bet Blood Sugar Control May Aid Stroke Recovery in Diabetes Patients By www.medicinenet.com Published On :: Tue, 31 Mar 2020 00:00:00 PDT Title: Blood Sugar Control May Aid Stroke Recovery in Diabetes PatientsCategory: Health NewsCreated: 3/30/2020 12:00:00 AMLast Editorial Review: 3/31/2020 12:00:00 AM Full Article
bet Family Ties Help Young Adults With Type 1 Diabetes Flourish By www.medicinenet.com Published On :: Wed, 8 Apr 2020 00:00:00 PDT Title: Family Ties Help Young Adults With Type 1 Diabetes FlourishCategory: Health NewsCreated: 4/8/2020 12:00:00 AMLast Editorial Review: 4/8/2020 12:00:00 AM Full Article
bet Obesity Is Biggest Type 2 Diabetes Risk Factor By www.medicinenet.com Published On :: Fri, 17 Apr 2020 00:00:00 PDT Title: Obesity Is Biggest Type 2 Diabetes Risk FactorCategory: Health NewsCreated: 4/16/2020 12:00:00 AMLast Editorial Review: 4/17/2020 12:00:00 AM Full Article
bet Could Your Contact Lenses Track, Treat Your Diabetes? By www.medicinenet.com Published On :: Mon, 27 Apr 2020 00:00:00 PDT Title: Could Your Contact Lenses Track, Treat Your Diabetes?Category: Health NewsCreated: 4/24/2020 12:00:00 AMLast Editorial Review: 4/27/2020 12:00:00 AM Full Article
bet Heart Attacks, Strokes Are Declining Among People With Diabetes By www.medicinenet.com Published On :: Mon, 4 May 2020 00:00:00 PDT Title: Heart Attacks, Strokes Are Declining Among People With DiabetesCategory: Health NewsCreated: 5/1/2020 12:00:00 AMLast Editorial Review: 5/4/2020 12:00:00 AM Full Article
bet Your Best Bet Against Heart Attack, Stroke? Lower Blood Pressure By www.medicinenet.com Published On :: Fri, 21 Feb 2020 00:00:00 PDT Title: Your Best Bet Against Heart Attack, Stroke? Lower Blood PressureCategory: Health NewsCreated: 2/20/2020 12:00:00 AMLast Editorial Review: 2/21/2020 12:00:00 AM Full Article
bet Avonex (interferon beta 1a injection) By www.medicinenet.com Published On :: Wed, 8 Apr 2020 00:00:00 PDT Title: Avonex (interferon beta 1a injection) Category: MedicationsCreated: 3/2/2005 12:00:00 AMLast Editorial Review: 4/8/2020 12:00:00 AM Full Article
bet AHA News: Stroke Survivors Might Need Better Screening for Depression By www.medicinenet.com Published On :: Thu, 13 Feb 2020 00:00:00 PDT Title: AHA News: Stroke Survivors Might Need Better Screening for DepressionCategory: Health NewsCreated: 2/12/2020 12:00:00 AMLast Editorial Review: 2/13/2020 12:00:00 AM Full Article
bet Inhibition of Importin {beta}1 Augments the Anticancer Effect of Agonistic Anti-Death Receptor 5 Antibody in TRAIL-resistant Tumor Cells By mct.aacrjournals.org Published On :: 2020-05-04T05:39:42-07:00 TNF-related apoptosis-inducing ligand (TRAIL) and an agonistic antibody against the death-inducing TRAIL receptor 5, DR5, are thought to selectively induce tumor cell death and therefore, have gained attention as potential therapeutics currently under investigation in several clinical trials. However, some tumor cells are resistant to TRAIL/DR5–induced cell death, even though they express DR5. Previously, we reported that DR5 is transported into the nucleus by importin β1, and knockdown of importin β1 upregulates cell surface expression of DR5 resulting in increased TRAIL sensitivity in vitro. Here, we examined the impact of importin β1 knockdown on agonistic anti-human DR5 (hDR5) antibody therapy. Drug-inducible importin β1 knockdown sensitizes HeLa cells to TRAIL-induced cell death in vitro, and exerts an antitumor effect when combined with agonistic anti-hDR5 antibody administration in vivo. Therapeutic importin β1 knockdown, administered via the atelocollagen delivery system, as well as treatment with the importin β inhibitor, importazole, induced regression and/or eradication of two human TRAIL-resistant tumor cells when combined with agonistic anti-hDR5 antibody treatment. Thus, these findings suggest that the inhibition of importin β1 would be useful to improve the therapeutic effects of agonistic anti-hDR5 antibody against TRAIL-resistant cancers. Full Article
bet Knowledge, Attitudes and Practices of Dental Hygienists Regarding Diabetes Risk Assessments and Screenings By jdh.adha.org Published On :: 2020-04-30T12:39:03-07:00 Purpose: Untreated and poorly controlled diabetes causes increased levels of blood glucose associated with poor periodontal disease outcomes. Dental hygienists can play a significant role in screening patients for diabetes mellitus, leading to referral and early diagnosis. The purpose of this study was to determine the knowledge, attitudes, practices, and barriers faced by clinical dental hygienists regarding diabetes risk assessment and screenings.Methods: A mixed method design was used with a convenience sample of dental hygienists in clinical practice (n=316). A 32 item, electronic survey was validated at item-level, and participants were recruited through multiple dental hygiene Facebook groups. Descriptive statistics were used to analyze the data. The survey also included two open-ended attitude questions that were interpreted using thematic analysis to pinpoint common patterns within the data.Results: Dental hygienists had high knowledge scores regarding diabetes and oral health, although many were unaware of their states' specific statutes and regulations for screening practices. Nearly all (95.9%), were likely to educate and refer patients (82%), although fewer than half (40.9%), were likely to perform chairside screening for diabetes. Emergent themes for barriers to screening were time, money, patient acceptance/willingness, lack of education, not having the proper tools, and states' rules and regulations.Conclusion: Despite high knowledge scores regarding diabetes and oral health, there is a gap in regards to dental hygienists' willingness to perform diabetes screenings in a clinical setting. Dental hygienists should be capable of integrating chairside diabetes screening practices into the process of care with proper training. Full Article
bet Oral Health-Related Quality of Life of Children: An Assessment of the Relationship between Child and Caregiver Reporting By jdh.adha.org Published On :: 2020-04-30T12:39:03-07:00 Purpose: Oral and craniofacial conditions or diseases can impact an individual's health and quality of life. The purpose of this study was to assess the perceived oral health related quality of life (OHRQoL) of children, and evaluate the reported level of agreement between caregivers and their children.Methods: Purposive sampling was used to recruit children ages 8-15, and their caregivers from a dental clinic in a pediatric hospital for this descriptive, cross-sectional study. A modified version of a validated measure, Child Oral Health Impact Profile-Short Form (COHIP-SF), was used for a 22-item questionnaire encompassing three subscales: oral health, functional well-being, and social emotional well-being. Two additional items were included to assess child/caregiver's level of agreement. A dental chart review was also conducted to assess the child's overbite, overjet, and decayed surfaces. Data were analyzed through descriptive statistics and examined for assumptions of normality and linearity.Results: Sixty child/caregiver pairs (n=120) participated in this study. Overbite, overjet and decayed surfaces were not found to be related to any OHRQoL variable, including child/caregiver ratings and overall agreement (p>.05). Average OHRQoL scores for caregivers found to be more positive those of their children (p=.02). Agreement between caregivers and the child's gender was shown to be significant (p=.01). Female child scores differed significantly from males with respect to their caregiver responses (p=.02). Caregivers rated a higher OHRQoL for female children, thus overestimating their female child's reported OHRQoL.Conclusions: The moderate level of agreement found between children and caregivers reinforces the importance of including the child, as well as the caregiver, when assessing OHRQoL. Full Article
