x Multiplex Genetic Engineering Exploiting Pyrimidine Salvage Pathway-Based Endogenous Counterselectable Markers By mbio.asm.org Published On :: 2020-04-07T01:31:16-07:00 ABSTRACT Selectable markers are indispensable for genetic engineering, yet their number and variety are limited. Most selection procedures for prototrophic cells rely on the introduction of antibiotic resistance genes. New minimally invasive tools are needed to facilitate sophisticated genetic manipulations. Here, we characterized three endogenous genes in the human fungal pathogen Aspergillus fumigatus for their potential as markers for targeted genomic insertions of DNAs of interest (DOIs). Since these genes are involved in uptake and metabolization of pyrimidines, resistance to the toxic effects of prodrugs 5-fluorocytosine and 5-fluorouracil can be used to select successfully integrated DOIs. We show that DOI integration, resulting in the inactivation of these genes, caused no adverse effects with respect to nutrient requirements, stress resistance, or virulence. Beside the individual use of markers for site-directed integration of reporter cassettes, including the 17-kb penicillin biosynthetic cluster, we demonstrate their sequential use by inserting three genes encoding fluorescent proteins into a single strain for simultaneous multicolor localization microscopy. In addition to A. fumigatus, we validated the applicability of this novel toolbox in Penicillium chrysogenum and Fusarium oxysporum. Enabling multiple targeted insertions of DOIs without the necessity for exogenous markers, this technology has the potential to significantly advance genetic engineering. IMPORTANCE This work reports the discovery of a novel genetic toolbox comprising multiple, endogenous selectable markers for targeted genomic insertions of DNAs of interest (DOIs). Marker genes encode proteins involved in 5-fluorocytosine uptake and pyrimidine salvage activities mediating 5-fluorocytosine deamination as well as 5-fluorouracil phosphoribosylation. The requirement for their genomic replacement by DOIs to confer 5-fluorocytosine or 5-fluorouracil resistance for transformation selection enforces site-specific integrations. Due to the fact that the described markers are endogenously encoded, there is no necessity for the exogenous introduction of commonly employed markers such as auxotrophy-complementing genes or antibiotic resistance cassettes. Importantly, inactivation of the described marker genes had no adverse effects on nutrient requirements, growth, or virulence of the human pathogen Aspergillus fumigatus. Given the limited number and distinct types of selectable markers available for the genetic manipulation of prototrophic strains such as wild-type strains, we anticipate that the proposed methodology will significantly advance genetic as well as metabolic engineering of fungal species. Full Article
x Intercellular Transmission of a Synthetic Bacterial Cytotoxic Prion-Like Protein in Mammalian Cells By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT RepA is a bacterial protein that builds intracellular amyloid oligomers acting as inhibitory complexes of plasmid DNA replication. When carrying a mutation enhancing its amyloidogenesis (A31V), the N-terminal domain (WH1) generates cytosolic amyloid particles that are inheritable within a bacterial lineage. Such amyloids trigger in bacteria a lethal cascade reminiscent of mitochondrial impairment in human cells affected by neurodegeneration. To fulfill all the criteria to qualify as a prion-like protein, horizontal (intercellular) transmissibility remains to be demonstrated for RepA-WH1. Since this is experimentally intractable in bacteria, here we transiently expressed in a murine neuroblastoma cell line the soluble, barely cytotoxic RepA-WH1 wild type [RepA-WH1(WT)] and assayed its response to exposure to in vitro-assembled RepA-WH1(A31V) amyloid fibers. In parallel, murine cells releasing RepA-WH1(A31V) aggregates were cocultured with human neuroblastoma cells expressing RepA-WH1(WT). Both the assembled fibers and donor-derived RepA-WH1(A31V) aggregates induced, in the cytosol of recipient cells, the formation of cytotoxic amyloid particles. Mass spectrometry analyses of the proteomes of both types of injured cells pointed to alterations in mitochondria, protein quality triage, signaling, and intracellular traffic. Thus, a synthetic prion-like protein can be propagated to, and become cytotoxic to, cells of organisms placed at such distant branches of the tree of life as bacteria and mammalia, suggesting that mechanisms of protein aggregate spreading and toxicity follow default pathways. IMPORTANCE Proteotoxic amyloid seeds can be transmitted between mammalian cells, arguing that the intercellular exchange of prion-like protein aggregates can be a common phenomenon. RepA-WH1 is derived from a bacterial intracellular functional amyloid protein, engineered to become cytotoxic in Escherichia coli. Here, we have studied if such bacterial aggregates can also be transmitted to, and become cytotoxic to, mammalian cells. We demonstrate that RepA-WH1 is capable of entering naive cells, thereby inducing the cytotoxic aggregation of a soluble RepA-WH1 variant expressed in the cytosol, following the same trend that had been described in bacteria. These findings highlight the universality of one of the central principles underlying prion biology: No matter the biological origin of a given prion-like protein, it can be transmitted to a phylogenetically unrelated recipient cell, provided that the latter expresses a soluble protein onto which the incoming protein can readily template its amyloid conformation. Full Article
