadhyay, Shirsendu Mukherjee, Atanu Biswas.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 291--303.

Abstract:
In adaptive crossover design, our goal is to allocate more patients to a promising treatment sequence. The present work contains a very simple three period crossover design for two competing treatments where the allocation in period 3 is done on the basis of the data obtained from the first two periods. Assuming normality of response variables we use a reliability functional for the choice between two treatments. We calculate the allocation proportions and their standard errors corresponding to the possible treatment combinations. We also derive some asymptotic results and provide solutions on related inferential problems. Moreover, the proposed procedure is compared with a possible competitor. Finally, we use a data set to illustrate the applicability of the proposed design.




tm

A brief review of optimal scaling of the main MCMC approaches and optimal scaling of additive TMCMC under non-regular cases

Kushal K. Dey, Sourabh Bhattacharya.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 222--266.

Abstract:
Transformation based Markov Chain Monte Carlo (TMCMC) was proposed by Dutta and Bhattacharya ( Statistical Methodology 16 (2014) 100–116) as an efficient alternative to the Metropolis–Hastings algorithm, especially in high dimensions. The main advantage of this algorithm is that it simultaneously updates all components of a high dimensional parameter using appropriate move types defined by deterministic transformation of a single random variable. This results in reduction in time complexity at each step of the chain and enhances the acceptance rate. In this paper, we first provide a brief review of the optimal scaling theory for various existing MCMC approaches, comparing and contrasting them with the corresponding TMCMC approaches.The optimal scaling of the simplest form of TMCMC, namely additive TMCMC , has been studied extensively for the Gaussian proposal density in Dey and Bhattacharya (2017a). Here, we discuss diffusion-based optimal scaling behavior of additive TMCMC for non-Gaussian proposal densities—in particular, uniform, Student’s $t$ and Cauchy proposals. Although we could not formally prove our diffusion result for the Cauchy proposal, simulation based results lead us to conjecture that at least the recipe for obtaining general optimal scaling and optimal acceptance rate holds for the Cauchy case as well. We also consider diffusion based optimal scaling of TMCMC when the target density is discontinuous. Such non-regular situations have been studied in the case of Random Walk Metropolis Hastings (RWMH) algorithm by Neal and Roberts ( Methodology and Computing in Applied Probability 13 (2011) 583–601) using expected squared jumping distance (ESJD), but the diffusion theory based scaling has not been considered. We compare our diffusion based optimally scaled TMCMC approach with the ESJD based optimally scaled RWM with simulation studies involving several target distributions and proposal distributions including the challenging Cauchy proposal case, showing that additive TMCMC outperforms RWMH in almost all cases considered.




tm

A unified treatment for non-asymptotic and asymptotic approaches to minimax signal detection

Clément Marteau, Theofanis Sapatinas.

Source: Statistics Surveys, Volume 9, 253--297.

Abstract:
We are concerned with minimax signal detection. In this setting, we discuss non-asymptotic and asymptotic approaches through a unified treatment. In particular, we consider a Gaussian sequence model that contains classical models as special cases, such as, direct, well-posed inverse and ill-posed inverse problems. Working with certain ellipsoids in the space of squared-summable sequences of real numbers, with a ball of positive radius removed, we compare the construction of lower and upper bounds for the minimax separation radius (non-asymptotic approach) and the minimax separation rate (asymptotic approach) that have been proposed in the literature. Some additional contributions, bringing to light links between non-asymptotic and asymptotic approaches to minimax signal, are also presented. An example of a mildly ill-posed inverse problem is used for illustrative purposes. In particular, it is shown that tools used to derive ‘asymptotic’ results can be exploited to draw ‘non-asymptotic’ conclusions, and vice-versa. In order to enhance our understanding of these two minimax signal detection paradigms, we bring into light hitherto unknown similarities and links between non-asymptotic and asymptotic approaches.




tm

Identifying the consequences of dynamic treatment strategies: A decision-theoretic overview

A. Philip Dawid, Vanessa Didelez

Source: Statist. Surv., Volume 4, 184--231.