bet In Vivo Assay Reveals Microbial OleA Thiolases Initiating Hydrocarbon and {beta}-Lactone Biosynthesis By mbio.asm.org Published On :: 2020-03-10T01:30:41-07:00 ABSTRACT OleA, a member of the thiolase superfamily, is known to catalyze the Claisen condensation of long-chain acyl coenzyme A (acyl-CoA) substrates, initiating metabolic pathways in bacteria for the production of membrane lipids and β-lactone natural products. OleA homologs are found in diverse bacterial phyla, but to date, only one homodimeric OleA has been successfully purified to homogeneity and characterized in vitro. A major impediment for the identification of new OleA enzymes has been protein instability and time-consuming in vitro assays. Here, we developed a bioinformatic pipeline to identify OleA homologs and a new rapid assay to screen OleA enzyme activity in vivo and map their taxonomic diversity. The screen is based on the discovery that OleA displayed surprisingly high rates of p-nitrophenyl ester hydrolysis, an activity not shared by other thiolases, including FabH. The high rates allowed activity to be determined in vitro and with heterologously expressed OleA in vivo via the release of the yellow p-nitrophenol product. Seventy-four putative oleA genes identified in the genomes of diverse bacteria were heterologously expressed in Escherichia coli, and 25 showed activity with p-nitrophenyl esters. The OleA proteins tested were encoded in variable genomic contexts from seven different phyla and are predicted to function in distinct membrane lipid and β-lactone natural product metabolic pathways. This study highlights the diversity of unstudied OleA proteins and presents a rapid method for their identification and characterization. IMPORTANCE Microbially produced β-lactones are found in antibiotic, antitumor, and antiobesity drugs. Long-chain olefinic membrane hydrocarbons have potential utility as fuels and specialty chemicals. The metabolic pathway to both end products share bacterial enzymes denoted as OleA, OleC, and OleD that transform acyl-CoA cellular intermediates into β-lactones. Bacteria producing membrane hydrocarbons via the Ole pathway additionally express a β-lactone decarboxylase, OleB. Both β-lactone and olefin biosynthesis pathways are initiated by OleA enzymes that define the overall structure of the final product. There is currently very limited information on OleA enzymes apart from the single representative from Xanthomonas campestris. In this study, bioinformatic analysis identified hundreds of new, putative OleA proteins, 74 proteins were screened via a rapid whole-cell method, leading to the identification of 25 stably expressed OleA proteins representing seven bacteria phyla. Full Article
bet Epstein-Barr Virus Epitope-Major Histocompatibility Complex Interaction Combined with Convergent Recombination Drives Selection of Diverse T Cell Receptor {alpha} and {beta} Repertoires By mbio.asm.org Published On :: 2020-03-17T01:30:14-07:00 ABSTRACT Recognition modes of individual T cell receptors (TCRs) are well studied, but factors driving the selection of TCR repertoires from primary through persistent human virus infections are less well understood. Using deep sequencing, we demonstrate a high degree of diversity of Epstein-Barr virus (EBV)-specific clonotypes in acute infectious mononucleosis (AIM). Only 9% of unique clonotypes detected in AIM persisted into convalescence; the majority (91%) of unique clonotypes detected in AIM were not detected in convalescence and were seeming replaced by equally diverse "de novo" clonotypes. The persistent clonotypes had a greater probability of being generated than nonpersistent clonotypes due to convergence recombination of multiple nucleotide sequences to encode the same amino acid sequence, as well as the use of shorter complementarity-determining regions 3 (CDR3s) with fewer nucleotide additions (i.e., sequences closer to germ line). Moreover, the two most immunodominant HLA-A2-restricted EBV epitopes, BRLF1109 and BMLF1280, show highly distinct antigen-specific public (i.e., shared between individuals) features. In fact, TCRα CDR3 motifs played a dominant role, while TCRβ played a minimal role, in the selection of TCR repertoire to an immunodominant EBV epitope, BRLF1. This contrasts with the majority of previously reported repertoires, which appear to be selected either on TCRβ CDR3 interactions with peptide/major histocompatibility complex (MHC) or in combination with TCRα CDR3. Understanding of how TCR-peptide-MHC complex interactions drive repertoire selection can be used to develop optimal strategies for vaccine design or generation of appropriate adoptive immunotherapies for viral infections in transplant settings or for cancer. IMPORTANCE Several lines of evidence suggest that TCRα and TCRβ repertoires play a role in disease outcomes and treatment strategies during viral infections in transplant patients and in cancer and autoimmune disease therapy. Our data suggest that it is essential that we understand the basic principles of how to drive optimum repertoires for both TCR chains, α and β. We address this important issue by characterizing the CD8 TCR repertoire to a common persistent human viral infection (EBV), which is controlled by appropriate CD8 T cell responses. The ultimate goal would be to determine if the individuals who are infected asymptomatically develop a different TCR repertoire than those that develop the immunopathology of AIM. Here, we begin by doing an in-depth characterization of both CD8 T cell TCRα and TCRβ repertoires to two immunodominant EBV epitopes over the course of AIM, identifying potential factors that may be driving their selection. Full Article
bet Sulfamoyl Heteroarylcarboxylic Acids as Promising Metallo-{beta}-Lactamase Inhibitors for Controlling Bacterial Carbapenem Resistance By mbio.asm.org Published On :: 2020-03-17T01:30:15-07:00 ABSTRACT Production of metallo-β-lactamases (MBLs), which hydrolyze carbapenems, is a cause of carbapenem resistance in Enterobacteriaceae. Development of effective inhibitors for MBLs is one approach to restore carbapenem efficacy in carbapenem-resistant Enterobacteriaceae (CRE). We report here that sulfamoyl heteroarylcarboxylic acids (SHCs) can competitively inhibit the globally spreading and clinically relevant MBLs (i.e., IMP-, NDM-, and VIM-type MBLs) at nanomolar to micromolar orders of magnitude. Addition of SHCs restored meropenem efficacy against 17/19 IMP-type and 7/14 NDM-type MBL-producing Enterobacteriaceae to satisfactory clinical levels. SHCs were also effective against IMP-type MBL-producing Acinetobacter spp. and engineered Escherichia coli strains overproducing individual minor MBLs (i.e., TMB-2, SPM-1, DIM-1, SIM-1, and KHM-1). However, SHCs were less effective against MBL-producing Pseudomonas aeruginosa. Combination therapy with meropenem and SHCs successfully cured mice infected with IMP-1-producing E. coli and dually NDM-1/VIM-1-producing Klebsiella pneumoniae clinical isolates. X-ray crystallographic analyses revealed the inhibition mode of SHCs against MBLs; the sulfamoyl group of SHCs coordinated to two zinc ions, and the carboxylate group coordinated to one zinc ion and bound to positively charged amino acids Lys224/Arg228 conserved in MBLs. Preclinical testing revealed that the SHCs showed low toxicity in cell lines and mice and high stability in human liver microsomes. Our results indicate that SHCs are promising lead compounds for inhibitors of MBLs to combat MBL-producing CRE. IMPORTANCE Carbapenem antibiotics are the last resort for control of severe infectious diseases, bloodstream infections, and pneumonia caused by Gram-negative bacteria, including Enterobacteriaceae. However, carbapenem-resistant Enterobacteriaceae (CRE) strains have spread globally and are a critical concern in clinical settings because CRE infections are recognized as a leading cause of increased mortality among hospitalized patients. Most CRE produce certain kinds of serine carbapenemases (e.g., KPC- and GES-type β-lactamases) or metallo-β-lactamases (MBLs), which can hydrolyze carbapenems. Although effective MBL inhibitors are expected to restore carbapenem efficacy against MBL-producing CRE, no MBL inhibitor is currently clinically available. Here, we synthesized 2,5-diethyl-1-methyl-4-sulfamoylpyrrole-3-carboxylic acid (SPC), which is a potent inhibitor of MBLs. SPC is a remarkable lead compound for clinically useful MBL inhibitors and can potentially provide a considerable benefit to patients receiving treatment for lethal infectious diseases caused by MBL-producing CRE. Full Article
bet Glycemic Variability in Diabetes Increases the Severity of Influenza By mbio.asm.org Published On :: 2020-03-24T01:31:01-07:00 ABSTRACT People with diabetes are two times more likely to die from influenza than people with no underlying medical condition. The mechanisms underlying this susceptibility are poorly understood. In healthy individuals, small and short-lived postprandial peaks in blood glucose levels occur. In diabetes mellitus, these fluctuations become greater and more frequent. This glycemic variability is associated with oxidative stress and hyperinflammation. However, the contribution of glycemic variability to the pathogenesis of influenza A virus (IAV) has not been explored. Here, we used an in vitro model of the pulmonary epithelial-endothelial barrier and novel murine models to investigate the role of glycemic variability in influenza severity. In vitro, a history of glycemic variability significantly increased influenza-driven cell death and destruction of the epithelial-endothelial barrier. In vivo, influenza virus-infected mice with a history of glycemic variability lost significantly more body weight than mice with constant blood glucose levels. This increased disease severity was associated with markers of oxidative stress and hyperinflammation both in vitro and in vivo. Together, these results provide the first indication that glycemic variability may help drive the increased risk of severe influenza in people with diabetes mellitus. IMPORTANCE Every winter, people with diabetes are at increased risk of severe influenza. At present, the mechanisms that cause this increased susceptibility are unclear. Here, we show that the fluctuations in blood glucose levels common in people with diabetes are associated with severe influenza. These data suggest that glycemic stability could become a greater clinical priority for patients with diabetes during outbreaks of influenza. Full Article