x YejM Modulates Activity of the YciM/FtsH Protease Complex To Prevent Lethal Accumulation of Lipopolysaccharide By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT Lipopolysaccharide (LPS) is an essential glycolipid present in the outer membrane (OM) of many Gram-negative bacteria. Balanced biosynthesis of LPS is critical for cell viability; too little LPS weakens the OM, while too much LPS is lethal. In Escherichia coli, this balance is maintained by the YciM/FtsH protease complex, which adjusts LPS levels by degrading the LPS biosynthesis enzyme LpxC. Here, we provide evidence that activity of the YciM/FtsH protease complex is inhibited by the essential protein YejM. Using strains in which LpxC activity is reduced, we show that yciM is epistatic to yejM, demonstrating that YejM acts upstream of YciM to prevent toxic overproduction of LPS. Previous studies have shown that this toxicity can be suppressed by deleting lpp, which codes for a highly abundant OM lipoprotein. It was assumed that deletion of lpp restores lipid balance by increasing the number of acyl chains available for glycerophospholipid biosynthesis. We show that this is not the case. Rather, our data suggest that preventing attachment of lpp to the peptidoglycan sacculus allows excess LPS to be shed in vesicles. We propose that this loss of OM material allows continued transport of LPS to the OM, thus preventing lethal accumulation of LPS within the inner membrane. Overall, our data justify the commitment of three essential inner membrane proteins to avoid toxic over- or underproduction of LPS. IMPORTANCE Gram-negative bacteria are encapsulated by an outer membrane (OM) that is impermeable to large and hydrophobic molecules. As such, these bacteria are intrinsically resistant to several clinically relevant antibiotics. To better understand how the OM is established or maintained, we sought to clarify the function of the essential protein YejM in Escherichia coli. Here, we show that YejM inhibits activity of the YciM/FtsH protease complex, which regulates synthesis of the essential OM glycolipid lipopolysaccharide (LPS). Our data suggest that disrupting proper communication between LPS synthesis and transport to the OM leads to accumulation of LPS within the inner membrane (IM). The lethality associated with this event can be suppressed by increasing OM vesiculation. Our research has identified a completely novel signaling pathway that we propose coordinates LPS synthesis and transport. Full Article
x Human Neutrophils Produce Antifungal Extracellular Vesicles against Aspergillus fumigatus By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT Polymorphonuclear granulocytes (PMNs) are indispensable for controlling life-threatening fungal infections. In addition to various effector mechanisms, PMNs also produce extracellular vesicles (EVs). Their contribution to antifungal defense has remained unexplored. We reveal that the clinically important human-pathogenic fungus Aspergillus fumigatus triggers PMNs to release a distinct set of antifungal EVs (afEVs). Proteome analyses indicated that afEVs are enriched in antimicrobial proteins. The cargo and the release kinetics of EVs are modulated by the fungal strain confronted. Tracking of afEVs indicated that they associated with fungal cells and even entered fungal hyphae, resulting in alterations in the morphology of the fungal cell wall and dose-dependent antifungal effects. To assess as a proof of concept whether the antimicrobial proteins found in afEVs might contribute to growth inhibition of hyphae when present in the fungal cytoplasm, two human proteins enriched in afEVs, cathepsin G and azurocidin, were heterologously expressed in fungal hyphae. This led to reduced fungal growth relative to that of a control strain producing the human retinol binding protein 7. In conclusion, extracellular vesicles produced by neutrophils in response to A. fumigatus infection are able to associate with the fungus, limit growth, and elicit cell damage by delivering antifungal cargo. This finding offers an intriguing, previously overlooked mechanism of antifungal defense against A. fumigatus. IMPORTANCE Invasive fungal infections caused by the mold Aspergillus fumigatus are a growing concern in the clinic due to the increasing use of immunosuppressive therapies and increasing antifungal drug resistance. These infections result in high rates of mortality, as treatment and diagnostic options remain limited. In healthy individuals, neutrophilic granulocytes are critical for elimination of A. fumigatus from the host; however, the exact extracellular mechanism of neutrophil-mediated antifungal activity remains unresolved. Here, we present a mode of antifungal defense employed by human neutrophils against A. fumigatus not previously described. We found that extracellular vesicles produced by neutrophils in response to A. fumigatus infection are able to associate with the fungus, limit growth, and elicit cell damage by delivering antifungal cargo. In the end, antifungal extracellular vesicle biology provides a significant step forward in our understanding of A. fumigatus host pathogenesis and opens up novel diagnostic and therapeutic possibilities. Full Article
x Burkholderia ubonensis Meropenem Resistance: Insights into Distinct Properties of Class A {beta}-Lactamases in Burkholderia cepacia Complex and Burkholderia pseudomallei Complex Bacteria By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT Burkholderia pseudomallei, the founding member of the B. pseudomallei complex (Bpc), is a biothreat agent and causes melioidosis, a disease whose treatment mainly relies on ceftazidime and meropenem. The concern is that B. pseudomallei could enhance its drug resistance repertoire by the acquisition of DNA from resistant near-neighbor species. Burkholderia ubonensis, a member of the B. cepacia complex (Bcc), is commonly coisolated from environments where B. pseudomallei is present. Unlike B. pseudomallei, in which significant primary carbapenem resistance is rare, it is not uncommon in B. ubonensis, but the underlying mechanisms are unknown. We established that carbapenem resistance in B. ubonensis is due to an inducible class A PenB β-lactamase, as has been shown for other Bcc bacteria. Inducibility is not sufficient for high-level resistance but also requires other determinants, such as a PenB that is more robust than that present in susceptible isolates, as well as other resistance factors. Curiously and diagnostic for the two complexes, both Bpc and Bcc bacteria contain distinct annotated PenA class A β-lactamases. However, the protein from Bcc bacteria is missing its essential active-site serine and, therefore, is not a β-lactamase. Regulated expression of a transcriptional penB'-lacZ (β-galactosidase) fusion in the B. pseudomallei surrogate B. thailandensis confirms that although Bpc bacteria lack an inducible β-lactamase, they contain the components required for responding to aberrant peptidoglycan synthesis resulting from β-lactam challenge. Understanding the diversity of antimicrobial resistance in Burkholderia species is informative about how the challenges arising from potential resistance transfer between them can be met. IMPORTANCE Burkholderia pseudomallei causes melioidosis, a tropical disease that is highly fatal if not properly treated. Our data show that, in contrast to B. pseudomallei, B. ubonensis β-lactam resistance is fundamentally different because intrinsic resistance is mediated by an inducible class A β-lactamase. This includes resistance to carbapenems. Our work demonstrates that studies with near-neighbor species are informative about the diversity of antimicrobial resistance in Burkholderia and can also provide clues about the potential of resistance transfer between bacteria inhabiting the same environment. Knowledge about potential adverse challenges resulting from the horizontal transfer of resistance genes between members of the two complexes enables the design of effective countermeasures. Full Article