Abstract:
We consider the problem of learning about and comparing the consequences of dynamic treatment strategies on the basis of observational data. We formulate this within a probabilistic decision-theoretic framework. Our approach is compared with related work by Robins and others: in particular, we show how Robins’s ‘ G -computation’ algorithm arises naturally from this decision-theoretic perspective. Careful attention is paid to the mathematical and substantive conditions required to justify the use of this formula. These conditions revolve around a property we term stability , which relates the probabilistic behaviours of observational and interventional regimes. We show how an assumption of ‘sequential randomization’ (or ‘no unmeasured confounders’), or an alternative assumption of ‘sequential irrelevance’, can be used to infer stability. Probabilistic influence diagrams are used to simplify manipulations, and their power and limitations are discussed. We compare our approach with alternative formulations based on causal DAGs or potential response models. We aim to show that formulating the problem of assessing dynamic treatment strategies as a problem of decision analysis brings clarity, simplicity and generality.

References:
Arjas, E. and Parner, J. (2004). Causal reasoning from longitudinal data. Scandinavian Journal of Statistics 31 171–187.

Arjas, E. and Saarela, O. (2010). Optimal dynamic regimes: Presenting a case for predictive inference. The International Journal of Biostatistics 6. http://tinyurl.com/33dfssf

Cowell, R. G., Dawid, A. P., Lauritzen, S. L. and Spiegelhalter, D. J. (1999). Probabilistic Networks and Expert Systems. Springer, New York.

Dawid, A. P. (1979). Conditional independence in statistical theory (with Discussion). Journal of the Royal Statistical Society, Series B 41 1–31.

Dawid, A. P. (1992). Applications of a general propagation algorithm for probabilistic expert systems. Statistics and Computing 2 25–36.

Dawid, A. P. (1998). Conditional independence. In Encyclopedia of Statistical Science ({U}pdate Volume 2) ( S. Kotz, C. B. Read and D. L. Banks, eds.) 146–155. Wiley-Interscience, New York.

Dawid, A. P. (2000). Causal inference without counterfactuals (with Discussion). Journal of the American Statistical Association 95 407–448.

Dawid, A. P. (2001). Separoids: A mathematical framework for conditional independence and irrelevance. Annals of Mathematics and Artificial Intelligence 32 335–372.

Dawid, A. P. (2002). Influence diagrams for causal modelling and inference. International Statistical Review 70 161–189. Corrigenda, ibid ., 437.

Dawid, A. P. (2003). Causal inference using influence diagrams: The problem of partial compliance (with Discussion). In Highly Structured Stochastic Systems ( P. J. Green, N. L. Hjort and S. Richardson, eds.) 45–81. Oxford University Press.

Dawid, A. P. (2010). Beware of the DAG! In Proceedings of the NIPS 2008 Workshop on Causality. Journal of Machine Learning Research Workshop and Conference Proceedings ( D. Janzing, I. Guyon and B. Schölkopf, eds.) 6 59–86. http://tinyurl.com/33va7tm

Dawid, A. P. and Didelez, V. (2008). Identifying optimal sequential decisions. In Proceedings of the Twenty-Fourth Annual Conference on Uncertainty in Artificial Intelligence (UAI-08) ( D. McAllester and A. Nicholson, eds.). 113-120. AUAI Press, Corvallis, Oregon. http://tinyurl.com/3899qpp

Dechter, R. (2003). Constraint Processing. Morgan Kaufmann Publishers.

Didelez, V., Dawid, A. P. and Geneletti, S. G. (2006). Direct and indirect effects of sequential treatments. In Proceedings of the Twenty-Second Annual Conference on Uncertainty in Artificial Intelligence (UAI-06) ( R. Dechter and T. Richardson, eds.). 138-146. AUAI Press, Arlington, Virginia. http://tinyurl.com/32w3f4e

Didelez, V., Kreiner, S. and Keiding, N. (2010). Graphical models for inference under outcome dependent sampling. Statistical Science (to appear).

Didelez, V. and Sheehan, N. S. (2007). Mendelian randomisation: Why epidemiology needs a formal language for causality. In Causality and Probability in the Sciences, ( F. Russo and J. Williamson, eds.). Texts in Philosophy Series 5 263–292. College Publications, London.

Eichler, M. and Didelez, V. (2010). Granger-causality and the effect of interventions in time series. Lifetime Data Analysis 16 3–32.

Ferguson, T. S. (1967). Mathematical Statistics: A Decision Theoretic Approach. Academic Press, New York, London.