bet Estimating the Timing of Early Simian-Human Immunodeficiency Virus Infections: a Comparison between Poisson Fitter and BEAST By mbio.asm.org Published On :: 2020-03-24T01:31:01-07:00 ABSTRACT Many HIV prevention strategies are currently under consideration where it is highly informative to know the study participants’ times of infection. These can be estimated using viral sequence data sampled early in infection. However, there are several scenarios that, if not addressed, can skew timing estimates. These include multiple transmitted/founder (TF) viruses, APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like)-mediated mutational enrichment, and recombination. Here, we suggest a pipeline to identify these problems and resolve the biases that they introduce. We then compare two modeling strategies to obtain timing estimates from sequence data. The first, Poisson Fitter (PF), is based on a Poisson model of random accumulation of mutations relative to the TF virus (or viruses) that established the infection. The second uses a coalescence-based phylogenetic strategy as implemented in BEAST. The comparison is based on timing predictions using plasma viral RNA (cDNA) sequence data from 28 simian-human immunodeficiency virus (SHIV)-infected animals for which the exact day of infection is known. In this particular setting, based on nucleotide sequences from samples obtained in early infection, the Poisson method yielded more accurate, more precise, and unbiased estimates for the time of infection than did the explored implementations of BEAST. IMPORTANCE The inference of the time of infection is a critical parameter in testing the efficacy of clinical interventions in protecting against HIV-1 infection. For example, in clinical trials evaluating the efficacy of passively delivered antibodies (Abs) for preventing infections, accurate time of infection data are essential for discerning levels of the Abs required to confer protection, given the natural Ab decay rate in the human body. In such trials, genetic sequences from early in the infection are regularly sampled from study participants, generally prior to immune selection, when the viral population is still expanding and genetic diversity is low. In this particular setting of early viral growth, the Poisson method is superior to the alternative approach based on coalescent methods. This approach can also be applied in human vaccine trials, where accurate estimates of infection times help ascertain if vaccine-elicited immune protection wanes over time. Full Article
bet Epistatic Interplay between Type IV Secretion Effectors Engages the Small GTPase Rab2 in the Brucella Intracellular Cycle By mbio.asm.org Published On :: 2020-03-31T01:30:58-07:00 ABSTRACT Intracellular bacterial pathogens remodel cellular functions during their infectious cycle via the coordinated actions of effector molecules delivered through dedicated secretion systems. While the function of many individual effectors is known, how they interact to promote pathogenesis is rarely understood. The zoonotic bacterium Brucella abortus, the causative agent of brucellosis, delivers effector proteins via its VirB type IV secretion system (T4SS) which mediate biogenesis of the endoplasmic reticulum (ER)-derived replicative Brucella-containing vacuole (rBCV). Here, we show that T4SS effectors BspB and RicA display epistatic interactions in Brucella replication. Defects in rBCV biogenesis and Brucella replication caused by deletion of bspB were dependent on the host GTPase Rab2a and suppressed by the deletion of ricA, indicating a role of Rab2-binding effector RicA in these phenotypic defects. Rab2a requirements for rBCV biogenesis and Brucella intracellular replication were abolished upon deletion of both bspB and ricA, demonstrating that the functional interaction of these effectors engages Rab2-dependent transport in the Brucella intracellular cycle. Expression of RicA impaired host secretion and caused Golgi fragmentation. While BspB-mediated changes in ER-to-Golgi transport were independent of RicA and Rab2a, BspB-driven alterations in Golgi vesicular traffic also involved RicA and Rab2a, defining BspB and RicA’s functional interplay at the Golgi interface. Altogether, these findings support a model where RicA modulation of Rab2a functions impairs Brucella replication but is compensated by BspB-mediated remodeling of Golgi apparatus-associated vesicular transport, revealing an epistatic interaction between these T4SS effectors. IMPORTANCE Bacterial pathogens with an intracellular lifestyle modulate many host cellular processes to promote their infectious cycle. They do so by delivering effector proteins into host cells via dedicated secretion systems that target specific host functions. While the roles of many individual effectors are known, how their modes of action are coordinated is rarely understood. Here, we show that the zoonotic bacterium Brucella abortus delivers the BspB effector that mitigates the negative effect on bacterial replication that the RicA effector exerts via modulation of the host small GTPase Rab2. These findings provide an example of functional integration between bacterial effectors that promotes proliferation of pathogens. Full Article
bet Synergy between Cell Surface Glycosidases and Glycan-Binding Proteins Dictates the Utilization of Specific Beta(1,3)-Glucans by Human Gut Bacteroides By mbio.asm.org Published On :: 2020-04-07T01:31:16-07:00 ABSTRACT The human gut microbiota (HGM) has far-reaching impacts on human health and nutrition, which are fueled primarily by the metabolism of otherwise indigestible complex carbohydrates commonly known as dietary fiber. However, the molecular basis of the ability of individual taxa of the HGM to address specific dietary glycan structures remains largely unclear. In particular, the utilization of β(1,3)-glucans, which are widespread in the human diet as yeast, seaweed, and plant cell walls, had not previously been resolved. Through a systems-based approach, here we show that the symbiont Bacteroides uniformis deploys a single, exemplar polysaccharide utilization locus (PUL) to access yeast β(1,3)-glucan, brown seaweed β(1,3)-glucan (laminarin), and cereal mixed-linkage β(1,3)/β(1,4)-glucan. Combined biochemical, enzymatic, and structural analysis of PUL-encoded glycoside hydrolases (GHs) and surface glycan-binding proteins (SGBPs) illuminates a concerted molecular system by which B. uniformis recognizes and saccharifies these distinct β-glucans. Strikingly, the functional characterization of homologous β(1,3)-glucan utilization loci (1,3GUL) in other Bacteroides further demonstrated that the ability of individual taxa to utilize β(1,3)-glucan variants and/or β(1,3)/β(1,4)-glucans arises combinatorially from the individual specificities of SGBPs and GHs at the cell surface, which feed corresponding signals to periplasmic hybrid two-component sensors (HTCSs) via TonB-dependent transporters (TBDTs). These data reveal the importance of cooperativity in the adaptive evolution of GH and SGBP cohorts to address individual polysaccharide structures. We anticipate that this fine-grained knowledge of PUL function will inform metabolic network analysis and proactive manipulation of the HGM. Indeed, a survey of 2,441 public human metagenomes revealed the international, yet individual-specific, distribution of each 1,3GUL. IMPORTANCE Bacteroidetes are a dominant phylum of the human gut microbiota (HGM) that target otherwise indigestible dietary fiber with an arsenal of polysaccharide utilization loci (PULs), each of which is dedicated to the utilization of a specific complex carbohydrate. Here, we provide novel insight into this paradigm through functional characterization of homologous PULs from three autochthonous Bacteroides species, which target the family of dietary β(1,3)-glucans. Through detailed biochemical and protein structural analysis, we observed an unexpected diversity in the substrate specificity of PUL glycosidases and glycan-binding proteins with regard to β(1,3)-glucan linkage and branching patterns. In combination, these individual enzyme and protein specificities support taxon-specific growth on individual β(1,3)-glucans. This detailed metabolic insight, together with a comprehensive survey of individual 1,3GULs across human populations, further expands the fundamental roadmap of the HGM, with potential application to the future development of microbial intervention therapies. Full Article