x Processing, Export, and Identification of Novel Linear Peptides from Staphylococcus aureus By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT Staphylococcus aureus can colonize the human host and cause a variety of superficial and invasive infections. The success of S. aureus as a pathogen derives from its ability to modulate its virulence through the release, sensing of and response to cyclic signaling peptides. Here we provide, for the first time, evidence that S. aureus processes and secretes small linear peptides through a specialized pathway that converts a lipoprotein leader into an extracellular peptide signal. We have identified and confirmed the machinery for each step and demonstrate that the putative membrane metalloprotease Eep and the EcsAB transporter are required to complete the processing and secretion of the peptides. In addition, we have identified several linear peptides, including the interspecies signaling molecule staph-cAM373, that are dependent on this processing and secretion pathway. These findings are particularly important because multiple Gram-positive bacteria rely on small linear peptides to control bacterial gene expression and virulence. IMPORTANCE Here, we provide evidence indicating that S. aureus secretes small linear peptides into the environment via a novel processing and secretion pathway. The discovery of a specialized pathway for the production of small linear peptides and the identification of these peptides leads to several important questions regarding their role in S. aureus biology, most interestingly, their potential to act as signaling molecules. The observations in this study provide a foundation for further in-depth studies into the biological activity of small linear peptides in S. aureus. Full Article
x X-Linked RNA-Binding Motif Protein Modulates HIV-1 Infection of CD4+ T Cells by Maintaining the Trimethylation of Histone H3 Lysine 9 at the Downstream Region of the 5' Long Terminal Repeat of HIV Proviral DNA By mbio.asm.org Published On :: 2020-04-21T01:31:26-07:00 ABSTRACT Reversible repression of HIV-1 5' long terminal repeat (5'-LTR)-mediated transcription represents the main mechanism for HIV-1 to maintain latency. Identification of host factors that modulate LTR activity and viral latency may help develop new antiretroviral therapies. The heterogeneous nuclear ribonucleoproteins (hnRNPs) are known to regulate gene expression and possess multiple physiological functions. hnRNP family members have recently been identified as the sensors for viral nucleic acids to induce antiviral responses, highlighting the crucial roles of hnRNPs in regulating viral infection. A member of the hnRNP family, X-linked RNA-binding motif protein (RBMX), has been identified in this study as a novel HIV-1 restriction factor that modulates HIV-1 5'-LTR-driven transcription of viral genome in CD4+ T cells. Mechanistically, RBMX binds to HIV-1 proviral DNA at the LTR downstream region and maintains the repressive trimethylation of histone H3 lysine 9 (H3K9me3), leading to a blockage of the recruitment of the positive transcription factor phosphorylated RNA polymerase II (RNA pol II) and consequential impediment of transcription elongation. This RBMX-mediated modulation of HIV-1 transcription maintains viral latency by inhibiting viral reactivation from an integrated proviral DNA. Our findings provide a new understanding of how host factors modulate HIV-1 infection and latency and suggest a potential new target for the development of HIV-1 therapies. IMPORTANCE HIV-1 latency featuring silence of transcription from HIV-1 proviral DNA represents a major obstacle for HIV-1 eradication. Reversible repression of HIV-1 5'-LTR-mediated transcription represents the main mechanism for HIV-1 to maintain latency. The 5'-LTR-driven HIV gene transcription can be modulated by multiple host factors and mechanisms. The hnRNPs are known to regulate gene expression. A member of the hnRNP family, RBMX, has been identified in this study as a novel HIV-1 restriction factor that modulates HIV-1 5'-LTR-driven transcription of viral genome in CD4+ T cells and maintains viral latency. These findings provide a new understanding of how host factors modulate HIV-1 infection and latency and suggest a potential new target for the development of HIV-1 therapies. Full Article
x "Candidatus Ethanoperedens," a Thermophilic Genus of Archaea Mediating the Anaerobic Oxidation of Ethane By mbio.asm.org Published On :: 2020-04-21T01:31:26-07:00 ABSTRACT Cold seeps and hydrothermal vents deliver large amounts of methane and other gaseous alkanes into marine surface sediments. Consortia of archaea and partner bacteria thrive on the oxidation of these alkanes and its coupling to sulfate reduction. The inherently slow growth of the involved organisms and the lack of pure cultures have impeded the understanding of the molecular mechanisms of archaeal alkane degradation. Here, using hydrothermal sediments of the Guaymas Basin (Gulf of California) and ethane as the substrate, we cultured microbial consortia of a novel anaerobic ethane oxidizer, "Candidatus Ethanoperedens thermophilum" (GoM-Arc1 clade), and its partner bacterium "Candidatus Desulfofervidus auxilii," previously known from methane-oxidizing consortia. The sulfate reduction activity of the culture doubled within one week, indicating a much faster growth than in any other alkane-oxidizing archaea described before. The dominance of a single archaeal phylotype in this culture allowed retrieval of a closed genome of "Ca. Ethanoperedens," a sister genus of the recently reported ethane oxidizer "Candidatus Argoarchaeum." The metagenome-assembled genome of "Ca. Ethanoperedens" encoded a complete methanogenesis pathway including a methyl-coenzyme M reductase (MCR) that is highly divergent from those of methanogens and methanotrophs. Combined substrate and metabolite analysis showed ethane as the sole growth substrate and