Geneletti, S. G. (2007). Identifying direct and indirect effects in a non–counterfactual framework. Journal of the Royal Statistical Society: Series B 69 199–215.

Geneletti, S. G. and Dawid, A. P. (2010). Defining and identifying the effect of treatment on the treated. In Causality in the Sciences ( P. M. Illari, F. Russo and J. Williamson, eds.) Oxford University Press (to appear).

Gill, R. D. and Robins, J. M. (2001). Causal inference for complex longitudinal data: The continuous case. Annals of Statistics 29 1785–1811.

Guo, H. and Dawid, A. P. (2010). Sufficient covariates and linear propensity analysis. In Proceedings of the Thirteenth International Workshop on Artificial Intelligence and Statistics, (AISTATS) 2010, Chia Laguna, Sardinia, Italy, May 13-15, 2010. Journal of Machine Learning Research Workshop and Conference Proceedings ( Y. W. Teh and D. M. Titterington, eds.) 9 281–288. http://tinyurl.com/33lmuj7

Henderson, R., Ansel, P. and Alshibani, D. (2010). Regret-regression for optimal dynamic treatment regimes. Biometrics (to appear). doi:10.1111/j.1541-0420.2009.01368.x

Hernán, M. A. and Taubman, S. L. (2008). Does obesity shorten life? The importance of well defined interventions to answer causal questions. International Journal of Obesity 32 S8–S14.

Holland, P. W. (1986). Statistics and causal inference (with Discussion). Journal of the American Statistical Association 81 945–970.

Huang, Y. and Valtorta, M. (2006). Identifiability in causal Bayesian networks: A sound and complete algorithm. In AAAI’06: Proceedings of the 21st National Conference on Artificial Intelligence 1149–1154. AAAI Press.

Kang, J. D. Y. and Schafer, J. L. (2007). Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data. Statistical Science 22 523–539.

Lauritzen, S. L., Dawid, A. P., Larsen, B. N. and Leimer, H. G. (1990). Independence properties of directed Markov fields. Networks 20 491–505.

Lok, J., Gill, R., van der Vaart, A. and Robins, J. (2004). Estimating the causal effect of a time-varying treatment on time-to-event using structural nested failure time models. Statistica Neerlandica 58 271–295.

Moodie, E. M., Richardson, T. S. and Stephens, D. A. (2007). Demystifying optimal dynamic treatment regimes. Biometrics 63 447–455.

Murphy, S. A. (2003). Optimal dynamic treatment regimes (with Discussion). Journal of the Royal Statistical Society, Series B 65 331-366.

Oliver, R. M. and Smith, J. Q., eds. (1990). Influence Diagrams, Belief Nets and Decision Analysis. John Wiley and Sons, Chichester, United Kingdom.

Pearl, J. (1995). Causal diagrams for empirical research (with Discussion). Biometrika 82 669-710.

Pearl, J. (2009). Causality: Models, Reasoning and Inference, Second ed. Cambridge University Press, Cambridge.

Pearl, J. and Paz, A. (1987). Graphoids: A graph-based logic for reasoning about relevance relations. In Advances in Artificial Intelligence ( D. Hogg and L. Steels, eds.) II 357–363. North-Holland, Amsterdam.

Pearl, J. and Robins, J. (1995). Probabilistic evaluation of sequential plans from causal models with hidden variables. In Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence ( P. Besnard and S. Hanks, eds.) 444–453. Morgan Kaufmann Publishers, San Francisco.

Raiffa, H. (1968). Decision Analysis. Addison-Wesley, Reading, Massachusetts.

Robins, J. M. (1986). A new approach to causal inference in mortality studies with sustained exposure periods—Application to control of the healthy worker survivor effect. Mathematical Modelling 7 1393–1512.

Robins, J. M. (1987). Addendum to “A new approach to causal inference in mortality studies with sustained exposure periods—Application to control of the healthy worker survivor effect”. Computers & Mathematics with Applications 14 923–945.

Robins, J. M. (1989). The analysis of randomized and nonrandomized AIDS treatment trials using a new approach to causal inference in longitudinal studies. In Health Service Research Methodology: A Focus on AIDS ( L. Sechrest, H. Freeman and A. Mulley, eds.) 113–159. NCSHR, U.S. Public Health Service.