bet Burkholderia ubonensis Meropenem Resistance: Insights into Distinct Properties of Class A {beta}-Lactamases in Burkholderia cepacia Complex and Burkholderia pseudomallei Complex Bacteria By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT Burkholderia pseudomallei, the founding member of the B. pseudomallei complex (Bpc), is a biothreat agent and causes melioidosis, a disease whose treatment mainly relies on ceftazidime and meropenem. The concern is that B. pseudomallei could enhance its drug resistance repertoire by the acquisition of DNA from resistant near-neighbor species. Burkholderia ubonensis, a member of the B. cepacia complex (Bcc), is commonly coisolated from environments where B. pseudomallei is present. Unlike B. pseudomallei, in which significant primary carbapenem resistance is rare, it is not uncommon in B. ubonensis, but the underlying mechanisms are unknown. We established that carbapenem resistance in B. ubonensis is due to an inducible class A PenB β-lactamase, as has been shown for other Bcc bacteria. Inducibility is not sufficient for high-level resistance but also requires other determinants, such as a PenB that is more robust than that present in susceptible isolates, as well as other resistance factors. Curiously and diagnostic for the two complexes, both Bpc and Bcc bacteria contain distinct annotated PenA class A β-lactamases. However, the protein from Bcc bacteria is missing its essential active-site serine and, therefore, is not a β-lactamase. Regulated expression of a transcriptional penB'-lacZ (β-galactosidase) fusion in the B. pseudomallei surrogate B. thailandensis confirms that although Bpc bacteria lack an inducible β-lactamase, they contain the components required for responding to aberrant peptidoglycan synthesis resulting from β-lactam challenge. Understanding the diversity of antimicrobial resistance in Burkholderia species is informative about how the challenges arising from potential resistance transfer between them can be met. IMPORTANCE Burkholderia pseudomallei causes melioidosis, a tropical disease that is highly fatal if not properly treated. Our data show that, in contrast to B. pseudomallei, B. ubonensis β-lactam resistance is fundamentally different because intrinsic resistance is mediated by an inducible class A β-lactamase. This includes resistance to carbapenems. Our work demonstrates that studies with near-neighbor species are informative about the diversity of antimicrobial resistance in Burkholderia and can also provide clues about the potential of resistance transfer between bacteria inhabiting the same environment. Knowledge about potential adverse challenges resulting from the horizontal transfer of resistance genes between members of the two complexes enables the design of effective countermeasures. Full Article
bet Building local connections could help reduce violent encounters between police, black men By thenationshealth.aphapublications.org Published On :: 2020-05-01T05:00:17-07:00 Finding common ground and building trust between local stakeholders could help prevent violent encounters between police and young black men, new research finds. Full Article
bet Engaging the Power of Communities for Better Health By www.ncmedicaljournal.com Published On :: 2020-05-04T06:50:30-07:00 Authentically engaging community residents is necessary to impact social drivers of health. Acknowledging the value of residents' lived experiences in the planning, implementation, and financial decisions of community engagement initiatives is key. Sustainability of community engagement initiatives depends on open communication and follow-through on commitments. Full Article
bet A Cohort Comparison of Differences Between Regional and Buncombe County Patients of a Comprehensive Perinatal Substance Use Disorders Program in Western North Carolina By www.ncmedicaljournal.com Published On :: 2020-05-04T06:50:30-07:00 BACKGROUND Pregnant patients from rural counties of Western North Carolina face additional barriers when accessing comprehensive perinatal substance use disorders care at Project CARA as compared to patients local to the program in Buncombe County. We hypothesized regional patients would be less engaged in care. METHOD Using a retrospective cohort design, univariate analyses (2, t-test; P < .05) compared patients' characteristics, engagement in care, and delivery outcomes. Engagement in care, the primary outcome, was operationalized as: attendance at expected, program-specific prenatal and postpartum visits, utilization of in-house counseling, community-based and/or inpatient substance use disorders treatment, and maternal urine drug screen at delivery negative for illicit substances. RESULTS Regional patients (n = 324) were more likely than Buncombe County patients (n = 284) to have opioid [209 (64.5%) versus 162 (57.0%)] or amphetamine/methamphetamine use disorders (25 [7.7%] versus 13 [4.6%]), but less likely to have cannabis use (19 [5.9%] versus 38 [13.4%]; P = .009) and concurrent psychiatric disorders (214 [66.0%] versus 220 [77.5%]; P = .002). Engagement at postpartum visits was the significantly different outcome between patients (110/221 [49.8%] versus 146/226 [64.6%]; P = .002). LIMITATIONS Outcomes were available for 66.8% of regional and 79.6% of Buncombe County patients of one program in one predominately white, non-Hispanic region of the state. CONCLUSION Contrary to our hypothesis, regional and Buncombe County women engaged in prenatal care equally. However, a more formal transition into the postpartum period is needed, especially for regional women. A "hub-and-spokes" model that extends delivery of perinatal substance use disorders care into rural communities may be more effective for engagement retention. Full Article
bet Phosphoregulation within the Photorespiratory Cycle: Regulate Smarter, Adapt Better? By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Full Article
bet Cerebral venous thrombosis: Associations between disease severity and cardiac markers By cp.neurology.org Published On :: 2020-04-06T12:45:20-07:00 Background Plasma cardiac troponin (cTn) elevation occurs in acute ischemic stroke and intracranial hemorrhage and can suggest a poor prognosis. Because acute cerebral venous thrombosis (CVT) might lead to venous stasis, which could result in cardiac stress, it is important to evaluate whether cTn elevation occurs in patients with CVT. Methods Inpatients at Johns Hopkins Hospital from 2005 to 2015 meeting the following criteria were included: CVT (ICD-9 codes with radiologic confirmation) and available admission electrocardiogram (ECG) and cTn level. In regression models, presence of ECG abnormalities and cTn elevation (>0.06 ng/mL) were evaluated as dependent variables in separate models, with location and severity of CVT involvement as independent variables, adjusted for age, sex, and hypertension. Results Of 81 patients with CVST, 53 (66%) met the inclusion criteria. Participants were, on average, aged 42 years, white (71%), and female (66%). The left transverse sinus was most commonly thrombosed (47%), with 66% having >2 veins thrombosed. Twenty-two (41%) had cTn elevation. Odds of cTn elevation increased per each additional vein thrombosed (adjusted OR 2.79, 95% CI [1.08–7.23]). Of those with deep venous involvement, 37.5% had cTn elevation compared with 4.4% without deep clots (p = 0.02). Venous infarction (n = 15) was associated with a higher mean cTn (0.14 vs 0.02 ng/mL, p = 0.009) and was predictive of a higher cTn in adjusted models (β = 0.15, 95% CI [0.06–0.25]). Conclusions In this single-center cohort study, markers of CVT severity were associated with increased odds of cTn elevation; further investigation is needed to elucidate causality and significance. Full Article
bet Complexes between C-Reactive Protein and Very Low Density Lipoprotein Delay Bacterial Clearance in Sepsis [INFECTIOUS DISEASE AND HOST RESPONSE] By www.jimmunol.org Published On :: 2020-05-04T13:00:27-07:00 Key Points Kupffer cells phagocytose both bacteria and CRP–VLDL complexes. High levels of CRP–VLDL complexes delay bacterial clearance. Pch disrupts CRP–VLDL complexes to improve bacterial clearance. Full Article