production of ethyl-coenzyme M as the activation product. Stable isotope probing demonstrated that the enzymatic mechanism of ethane oxidation in "Ca. Ethanoperedens" is fully reversible; thus, its enzymatic machinery has potential for the biotechnological development of microbial ethane production from carbon dioxide. IMPORTANCE In the seabed, gaseous alkanes are oxidized by syntrophic microbial consortia that thereby reduce fluxes of these compounds into the water column. Because of the immense quantities of seabed alkane fluxes, these consortia are key catalysts of the global carbon cycle. Due to their obligate syntrophic lifestyle, the physiology of alkane-degrading archaea remains poorly understood. We have now cultivated a thermophilic, relatively fast-growing ethane oxidizer in partnership with a sulfate-reducing bacterium known to aid in methane oxidation and have retrieved the first complete genome of a short-chain alkane-degrading archaeon. This will greatly enhance the understanding of nonmethane alkane activation by noncanonical methyl-coenzyme M reductase enzymes and provide insights into additional metabolic steps and the mechanisms underlying syntrophic partnerships. Ultimately, this knowledge could lead to the biotechnological development of alkanogenic microorganisms to support the carbon neutrality of industrial processes. Full Article
x Ehrlichia chaffeensis Uses an Invasin To Suppress Reactive Oxygen Species Generation by Macrophages via CD147-Dependent Inhibition of Vav1 To Block Rac1 Activation By mbio.asm.org Published On :: 2020-04-21T01:31:26-07:00 ABSTRACT The obligatory intracellular pathogen Ehrlichia chaffeensis lacks most factors that could respond to oxidative stress (a host cell defense mechanism). We previously found that the C terminus of Ehrlichia surface invasin, entry-triggering protein of Ehrlichia (EtpE; EtpE-C) directly binds mammalian DNase X, a glycosylphosphatidylinositol-anchored cell surface receptor and that binding is required to induce bacterial entry and simultaneously to block the generation of reactive oxygen species (ROS) by host monocytes and macrophages. However, how the EtpE-C–DNase X complex mediates the ROS blockade was unknown. A mammalian transmembrane glycoprotein CD147 (basigin) binds to the EtpE-DNase X complex and is required for Ehrlichia entry and infection of host cells. Here, we found that bone marrow-derived macrophages (BMDM) from myeloid cell lineage-selective CD147-null mice had significantly reduced Ehrlichia-induced or EtpE-C-induced blockade of ROS generation in response to phorbol myristate acetate. In BMDM from CD147-null mice, nucleofection with CD147 partially restored the Ehrlichia-mediated inhibition of ROS generation. Indeed, CD147-null mice as well as their BMDM were resistant to Ehrlichia infection. Moreover, in human monocytes, anti-CD147 partially abrogated EtpE-C-induced blockade of ROS generation. Both Ehrlichia and EtpE-C could block activation of the small GTPase Rac1 (which in turn activates phagocyte NADPH oxidase) and suppress activation of Vav1, a hematopoietic-specific Rho/Rac guanine nucleotide exchange factor by phorbol myristate acetate. Vav1 suppression by Ehrlichia was CD147 dependent. E. chaffeensis is the first example of pathogens that block Rac1 activation to colonize macrophages. Furthermore, Ehrlichia uses EtpE to hijack the unique host DNase X-CD147-Vav1 signaling to block Rac1 activation. IMPORTANCE Ehrlichia chaffeensis is an obligatory intracellular bacterium with the capability of causing an emerging infectious disease called human monocytic ehrlichiosis. E. chaffeensis preferentially infects monocytes and macrophages, professional phagocytes, equipped with an arsenal of antimicrobial mechanisms, including rapid reactive oxygen species (ROS) generation upon encountering bacteria. As Ehrlichia isolated from host cells are readily killed upon exposure to ROS, Ehrlichia must have evolved a unique mechanism to safely enter phagocytes. We discovered that binding of the Ehrlichia surface invasin to the host cell surface receptor not only triggers Ehrlichia entry but also blocks ROS generation by the host cells by mobilizing a novel intracellular signaling pathway. Knowledge of the mechanisms by which ROS production is inhibited may lead to the development of therapeutics for ehrlichiosis as well as other ROS-related pathologies. Full Article
x Tracing the Evolutionary History and Global Expansion of Candida auris Using Population Genomic Analyses By mbio.asm.org Published On :: 2020-04-28T01:30:42-07:00 ABSTRACT Candida auris has emerged globally as a multidrug-resistant yeast that can spread via nosocomial transmission. An initial phylogenetic study of isolates from Japan, India, Pakistan, South Africa, and Venezuela revealed four populations (clades I, II, III, and IV) corresponding to these geographic regions. Since this description, C. auris has been reported in more than 30 additional countries. To trace this global emergence, we compared the genomes of 304 C. auris isolates from 19 countries on six continents. We found that four predominant clades persist across wide geographic locations. We observed phylogeographic mixing in most clades; clade IV, with isolates mainly from South America, demonstrated the strongest phylogeographic substructure. C. auris isolates from two clades with opposite mating types were detected contemporaneously in a single health care facility in Kenya. We estimated a Bayesian molecular clock phylogeny and dated the origin of each clade within the last 360 years; outbreak-causing clusters from clades I, III, and IV originated 36 to 38 years ago. We observed high rates of antifungal resistance in clade I, including four isolates resistant to all three major classes of antifungals. Mutations that contribute to resistance varied between the clades, with Y132F in ERG11 as the most widespread mutation associated with azole resistance and S639P in FKS1 for echinocandin resistance. Copy number variants in ERG11 predominantly appeared in clade III and were associated with fluconazole resistance. These results provide a global context for the phylogeography, population structure, and mechanisms associated with antifungal resistance in C. auris. IMPORTANCE In less than a decade, C. auris has emerged in health care settings worldwide; this species is capable of colonizing skin and causing outbreaks of invasive candidiasis. In contrast to other Candida species, C. auris is unique in its ability to spread via nosocomial transmission and its high rates of drug resistance. As part of the public health response, whole-genome sequencing has played a major role in characterizing transmission dynamics and detecting new C. auris introductions. Through a global collaboration, we assessed genome evolution of isolates of C. auris from 19 countries. Here, we described estimated timing of the expansion of each C. auris clade and of fluconazole resistance, characterized discrete phylogeographic population structure of each clade, and compared genome data to sensitivity measurements to describe how antifungal resistance mechanisms vary across the population. These efforts are critical for a sustained, robust public health response that effectively utilizes molecular epidemiology. Full Article