Robins, J. M. (1992). Estimation of the time-dependent accelerated failure time model in the presence of confounding factors. Biometrika 79 321–324.

Robins, J. M. (1997). Causal inference from complex longitudinal data. In Latent Variable Modeling and Applications to Causality, ( M. Berkane, ed.). Lecture Notes in Statistics 120 69–117. Springer-Verlag, New York.

Robins, J. M. (1998). Structural nested failure time models. In Survival Analysis, ( P. K. Andersen and N. Keiding, eds.). Encyclopedia of Biostatistics 6 4372–4389. John Wiley and Sons, Chichester, UK.

Robins, J. M. (2000). Robust estimation in sequentially ignorable missing data and causal inference models. In Proceedings of the American Statistical Association Section on Bayesian Statistical Science 1999 6–10.

Robins, J. M. (2004). Optimal structural nested models for optimal sequential decisions. In Proceedings of the Second Seattle Symposium on Biostatistics ( D. Y. Lin and P. Heagerty, eds.) 189–326. Springer, New York.

Robins, J. M., Greenland, S. and Hu, F. C. (1999). Estimation of the causal effect of a time-varying exposure on the marginal mean of a repeated binary outcome. Journal of the American Statistical Association 94 687–700.

Robins, J. M., Hernán, M. A. and Brumback, B. (2000). Marginal structural models and causal inference in epidemiology. Epidemiology 11 550–560.

Robins, J. M. and Wasserman, L. A. (1997). Estimation of effects of sequential treatments by reparameterizing directed acyclic graphs. In Proceedings of the 13th Annual Conference on Uncertainty in Artificial Intelligence ( D. Geiger and P. Shenoy, eds.) 409-420. Morgan Kaufmann Publishers, San Francisco. http://tinyurl.com/33ghsas

Rosthøj, S., Fullwood, C., Henderson, R. and Stewart, S. (2006). Estimation of optimal dynamic anticoagulation regimes from observational data: A regret-based approach. Statistics in Medicine 25 4197–4215.

Shpitser, I. and Pearl, J. (2006a). Identification of conditional interventional distributions. In Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intelligence (UAI-06) ( R. Dechter and T. Richardson, eds.). 437–444. AUAI Press, Corvallis, Oregon. http://tinyurl.com/2um8w47

Shpitser, I. and Pearl, J. (2006b). Identification of joint interventional distributions in recursive semi-Markovian causal models. In Proceedings of the Twenty-First National Conference on Artificial Intelligence 1219–1226. AAAI Press, Menlo Park, California.

Spirtes, P., Glymour, C. and Scheines, R. (2000). Causation, Prediction and Search, Second ed. Springer-Verlag, New York.

Sterne, J. A. C., May, M., Costagliola, D., de Wolf, F., Phillips, A. N., Harris, R., Funk, M. J., Geskus, R. B., Gill, J., Dabis, F., Miro, J. M., Justice, A. C., Ledergerber, B., Fatkenheuer, G., Hogg, R. S., D’Arminio-Monforte, A., Saag, M., Smith, C., Staszewski, S., Egger, M., Cole, S. R. and When To Start Consortium (2009). Timing of initiation of antiretroviral therapy in AIDS-Free HIV-1-infected patients: A collaborative analysis of 18 HIV cohort studies. Lancet 373 1352–1363.

Taubman, S. L., Robins, J. M., Mittleman, M. A. and Hernán, M. A. (2009). Intervening on risk factors for coronary heart disease: An application of the parametric g-formula. International Journal of Epidemiology 38 1599–1611.

Tian, J. (2008). Identifying dynamic sequential plans. In Proceedings of the Twenty-Fourth Annual Conference on Uncertainty in Artificial Intelligence (UAI-08) ( D. McAllester and A. Nicholson, eds.). 554–561. AUAI Press, Corvallis, Oregon. http://tinyurl.com/36ufx2h

Verma, T. and Pearl, J. (1990). Causal networks: Semantics and expressiveness. In Uncertainty in Artificial Intelligence 4 ( R. D. Shachter, T. S. Levitt, L. N. Kanal and J. F. Lemmer, eds.) 69–76. North-Holland, Amsterdam.