bet Putative {beta}-Barrel Outer Membrane Proteins of the Bovine Digital Dermatitis-Associated Treponemes: Identification, Functional Characterization, and Immunogenicity [Microbial Immunity and Vaccines] By iai.asm.org Published On :: 2020-04-20T08:00:38-07:00 Bovine digital dermatitis (BDD), an infectious disease of the bovine foot with a predominant treponemal etiology, is a leading cause of lameness in dairy and beef herds worldwide. BDD is poorly responsive to antimicrobial therapy and exhibits a relapsing clinical course; an effective vaccine is therefore urgently sought. Using a reverse vaccinology approach, the present study surveyed the genomes of the three BDD-associated Treponema phylogroups for putative β-barrel outer membrane proteins and considered their potential as vaccine candidates. Selection criteria included the presence of a signal peptidase I cleavage site, a predicted β-barrel fold, and cross-phylogroup homology. Four candidate genes were overexpressed in Escherichia coli BL21(DE3), refolded, and purified. Consistent with their classification as β-barrel OMPs, circular-dichroism spectroscopy revealed the adoption of a predominantly β-sheet secondary structure. These recombinant proteins, when screened for their ability to adhere to immobilized extracellular matrix (ECM) components, exhibited a diverse range of ligand specificities. All four proteins specifically and dose dependently adhered to bovine fibrinogen. One recombinant protein was identified as a candidate diagnostic antigen (disease specificity, 75%). Finally, when adjuvanted with aluminum hydroxide and administered to BDD-naive calves using a prime-boost vaccination protocol, these proteins were immunogenic, eliciting specific IgG antibodies. In summary, we present the description of four putative treponemal β-barrel OMPs that exhibit the characteristics of multispecific adhesins. The observed interactions with fibrinogen may be critical to host colonization and it is hypothesized that vaccination-induced antibody blockade of these interactions will impede treponemal virulence and thus be of therapeutic value. Full Article
bet Opinion: We need a global movement to transform ocean science for a better world [Sustainability Science] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 The ocean is our planet’s largest life-support system. It stabilizes climate; stores carbon; produces oxygen; nurtures biodiversity; directly supports human well-being through food, mineral, and energy resources; and provides cultural and recreational services. The value of the ocean economy speaks to its importance: The Organization for Economic Cooperation and Development... Full Article
bet Closing the gap between mind and brain with the dynamic connectome [Neuroscience] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 At the pinnacle of the 17th century scientific revolution, René Descartes, the father of modern philosophy, published his monumental Meditations on First Philosophy (1), in which he proposed a division between soul and body—mind and brain—with the former in charge of our thoughts and conscious decisions (res cogitans) and the... Full Article
bet Designing and Evaluating a Prediabetes Shared Decision Aid By www.jabfm.org Published On :: 2020-03-16T09:31:37-07:00 Background: Prediabetes is increasing in prevalence and is associated with risk of developing diabetes, heart disease, stroke, and retinopathy. Clinicians have limited tools to facilitate prediabetes discussions within primary care visits. Purpose: 1) Develop a Patient and Stakeholder Advisory Committee (PASAC) to design, evaluate, and revise a prediabetes shared decision aid, and 2) evaluate the feasibility and experience of implementing the tool within primary care practice. Methods: A prediabetes decision aid (double-sided infographic with decision questions) was created by a PASAC that included patients, primary care clinicians, diabetes educators, endocrinologists, and pharmacists. Five clinicians within 3 primary care practices tested the prediabetes tool with 50 adult patients with prediabetes. Patients completed 2 surveys immediately after the office visit and 6 weeks later. Clinicians and PASAC members completed a postintervention survey. Results: The prediabetes shared decision aid was created through a deliberative process over 3 PASAC meetings. Ninety-six percent of patients felt the tool prepared them to decide on a diabetes prevention plan, and 100% of clinicians would use the tool again and felt the tool did not extend visit length. Discussion: It was feasible to cocreate a prediabetes shared decision aid within a PASAC and implement the tool within a primary care setting. Patients and clinicians reported a prediabetes discussion, which may mitigate rates of progression to diabetes and associated complications. Future research should evaluate which of the intervention components most effectively promotes discussion of prediabetes within a primary care setting. Full Article
bet Turning Points as Opportunities to Partner with Patients Living with type 2 Diabetes or Prediabetes By www.jabfm.org Published On :: 2020-03-16T09:31:37-07:00 Introduction: Understanding patients’ perspectives about their diabetes and what causes those perspectives to shift is critical to building a treatment strategy with the patient and facilitating patient self-management behavior. Key "turning points" can provide crucial opportunities to enact a change in perspective. The goal of this study is to identify "turning points" that have significance to diabetes-related health. Methods: Research coordinators interviewed 33 patients aged 25 to 65 diagnosed with type 2 diabetes mellitus or prediabetes at medical centers in Augusta, Georgia, and Las Vegas, Nevada. Retrospective interview technique and turning point analysis was employed to plot health or diabetes management changes from diagnosis up to the present day. The constant comparative method was used to conduct a thematic analysis. Axial coding identified properties characterizing each turning point. Results: Patients reported 5 interrelated turning points occurring at various times after diagnosis: 1) gaining knowledge, either through patients own research and/or a health care class; 2) making lifestyle changes, including exercising and healthier eating; 3) encountering a life-changing event/transition, including events that derailed healthy behavior, motivated health behavior, and removed barriers to enacting healthy behavior; 4) receiving social support, either through holding patients accountable or encouraging them to enact healthy behavior; and 5) interacting with clinicians, such as medication changes or behavior changes critical to disease management. Discussion: These turning points provide specific moments throughout diabetes care in which family physicians can effectively partner with patients. By prompting, facilitating, or attending to these turning points, family physicians can partner with patients throughout diabetes care. Full Article
bet Lowering Gestational Diabetes Risk by Prenatal Weight Gain Counseling By www.jabfm.org Published On :: 2020-03-16T09:31:37-07:00 Purpose: Excess weight gain during pregnancy is at epidemic proportions, and pregnancy complications are also on the rise. We sought to determine whether better weight gain counseling of expectant mothers will improve obstetric outcomes. Methods: Our historic control study design included 2 years of preintervention data, then 6 months of physician and staff training in prenatal weight gain counseling in accordance with 2009 Institute of Medicine guidelines, and finally, 2 more years of data collection for postintervention outcomes. Seven family medicine residency clinics monitored 1571 continuity prenatal cases. Counseling recommendations were noted and the following outcomes were analyzed: gestational age, birth weight, route of delivery, and the incidences of hypertension and gestational diabetes. Multiple logistic regression was used to control for demographic variables and body mass index at enrollment. Results: Institute of Medicine congruent counseling increased from 10% to 63% (P < .01). Excess weight gain decreased from 46.4% to 41.5% (adjusted odds ratio [AOR] = 0.85; 95% CI, 0.63–1.16; P = .10). Gestational diabetes decreased significantly from 11.5% to 7.3% (P = .008). The difference remained statistically significant even after adjusting for prepregnancy obesity and other clinical and demographic characteristics (AOR = 0.54; 95% CI, 0.32–0.91; P = .02). Differences in gestational age, birth weight, hypertension, primary cesarean, and shoulder dystocia were not statistically significant. Conclusions: Improved weight gain counseling of prenatal patients by physicians did reduce the pregnancy complication of gestational diabetes. This occurred even though the trend toward less excess weight gain was not statistically significant. Full Article