x Optimization of an Experimental Vaccine To Prevent Escherichia coli Urinary Tract Infection By mbio.asm.org Published On :: 2020-04-28T01:30:42-07:00 ABSTRACT Urinary tract infections (UTI) affect half of all women at least once during their lifetime. The rise in the numbers of extended-spectrum beta-lactamase-producing strains and the potential for carbapenem resistance within uropathogenic Escherichia coli (UPEC), the most common causative agent of UTI, create an urgent need for vaccine development. Intranasal immunization of mice with UPEC outer membrane iron receptors FyuA, Hma, IreA, and IutA, conjugated to cholera toxin, provides protection in the bladder or kidneys under conditions of challenge with UPEC strain CFT073 or strain 536. On the basis of these data, we sought to optimize the vaccination route (intramuscular, intranasal, or subcutaneous) in combination with adjuvants suitable for human use, including aluminum hydroxide gel (alum), monophosphoryl lipid A (MPLA), unmethylated CpG synthetic oligodeoxynucleotides (CpG), polyinosinic:polycytidylic acid (polyIC), and mutated heat-labile E. coli enterotoxin (dmLT). Mice intranasally vaccinated with dmLT-IutA and dmLT-Hma displayed significant reductions in bladder colonization (86-fold and 32-fold, respectively), with 40% to 42% of mice having no detectable CFU. Intranasal vaccination of mice with CpG-IutA and polyIC-IutA significantly reduced kidney colonization (131-fold) and urine CFU (22-fold), respectively. dmLT generated the most consistently robust antibody response in intranasally immunized mice, while MPLA and alum produced greater concentrations of antigen-specific serum IgG with intramuscular immunization. On the basis of these results, we conclude that intranasal administration of Hma or IutA formulated with dmLT adjuvant provides the greatest protection from UPEC UTI. This report advances our progress toward a vaccine against uncomplicated UTI, which will significantly improve the quality of life for women burdened by recurrent UTI and enable better antibiotic stewardship. IMPORTANCE Urinary tract infections (UTI) are among the most common bacterial infection in humans, affecting half of all women at least once during their lifetimes. The rise in antibiotic resistance and health care costs emphasizes the need to develop a vaccine against the most common UTI pathogen, Escherichia coli. Vaccinating mice intranasally with a detoxified heat-labile enterotoxin and two surface-exposed receptors, Hma or IutA, significantly reduced bacterial burden in the bladder. This work highlights progress in the development of a UTI vaccine formulated with adjuvants suitable for human use and antigens that encode outer membrane iron receptors required for infection in the iron-limited urinary tract. Full Article
x Expanding the public health team: a cross-sector workforce By thenationshealth.aphapublications.org Published On :: 2020-05-01T05:00:17-07:00 I’ve been talking a lot lately about the importance of working across sectors for public health — of not going it alone to tackle the imposing challenges before us. The ideal public health team is broad and includes not only public health professionals representing the essential services, but also professionals from other disciplines, the general public and students of all stripes. Full Article
x Federal funding for gun violence prevention research sparks hopes: Priorities, direction being explored By thenationshealth.aphapublications.org Published On :: 2020-05-01T05:00:17-07:00 After more than 20 years of minimal funding, the U.S. is opening its purse strings to research on gun violence prevention. Full Article
x Indirect Evidence of Bourbon Virus (Thogotovirus, Orthomyxoviridae) Infection in North Carolina By www.ncmedicaljournal.com Published On :: 2020-05-04T06:50:30-07:00 To the Editor—Bourbon virus (Thogotovirus, Orthomyxoviridae) was discovered in 2014 when a patient with history of multiple tick bites in Kansas died from an unknown infection [1]. Human infections from Bourbon virus have now been recognized in several states (i.e., Kansas, Oklahoma, Missouri). The virus was detected in collections of the lone star tick (Amblyomma americanum) in Missouri [2]. A serosurvey of domestic and wild mammals in Missouri noted the presence of Bourbon virus-neutralizing antibodies in serum samples collected from a variety of species, but most frequently in white-tailed deer (Odocoileus virginianus) and raccoon (Procyon lotor) [3]. We report here that neutralizing antibodies against Bourbon virus were detected in white-tailed deer in North Carolina, suggesting that the virus is present in the state. We screened 32 white-tailed deer for the presence of Bourbon virus-specific neutralizing antibodies. Of 20 plasma samples that reacted with the virus, 18 were confirmed with neutralizing antibody titers ranging from 10 to ≥ 320 for a seroprevalence rate of 56% (95% confidence interval 39%–72%). The seropositive samples were from deer killed during the 2014 hunting season from Stanly and New Hanover counties. The incidence of Bourbon virus infection in humans in North Carolina is unknown. However, given the abundance of the lone star tick in the state, and the notable proportion of deer with evidence of infection, human infections have likely gone unnoticed or possibly misdiagnosed. Human infection with Bourbon virus results in a nonspecific viral syndrome that includes fever, nausea, diarrhea, myalgia (muscle pain), arthralgia... Full Article
x Historical Geography and Health Equity: An Exploratory View of North Carolina Slavery and Sociohealth Factors By www.ncmedicaljournal.com Published On :: 2020-05-04T06:50:30-07:00 Current health inequities are rooted in more than simple systems failures and inefficiencies. Historical legacy has corrupted health outcomes, and resolution requires both acknowledgment and intention. Full Article