bet Secondary osteon structural heterogeneity between the cranial and caudal cortices of the proximal humerus in white-tailed deer [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-05-04T02:24:22-07:00 Jack Nguyen and Meir M. BarakCortical bone remodeling is an ongoing process triggered by microdamage, where osteoclasts resorb existing bone and osteoblasts deposit new bone in the form of secondary osteons (Haversian systems). Previous studies revealed regional variance in Haversian systems structure and possibly material, between opposite cortices of the same bone. As bone mechanical properties depend on tissue structure and material, it is predicted that bone mechanical properties will vary in accordance with structural and material regional heterogeneity. To test this hypothesis, we analyzed the structure, mineral content and compressive stiffness of secondary bone from the cranial and caudal cortices of the white-tailed deer proximal humerus. We found significantly larger Haversian systems and canals in the cranial cortex but no significant difference in mineral content between the two cortices. Accordingly, we found no difference in compressive stiffness between the two cortices and thus our working hypothesis was rejected. Seeing that the deer humerus is curved and thus likely subjected to bending during habitual locomotion, we expect that similar to other curved long bones, the cranial cortex of the deer humerus is likely subjected primarily to tensile strains and the caudal cortex is likely subject primarily to compressive strains. Consequently, our results suggest that strain magnitude (larger in compression) and sign (compression vs. tension) affect differently the osteoclasts and osteoblasts in the BMU. Our results further suggest that osteoclasts are inhibited in regions of high compressive strains (creating smaller Haversian systems) while osteoblasts’ osteoid deposition and mineralization is not affected by strain magnitude and sign. Full Article
bet Interaction between Epithelial Sodium Channel {gamma}-Subunit and Claudin-8 Modulates Paracellular Sodium Permeability in Renal Collecting Duct By jasn.asnjournals.org Published On :: 2020-04-30T10:00:30-07:00 Background Water and solute transport across epithelia can occur via the transcellular or paracellular pathways. Tight junctions play a key role in mediating paracellular ion reabsorption in the kidney. In the renal collecting duct, which is a typical absorptive tight epithelium, coordination between transcellular sodium reabsorption and paracellular permeability may prevent the backflow of reabsorbed sodium to the tubular lumen along a steep electrochemical gradient. Methods To investigate whether transcellular sodium transport controls tight-junction composition and paracellular permeability via modulating expression of the transmembrane protein claudin-8, we used cultured mouse cortical collecting duct cells to see how overexpression or silencing of epithelial sodium channel (ENaC) subunits and claudin-8 affect paracellular permeability. We also used conditional kidney tubule–specific knockout mice lacking ENaC subunits to assess the ENaC’s effect on claudin-8 expression. Results Overexpression or silencing of the ENaC -subunit was associated with parallel and specific changes in claudin-8 abundance. Increased claudin-8 abundance was associated with a reduction in paracellular permeability to sodium, whereas decreased claudin-8 abundance was associated with the opposite effect. Claudin-8 overexpression and silencing reproduced these functional effects on paracellular ion permeability. Conditional kidney tubule–specific ENaC -subunit knockout mice displayed decreased claudin-8 expression, confirming the cell culture experiments' findings. Importantly, ENaC β-subunit or α-subunit silencing or kidney tubule–specific β-ENaC or α-ENaC knockout mice did not alter claudin-8 abundance. Conclusions Our data reveal the specific coupling between ENaC -subunit and claudin-8 expression. This coupling may play an important role in preventing the backflow of reabsorbed solutes and water to the tubular lumen, as well as in coupling paracellular and transcellular sodium permeability. Full Article
bet ARHGEF7 ({beta}-PIX) Is Required for the Maintenance of Podocyte Architecture and Glomerular Function By jasn.asnjournals.org Published On :: 2020-04-30T10:00:29-07:00 Background Previous studies showed that Cdc42, a member of the prototypical Rho family of small GTPases and a regulator of the actin cytoskeleton, is critical for the normal development and health of podocytes. However, upstream regulatory mechanisms for Cdc42 activity in podocytes are largely unknown. Methods We used a proximity-based ligation assay, BioID, to identify guanine nucleotide exchange factors that activate Cdc42 in immortalized human podocytes. We generated podocyte-specific ARHGEF7 (commonly known as β-PIX) knockout mice by crossing β-PIX floxed mice with Podocin-Cre mice. Using shRNA, we established cultured mouse podocytes with β-PIX knockdown and their controls. Results We identified β-PIX as a predominant guanine nucleotide exchange factor that interacts with Cdc42 in human podocytes. Podocyte-specific β-PIX knockout mice developed progressive proteinuria and kidney failure with global or segmental glomerulosclerosis in adulthood. Glomerular podocyte density gradually decreased in podocyte-specific β-PIX knockout mice, indicating podocyte loss. Compared with controls, glomeruli from podocyte-specific β-PIX knockout mice and cultured mouse podocytes with β-PIX knockdown exhibited significant reduction in Cdc42 activity. Loss of β-PIX promoted podocyte apoptosis, which was mediated by the reduced activity of the prosurvival transcriptional regulator Yes-associated protein. Conclusions These findings indicate that β-PIX is required for the maintenance of podocyte architecture and glomerular function via Cdc42 and its downstream Yes-associated protein activities. This appears to be the first evidence that a Rho–guanine nucleotide exchange factor plays a critical role in podocytes. Full Article
bet Role of Impaired Nutrient and Oxygen Deprivation Signaling and Deficient Autophagic Flux in Diabetic CKD Development: Implications for Understanding the Effects of Sodium-Glucose Cotransporter 2-Inhibitors By jasn.asnjournals.org Published On :: 2020-04-30T10:00:29-07:00 Growing evidence indicates that oxidative and endoplasmic reticular stress, which trigger changes in ion channels and inflammatory pathways that may undermine cellular homeostasis and survival, are critical determinants of injury in the diabetic kidney. Cells are normally able to mitigate these cellular stresses by maintaining high levels of autophagy, an intracellular lysosome-dependent degradative pathway that clears the cytoplasm of dysfunctional organelles. However, the capacity for autophagy in both podocytes and renal tubular cells is markedly impaired in type 2 diabetes, and this deficiency contributes importantly to the intensity of renal injury. The primary drivers of autophagy in states of nutrient and oxygen deprivation—sirtuin-1 (SIRT1), AMP-activated protein kinase (AMPK), and hypoxia-inducible factors (HIF-1α and HIF-2α)—can exert renoprotective effects by promoting autophagic flux and by exerting direct effects on sodium transport and inflammasome activation. Type 2 diabetes is characterized by marked suppression of SIRT1 and AMPK, leading to a diminution in autophagic flux in glomerular podocytes and renal tubules and markedly increasing their susceptibility to renal injury. Importantly, because insulin acts to depress autophagic flux, these derangements in nutrient deprivation signaling are not ameliorated by antihyperglycemic drugs that enhance insulin secretion or signaling. Metformin is an established AMPK agonist that can promote autophagy, but its effects on the course of CKD have been demonstrated only in the experimental setting. In contrast, the effects of sodium-glucose cotransporter–2 (SGLT2) inhibitors may be related primarily to enhanced SIRT1 and HIF-2α signaling; this can explain the effects of SGLT2 inhibitors to promote ketonemia and erythrocytosis and potentially underlies their actions to increase autophagy and mute inflammation in the diabetic kidney. These distinctions may contribute importantly to the consistent benefit of SGLT2 inhibitors to slow the deterioration in glomerular function and reduce the risk of ESKD in large-scale randomized clinical trials of patients with type 2 diabetes. Full Article
bet Transitions between the steps of forward and reverse splicing of group IIC introns [ARTICLE] By rnajournal.cshlp.org Published On :: 2020-04-16T06:30:22-07:00 Group II introns are mobile genetic elements that perform both self-splicing and intron mobility reactions. These ribozymes are comprised of a catalytic RNA core that binds to an intron-encoded protein (IEP) to form a ribonucleoprotein (RNP) complex. Splicing proceeds through two competing reactions: hydrolysis or branching. Group IIC intron ribozymes have a minimal RNA architecture, and splice almost exclusively through hydrolysis in ribozyme reactions. Addition of the IEP allows the splicing reaction to form branched lariat RNPs capable of intron mobility. Here we examine ribozyme splicing, IEP-dependent splicing, and mobility reactions of a group IIC intron from the thermophilic bacterium Thermoanerobacter italicus (Ta.it.I1). We show that Ta.it.I1 is highly active for ribozyme activity, forming linear hydrolytic intron products. Addition of purified IEP switches activity to the canonical lariat forming splicing reaction. We demonstrate that the Ta.it.I1 group IIC intron coordinates the progression of the forward splicing reaction through a –' interaction between intron domains II and VI. We further show that branched splicing is supported in the absence of the IEP when the –' interaction is mutated. We also investigated the regulation of the two steps of reverse splicing during intron mobility into DNA substrates. Using a fluorescent mobility assay that simultaneously visualizes all steps of intron integration into DNA, we show that completion of reverse splicing is tightly coupled to cDNA synthesis regardless of mutation of the –' interaction. Full Article