x Vital Directions for Health & Health Care: The North Carolina Experience By www.ncmedicaljournal.com Published On :: 2020-05-04T06:50:30-07:00 In 2019, the National Academy of Medicine (NAM) turned to the all-important state level to draw insights on the status of health and health care within the context of the NAM Vital Directions for Health and Health Care initiative. The NAM held a two-day symposium in the Research Triangle to bring together various stakeholders to better understand actions that states and localities are taking to achieve—and the barriers they face in pursuing—more affordable, value-driven quality care and health outcomes. The NAM purposefully chose to pivot to the state level with North Carolina given that it has been at the forefront of health care transformation and illustrates the promise but also the challenges facing US health and health care nationally. A 19-member planning committee, cochaired by NAM President Victor Dzau and Secretary Mandy Cohen of the North Carolina Department of Health and Human Services, selected topics that resonate with the state's activities within the context of the Vital Directions framework, ranging from empowering people and connecting care through the integration of social, physical, and behavioral health to payer alignment though the advancement of new payment models (Figure 1). The priorities discussed during the symposium continue to be central to health reform in North Carolina and are further explored in the commentaries in this issue. Full Article
x Neurologic outcomes in Friedreich ataxia: Study of a single-site cohort By ng.neurology.org Published On :: 2020-03-20T12:45:12-07:00 Objective To investigate the pattern of progression of neurologic impairment in Friedreich ataxia (FRDA) and identify patients with fast disease progression as detected by clinical rating scales. Methods Clinical, demographic, and genetic data were analyzed from 54 patients with FRDA included at the Brussels site of the European Friedreich's Ataxia Consortium for Translational Studies, with an average prospective follow-up of 4 years. Results Afferent ataxia predated other features of FRDA, followed by cerebellar ataxia and pyramidal weakness. The Scale for the Assessment and Rating of Ataxia (SARA) best detected progression in ambulatory patients and in the first 20 years of disease duration but did not effectively capture progression in advanced disease. Dysarthria, sitting, and upper limb coordination items kept worsening after loss of ambulation. Eighty percent of patients needing support to walk lost ambulation within 2 years. Age at onset had a strong influence on progression of neurologic and functional deficits, which was maximal in patients with symptom onset before age 8 years. All these patients became unable to walk by 15 years after onset, significantly earlier than patients with later onset. Progression in the previous 1 or 2 years was not predictive of progression in the subsequent year. Conclusions The SARA is a sensitive outcome measure in ambulatory patients with FRDA and has an excellent correlation with functional capabilities. Ambulatory patients with onset before age 8 years showed the fastest measurable worsening. Loss of ambulation in high-risk patients is a disease milestone that should be considered as an end point in clinical trials. Full Article
x Neuraxial dysraphism in EPAS1-associated syndrome due to improper mesenchymal transition By ng.neurology.org Published On :: 2020-04-01T13:06:22-07:00 Objective To investigate the effect of somatic, postzygotic, gain-of-function mutation of Endothelial Per-Arnt-Sim (PAS) domain protein 1 (EPAS1) encoding hypoxia-inducible factor-2α (HIF-2α) on posterior fossa development and spinal dysraphism in EPAS1 gain-of-function syndrome, which consists of multiple paragangliomas, somatostatinoma, and polycythemia. Methods Patients referred to our institution for evaluation of new, recurrent, and/or metastatic paragangliomas/pheochromocytoma were confirmed for EPAS1 gain-of-function syndrome by identification of the EPAS1 gain-of-function mutation in resected tumors and/or circulating leukocytes. The posterior fossa, its contents, and the spine were evaluated retrospectively on available MRI and CT images of the head and neck performed for tumor staging and restaging. The transgenic mouse model underwent Microfil vascular perfusion and subsequent intact ex vivo 14T MRI and micro-CT as well as gross dissection, histology, and immunohistochemistry to assess the role of EPAS1 in identified malformations. Results All 8 patients with EPAS1 gain-of-function syndrome demonstrated incidental posterior fossa malformations—one Dandy-Walker variant and 7 Chiari malformations without syringomyelia. These findings were not associated with a small posterior fossa; rather, the posterior fossa volume exceeded that of its neural contents. Seven of 8 patients demonstrated spinal dysraphism; 4 of 8 demonstrated abnormal vertebral segmentation. The mouse model similarly demonstrated features of neuraxial dysraphism, including cervical myelomeningocele and spinal dysraphism, and cerebellar tonsil displacement through the foramen magnum. Histology and immunohistochemistry demonstrated incomplete mesenchymal transition in the mutant but not the control mouse. Conclusions This study characterized posterior fossa and spinal malformations seen in EPAS1 gain-of-function syndrome and suggests that gain-of-function mutation in HIF-2α results in improper mesenchymal transition. Full Article