bet Evaluation of Quantitative Relationship Between Target Expression and Antibody-Drug Conjugate Exposure Inside Cancer Cells [Articles] By dmd.aspetjournals.org Published On :: 2020-04-09T08:02:00-07:00 Antibody-drug conjugates (ADCs) employ overexpressed cell surface antigens to deliver cytotoxic payloads inside cancer cells. However, the relationship between target expression and ADC efficacy remains ambiguous. In this manuscript, we have addressed a part of this ambiguity by quantitatively investigating the effect of antigen expression levels on ADC exposure within cancer cells. Trastuzumab-valine-citrulline-monomethyl auristatin E was used as a model ADC, and four different cell lines with diverse levels of human epidermal growth factor receptor 2 (HER2) expression were used as model cells. The pharmacokinetics (PK) of total trastuzumab, released monomethyl auristatin E (MMAE), and total MMAE were measured inside the cells and in the cell culture media following incubation with two different concentrations of ADC. In addition, target expression levels, target internalization rate, and cathepsin B and MDR1 protein concentrations were determined for each cell line. All the PK data were mathematically characterized using a cell-level systems PK model for ADC. It was found that SKBR-3, MDA-MB-453, MCF-7, and MDA-MB-468 cells had ~800,000, ~250,000, ~50,000, and ~10,000 HER2 receptors per cell, respectively. A strong linear relationship (R2 > 0.9) was observed between HER2 receptor count and released MMAE exposure inside the cancer cells. There was an inverse relationship found between HER2 expression level and internalization rate, and cathepsin B and multidrug resistance protein 1 (MDR1) expression level varied slightly among the cell lines. The PK model was able to simultaneously capture all the PK profiles reasonably well while estimating only two parameters. Our results demonstrate a strong quantitative relationship between antigen expression level and intracellular exposure of ADCs in cancer cells. SIGNIFICANCE STATEMENT In this manuscript, we have demonstrated a strong linear relationship between target expression level and antibody-drug conjugate (ADC) exposure inside cancer cells. We have also shown that this relationship can be accurately captured using the cell-level systems pharmacokinetics model developed for ADCs. Our results indirectly suggest that the lack of relationship between target expression and efficacy of ADC may stem from differences in the pharmacodynamic properties of cancer cells. Full Article
bet Brain manganese and the balance between essential roles and neurotoxicity [Molecular Bases of Disease] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Manganese (Mn) is an essential micronutrient required for the normal development of many organs, including the brain. Although its roles as a cofactor in several enzymes and in maintaining optimal physiology are well-known, the overall biological functions of Mn are rather poorly understood. Alterations in body Mn status are associated with altered neuronal physiology and cognition in humans, and either overexposure or (more rarely) insufficiency can cause neurological dysfunction. The resultant balancing act can be viewed as a hormetic U-shaped relationship for biological Mn status and optimal brain health, with changes in the brain leading to physiological effects throughout the body and vice versa. This review discusses Mn homeostasis, biomarkers, molecular mechanisms of cellular transport, and neuropathological changes associated with disruptions of Mn homeostasis, especially in its excess, and identifies gaps in our understanding of the molecular and biochemical mechanisms underlying Mn homeostasis and neurotoxicity. Full Article
bet Infant of a Diabetic Mother With an Anomaly By neoreviews.aappublications.org Published On :: 2020-05-01T01:00:20-07:00 Full Article
bet Establishing and quantifying the causal linkage between drainage and earthworks performance for Highways England By qjegh.lyellcollection.org Published On :: 2020-05-01T00:46:18-07:00 Transportation infrastructure owners manage an array of different asset types such as bridges, road pavements, earthworks and drainage. Currently, most organization management procedures are siloed by asset type; however, there are important interactions between these asset groups that need to be managed in a cross-asset way. Although these interactions are known, there is little or no quantification of these interactions. For the first time, this paper quantifies that 74% of Highways England's earthwork failures are a result of drainage-related problems, either the lack of drainage infrastructure or the poor performance of it. The analysis undertaken is an important first step not only in moving towards more connected asset management planning for earthworks and drainage, but to also provide guidance for other owners of earthwork infrastructure assets to improve their strategic asset management procedures. Thematic collection: This article is part of the Ground-related risk to transportation infrastructure collection available at https://www.lyellcollection.org/cc/Ground-related-risk-to-transportation-infrastructure Full Article
bet Genomic Investigation Reveals Contaminated Detergent as the Source of an Extended-Spectrum-{beta}-Lactamase-Producing Klebsiella michiganensis Outbreak in a Neonatal Unit [Bacteriology] By jcm.asm.org Published On :: 2020-04-23T08:00:29-07:00 Klebsiella species are problematic pathogens in neonatal units and may cause outbreaks, for which the sources of transmission may be challenging to elucidate. We describe the use of whole-genome sequencing (WGS) to investigate environmental sources of transmission during an outbreak of extended-spectrum-β-lactamase (ESBL)-producing Klebsiella michiganensis colonizing neonates. Ceftriaxone-resistant Klebsiella spp. isolated from neonates (or their mothers) and the hospital environment were included. Short-read sequencing (Illumina) and long-read sequencing (MinION; Oxford Nanopore Technologies) were used to confirm species taxonomy, to identify antimicrobial resistance genes, and to determine phylogenetic relationships using single-nucleotide polymorphism profiling. A total of 21 organisms (10 patient-derived isolates and 11 environmental isolates) were sequenced. Standard laboratory methods identified the outbreak strain as an ESBL-producing Klebsiella oxytoca, but taxonomic assignment from WGS data suggested closer identity to Klebsiella michiganensis. Strains isolated from multiple detergent-dispensing bottles were either identical or closely related by single-nucleotide polymorphism comparison. Detergent bottles contaminated by K. michiganensis had been used for washing milk expression equipment. No new cases were identified once the detergent bottles were removed. Environmental reservoirs may be an important source in outbreaks of multidrug-resistant organisms. WGS, in conjunction with traditional epidemiological investigation, can be instrumental in revealing routes of transmission and guiding infection control responses. Full Article
bet Fourier Transform Infrared Spectroscopy Is a New Option for Outbreak Investigation: a Retrospective Analysis of an Extended-Spectrum-Beta-Lactamase-Producing Klebsiella pneumoniae Outbreak in a Neonatal Intensive Care Unit [Epidemiology] By jcm.asm.org Published On :: 2020-04-23T08:00:28-07:00 The IR Biotyper is a new automated typing system based on Fourier-transform infrared (FT-IR) spectroscopy that gives results within 4 h. We aimed (i) to use the IR Biotyper to retrospectively analyze an outbreak of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae (ESBL-KP) in a neonatal intensive care unit and to compare results to BOX-PCR and whole-genome sequencing (WGS) results as the gold standard and (ii) to assess how the cutoff values used to define clusters affect the discriminatory power of the IR Biotyper. The sample consisted of 18 isolates from 14 patients. Specimens were analyzed in the IR Biotyper using the default analysis settings, and spectra were analyzed using OPUS 7.5 software. The software contains a feature that automatically proposes a cutoff value to define clusters; the cutoff value defines up to which distance the spectra are considered to be in the same cluster. Based on FT-IR, the outbreak represented 1 dominant clone, 1 secondary clone, and several unrelated clones. FT-IR results, using the cutoff value generated by the accompanying software after 4 replicates, were concordant with WGS for all but 1 isolate. BOX-PCR was underdiscriminatory compared to the other two methods. Using the cutoff value generated after 12 replicates, the results of FT-IR and WGS were completely concordant. The IR Biotyper can achieve the same typeability and discriminatory power as genome-based methods. However, to attain this high performance requires either previous, strain-dependent knowledge about the optimal technical parameters to be used or validation by a second method. Full Article
bet Regenerative responses following DNA damage - {beta}-catenin mediates head regrowth in the planarian Schmidtea mediterranea [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-24T07:56:32-07:00 Annelies Wouters, Jan-Pieter Ploem, Sabine A. S. Langie, Tom Artois, Aziz Aboobaker, and Karen Smeets Pluripotent stem cells hold great potential for regenerative medicine. Increased replication and division, such is the case during regeneration, concomitantly increases the risk of adverse outcomes through the acquisition of mutations. Seeking for driving mechanisms of such outcomes, we challenged a pluripotent stem cell system during the tightly controlled regeneration process in the planarian Schmidtea mediterranea. Exposure to the genotoxic compound methyl methanesulfonate (MMS) revealed that despite a similar DNA-damaging effect along the anteroposterior axis of intact animals, responses differed between anterior and posterior fragments after amputation. Stem cell proliferation and differentiation proceeded successfully in the amputated heads, leading to regeneration of missing tissues. Stem cells in the amputated tails showed decreased proliferation and differentiation capacity. As a result, tails could not regenerate. Interference with the body-axis-associated component β-catenin-1 increased regenerative success in tail fragments by stimulating proliferation at an early time point. Our results suggest that differences in the Wnt signalling gradient along the body axis modulate stem cell responses to MMS. Full Article
bet Direct interaction between CEP85 and STIL mediates PLK4-driven directed cell migration [SHORT REPORT] By jcs.biologists.org Published On :: 2020-04-23T02:02:51-07:00 Yi Liu, Jaeyoun Kim, Reuben Philip, Vaishali Sridhar, Megha Chandrashekhar, Jason Moffat, Mark van Breugel, and Laurence Pelletier PLK4 has emerged as a prime target for cancer therapeutics, and its overexpression is frequently observed in various types of human cancer. Recent studies have further revealed an unexpected oncogenic activity of PLK4 in regulating cancer cell migration and invasion. However, the molecular basis behind the role of PLK4 in these processes still remains only partly understood. Our previous work has demonstrated that an intact CEP85–STIL binding interface is necessary for robust PLK4 activation and centriole duplication. Here, we show that CEP85 and STIL are also required for directional cancer cell migration. Mutational and functional analyses reveal that the interactions between CEP85, STIL and PLK4 are essential for effective directional cell motility. Mechanistically, we show that PLK4 can drive the recruitment of CEP85 and STIL to the leading edge of cells to promote protrusive activity, and that downregulation of CEP85 and STIL leads to a reduction in ARP2 (also known as ACTR2) phosphorylation and reorganization of the actin cytoskeleton, which in turn impairs cell migration. Collectively, our studies provide molecular insight into the important role of the CEP85–STIL complex in modulating PLK4-driven cancer cell migration. This article has an associated First Person interview with the first author of the paper. Full Article
bet Proteinase-Activated Receptor 4 Activation Triggers Cell Membrane Blebbing through RhoA and {beta}-Arrestin [Articles] By molpharm.aspetjournals.org Published On :: 2020-05-06T13:11:09-07:00 Proteinase-activated receptors (PARs) are a four-member family of G-protein–coupled receptors that are activated via proteolysis. PAR4 is a member of this family that is cleaved and activated by serine proteinases such as thrombin, trypsin, and cathepsin-G. PAR4 is expressed in a variety of tissues and cell types, including platelets, vascular smooth muscle cells, and neuronal cells. In studying PAR4 signaling and trafficking, we observed dynamic changes in the cell membrane, with spherical membrane protrusions that resemble plasma membrane blebbing. Since nonapoptotic membrane blebbing is now recognized as an important regulator of cell migration, cancer cell invasion, and vesicular content release, we sought to elucidate the signaling pathway downstream of PAR4 activation that leads to such events. Using a combination of pharmacological inhibition and CRISPR/CRISPR-associated protein 9 (Cas9)–mediated gene editing approaches, we establish that PAR4-dependent membrane blebbing occurs independently of the Gαq/11- and Gαi-signaling pathways and is dependent on signaling via the β-arrestin-1/2 and Ras homolog family member A (RhoA) signaling pathways. Together these studies provide further mechanistic insight into PAR4 regulation of cellular function. SIGNIFICANCE STATEMENT We find that the thrombin receptor PAR4 triggers cell membrane blebbing in a RhoA–and β-arrestin–dependent manner. In addition to identifying novel cellular responses mediated by PAR4, these data provide further evidence for biased signaling in PAR4 since membrane blebbing was dependent on some, but not all, signaling pathways activated by PAR4. Full Article
bet A Conversation Between Ignasi Carrio and Ken Herrmann By jnm.snmjournals.org Published On :: 2020-05-01T06:31:37-07:00 Full Article
bet Increased Cardiovascular Response to a 6-Minute Walk Test in People With Type 2 Diabetes By spectrum.diabetesjournals.org Published On :: 2020-02-14T06:59:49-08:00 Background and objective Exercise is a cornerstone of management for type 2 diabetes; however, little is known about the cardiovascular (CV) response to submaximal functional exercise in people with type 2 diabetes. The aim of this study was to compare performance and CV response during a 6-minute walk test (6MWT) between people with type 2 diabetes and matched control subjects. Methods CV response and distance walked during the 6MWT were assessed in 30 people with type 2 diabetes, matched for age, body composition, physical activity, and estimated aerobic capacity with 34 control subjects (type 2 diabetes group: 16 men, 59.8 ± 8.8 years of age, 33.3 ± 10.9% body fat, physical activity of 7,968 ± 3,236 steps·day–1, estimated aerobic capacity 31.9 ± 11.1 mLO2·kg–1·min–1; control group: 19 men, 59.3 ± 8.8 years of age, 32.7 ± 8.5% body fat, physical activity 8,228 ± 2,941 steps·day–1, estimated aerobic capacity 34.9 ± 15.4 mLO2·kg–1·min–1). Results People with type 2 diabetes walked a similar distance (590 ± 75 vs. 605 ± 69 m; P = 0.458) compared with control subjects during the 6MWT and had similar ratings of perceived exertion (RPE) after the 6MWT (4.19 ± 1.56 vs. 3.65 ± 1.54, P = 0.147). However, at the end of the 6MWT, people with type 2 diabetes had a higher heart rate (108 ± 23 vs. 95 ± 18 beats·min–1; P = 0.048), systolic blood pressure (169 ± 26 vs. 147 ± 22 mmHg, P = 0.003), and rate-pressure product (18,762 ± 5,936 vs. 14,252 ± 4,330, P = 0.009) than control subjects. Conclusion Although people with type 2 diabetes had similar performance and RPE during the 6MWT compared with control subjects, the CV response was greater for people with type 2 diabetes, indicating greater cardiac effort for similar perceived effort and performance of 6MWT. These data suggest that observation and prescription of exercise intensity should include both perceived effort and CV response. Full Article
bet Development and Implementation of the Readiness Assessment of Emerging Adults With Type 1 Diabetes Diagnosed in Youth (READDY) Tool By spectrum.diabetesjournals.org Published On :: 2020-02-14T06:59:49-08:00 Full Article
bet #DiabetesPsychologyMatters By spectrum.diabetesjournals.org Published On :: 2020-02-14T06:59:49-08:00 Editor’s Note: This article was adapted from the address Dr. Snoek delivered as the recipient of the American Diabetes Association’s Richard R. Rubin Award for 2019. This award recognizes a behavioral researcher who has made outstanding, innovative contributions to the study and understanding of the behavioral aspects of diabetes in diverse populations. Dr. Snoek delivered the address in June 2019 at the Association’s 79th Scientific Sessions in San Francisco, CA. Full Article
bet The Most Important Thing We Give to People Is Hope: Overcoming Stigma in Diabetes and Obesity By spectrum.diabetesjournals.org Published On :: 2020-02-14T06:59:49-08:00 Editor’s Note: This article is adapted from the address Ms. Valentine delivered as the recipient of the American Diabetes Association’s (ADA’s) Outstanding Educator in Diabetes Award for 2019. She delivered the address in June 2019 at the Association’s 79th Scientific Sessions in San Francisco, CA. A webcast of this speech is available for viewing at the ADA website (professional.diabetes.org/webcast/outstanding-educator-diabetes-award-lecture%E2%80%94-most-important-thing-we-give-people-hope). Full Article