x Cerebellar ataxia, neuropathy, hearing loss, and intellectual disability due to AIFM1 mutation By ng.neurology.org Published On :: 2020-04-09T12:45:11-07:00 Objective To describe the clinical and molecular genetic findings in a family segregating a novel mutation in the AIFM1 gene on the X chromosome. Methods We studied the clinical features and performed brain MRI scans, nerve conduction studies, audiometry, cognitive testing, and clinical exome sequencing (CES) in the proband, his mother, and maternal uncle. We used in silico tools, X chromosome inactivation assessment, and Western blot analysis to predict the consequences of an AIFM1 variant identified by CES and demonstrate its pathogenicity. Results The proband and his maternal uncle presented with childhood-onset nonprogressive cerebellar ataxia, hearing loss, intellectual disability (ID), peripheral neuropathy, and mood and behavioral disorder. The proband's mother had mild cerebellar ataxia, ID, and mood and behavior disorder, but no neuropathy or hearing loss. The 3 subjects shared a variant (c.1195G>A; p.Gly399Ser) in exon 12 of the AIFM1 gene, which is not reported in the exome/genome sequence databases, affecting a critical amino acid for protein function involved in NAD(H) binding and predicted to be pathogenic with very high probability by variant analysis programs. X chromosome inactivation was highly skewed in the proband's mother. The mutation did not cause quantitative changes in protein abundance. Conclusions Our report extends the molecular and phenotypic spectrum of AIFM1 mutations. Specific findings include limited progression of neurologic abnormalities after the first decade and the coexistence of mood and behavior disorder. This family also shows the confounding effect on the phenotype of nongenetic factors, such as alcohol and drug use and side effects of medication. Full Article
x TGM6 L517W is not a pathogenic variant for spinocerebellar ataxia type 35 By ng.neurology.org Published On :: 2020-04-22T12:45:11-07:00 Objective To investigate the pathogenicity of the TGM6 variant for spinocerebellar ataxia 35 (SCA35), which was previously reported to be caused by pathogenic mutations in the gene TGM6. Methods Neurologic assessment and brain MRI were performed to provide detailed description of the phenotype. Whole-exome sequencing and dynamic mutation analysis were performed to identify the genotype. Results The proband, presenting with myoclonic epilepsy, cognitive decline, and ataxia, harbored both the TGM6 p.L517W variant and expanded CAG repeats in gene ATN1. Further analysis of the other living family members in this pedigree revealed that the CAG repeat number was expanded in all the patients and within normal range in all the unaffected family members. However, the TGM6 p.L517W variant was absent in 2 affected family members, but present in 3 healthy individuals. Conclusions The nonsegregation of the TGM6 variant with phenotype does not support this variant as the disease-causing gene in this pedigree, questioning the pathogenicity of TGM6 in SCA35. Full Article
x Expanding the phenotype of MTOR-related disorders and the Smith-Kingsmore syndrome By ng.neurology.org Published On :: 2020-05-07T12:45:09-07:00 Heterozygous germline mutations in mammalian target of rapamycin (MTOR) (OMIM 601231) are known to underlie Smith-Kingsmore syndrome (SKS; OMIM 616638), an infrequent entity with autosomal dominant inheritance, also known as macrocephaly-intellectual disability-neurodevelopmental disorder-small thorax syndrome (ORPHA 457485).1 Among the clinical features of SKS, the most common features include intellectual disability, macrocephaly, epilepsy, and facial dysmorphism. The aim of this case is to raise awareness of a distinct phenotypical presentation of SKS manifesting with bilateral cataracts and no history of seizures. Full Article
x Phosphomimetic T335D Mutation of Hydroxypyruvate Reductase 1 Modifies Cofactor Specificity and Impacts Arabidopsis Growth in Air By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Photorespiration is an essential process in oxygenic photosynthetic organisms triggered by the oxygenase activity of Rubisco. In peroxisomes, photorespiratory HYDROXYPYRUVATE REDUCTASE1 (HPR1) catalyzes the conversion of hydroxypyruvate to glycerate together with the oxidation of a pyridine nucleotide cofactor. HPR1 regulation remains poorly understood; however, HPR1 phosphorylation at T335 has been reported. By comparing the kinetic properties of phosphomimetic (T335D), nonphosphorylatable (T335A), and wild-type recombinant Arabidopsis (Arabidopsis thaliana) HPR1, it was found that HPR1-T335D exhibits reduced NADH-dependent hydroxypyruvate reductase activity while showing improved NADPH-dependent activity. Complementation of the Arabidopsis hpr1-1 mutant by either wild-type HPR1 or HPR1-T335A fully complemented the photorespiratory growth phenotype of hpr1-1 in ambient air, whereas HPR1-T335D-containing hpr1-1 plants remained smaller and had lower photosynthetic CO2 assimilation rates. Metabolite analyses indicated that these phenotypes were associated with subtle perturbations in the photorespiratory cycle of HPR1-T335D-complemented hpr1-1 rosettes compared to all other HPR1-containing lines. Therefore, T335 phosphorylation may play a role in the regulation of HPR1 activity in planta, although it was not required for growth under ambient air controlled conditions. Furthermore, improved NADP-dependent HPR1 activities in peroxisomes could not compensate for the reduced NADH-dependent HPR1 activity. Full Article
x ONE-HELIX PROTEIN1 and 2 Form Heterodimers to Bind Chlorophyll in Photosystem II Biogenesis By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Members of the light-harvesting complex protein family participate in multiple processes connected with light sensing, light absorption, and pigment binding within the thylakoid membrane. Amino acid residues of the light-harvesting chlorophyll a/b-binding proteins involved in pigment binding have been precisely identified through x-ray crystallography experiments. In vitro pigment-binding studies have been performed with LIGHT-HARVESTING-LIKE3 proteins, and the pigment-binding ability of cyanobacterial high-light-inducible proteins has been studied in detail. However, analysis of pigment binding by plant high-light-inducible protein homologs, called ONE-HELIX PROTEINS (OHPs), is lacking. Here, we report on successful in vitro reconstitution of Arabidopsis (Arabidopsis thaliana) OHPs with chlorophylls and carotenoids and show that pigment binding depends on the formation of OHP1/OHP2 heterodimers. Pigment-binding capacity was completely lost in each of the OHPs when residues of the light-harvesting complex chlorophyll-binding motif required for chlorophyll binding were mutated. Moreover, the mutated OHP variants failed to rescue the respective knockout (T-DNA insertion) mutants, indicating that pigment-binding ability is essential for OHP function in vivo. The scaffold protein HIGH CHLOROPHYLL FLUORESCENCE244 (HCF244) is tethered to the thylakoid membrane by the OHP heterodimer. We show that HCF244 stability depends on OHP heterodimer formation and introduce the concept of a functional unit consisting of OHP1, OHP2, and HCF244, in which each protein requires the others. Because of their pigment-binding capacity, we suggest that OHPs function in the delivery of pigments to the D1 subunit of PSII. Full Article
x Responses of a Newly Evolved Auxotroph of Chlamydomonas to B12 Deprivation By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 The corrinoid B12 is synthesized only by prokaryotes yet is widely required by eukaryotes as an enzyme cofactor. Microalgae have evolved B12 dependence on multiple occasions, and we previously demonstrated that experimental evolution of the non–B12-requiring alga Chlamydomonas reinhardtii in media supplemented with B12 generated a B12-dependent mutant (hereafter metE7). This clone provides a unique opportunity to study the physiology of a nascent B12 auxotroph. Our analyses demonstrate that B12 deprivation of metE7 disrupts C1 metabolism, causes an accumulation of starch and triacylglycerides, and leads to a decrease in photosynthetic pigments, proteins, and free amino acids. B12 deprivation also caused a substantial increase in reactive oxygen species, which preceded rapid cell death. Survival could be improved without compromising growth by simultaneously depriving the cells of nitrogen, suggesting a type of cross protection. Significantly, we found further improvements in survival under B12 limitation and an increase in B12 use efficiency after metE7 underwent a further period of experimental evolution, this time in coculture with a B12-producing bacterium. Therefore, although an early B12-dependent alga would likely be poorly adapted to coping with B12 deprivation, association with B12-producers can ensure long-term survival whilst also providing a suitable environment for evolving mechanisms to tolerate B12 limitation better. Full Article
x Compensatory Guaiacyl Lignin Biosynthesis at the Expense of Syringyl Lignin in 4CL1-Knockout Poplar By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 The lignin biosynthetic pathway is highly conserved in angiosperms, yet pathway manipulations give rise to a variety of taxon-specific outcomes. Knockout of lignin-associated 4-coumarate:CoA ligases (4CLs) in herbaceous species mainly reduces guaiacyl (G) lignin and enhances cell wall saccharification. Here we show that CRISPR-knockout of 4CL1 in poplar (Populus tremula x alba) preferentially reduced syringyl (S) lignin, with negligible effects on biomass recalcitrance. Concordant with reduced S-lignin was downregulation of ferulate 5-hydroxylases (F5Hs). Lignification was largely sustained by 4CL5, a low-affinity paralog of 4CL1 typically with only minor xylem expression or activity. Levels of caffeate, the preferred substrate of 4CL5, increased in line with significant upregulation of caffeoyl shikimate esterase1. Upregulation of caffeoyl-CoA O-methyltransferase1 and downregulation of F5Hs are consistent with preferential funneling of 4CL5 products toward G-lignin biosynthesis at the expense of S-lignin. Thus, transcriptional and metabolic adaptations to 4CL1-knockout appear to have enabled 4CL5 catalysis at a level sufficient to sustain lignification. Finally, genes involved in sulfur assimilation, the glutathione-ascorbate cycle, and various antioxidant systems were upregulated in the mutants, suggesting cascading responses to perturbed thioesterification in lignin biosynthesis. Full Article
x Allelic Mutations in the Ripening-Inhibitor Locus Generate Extensive Variation in Tomato Ripening By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 RIPENING INHIBITOR (RIN) is a transcription factor with transcriptional activator activity that plays a major role in regulating fruit ripening in tomato (Solanum lycopersicum). Recent studies have revealed that (1) RIN is indispensable for full ripening but not for the induction of ripening; and (2) the rin mutation, which produces nonripening fruits that never turn red or soften, is not a null mutation but instead converts the encoded transcriptional activator into a repressor. Here, we have uncovered aspects of RIN function by characterizing a series of allelic mutations within this locus that were produced by CRISPR/Cas9. Fruits of RIN-knockout plants, which are characterized by partial ripening and low levels of lycopene but never turn fully red, showed excess flesh softening compared to the wild type. The knockout mutant fruits also showed accelerated cell wall degradation, suggesting that, contrary to the conventional view, RIN represses over-ripening in addition to facilitating ripening. A C-terminal domain-truncated RIN protein, encoded by another allele of the RIN locus (rinG2), did not activate transcription but formed transcription factor complexes that bound to target genomic regions in a manner similar to that observed for wild-type RIN protein. Fruits expressing this truncated RIN protein exhibited extended shelf life, but unlike rin fruits, they accumulated lycopene and appeared orange. The diverse ripening properties of the RIN allelic mutants suggest that substantial phenotypic variation can be produced by tuning the activity of a transcription factor. Full Article
x Specific Lhc Proteins Are Bound to PSI or PSII Supercomplexes in the Diatom Thalassiosira pseudonana By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Despite the ecological relevance of diatoms, many aspects of their photosynthetic machinery remain poorly understood. Diatoms differ from the green lineage of oxygenic organisms by their photosynthetic pigments and light-harvesting complex (Lhc) proteins, the latter of which are also called fucoxanthin-chlorophyll proteins (FCP). These are composed of three groups of proteins: Lhcf as the main group, Lhcr that are PSI associated, and Lhcx that are involved in photoprotection. The FCP complexes are assembled in trimers and higher oligomers. Several studies have investigated the biochemical properties of purified FCP complexes, but limited knowledge is available about their interaction with the photosystem cores. In this study, isolation of stable supercomplexes from the centric diatom Thalassiosira pseudonana was achieved. To preserve in vivo structure, the separation of thylakoid complexes was performed by native PAGE and sucrose density centrifugation. Different subpopulations of PSI and PSII supercomplexes were isolated and their subunits identified. Analysis of Lhc antenna composition identified Lhc(s) specific for either PSI (Lhcr 1, 3, 4, 7, 10–14, and Lhcf10) or PSII (Lhcf 1–7, 11, and Lhcr2). Lhcx6_1 was reproducibly found in PSII supercomplexes, whereas its association with PSI was unclear. No evidence was found for the interaction between photosystems and higher oligomeric FCPs, comprising Lhcf8 as the main component. Although the subunit composition of the PSII supercomplexes in comparison with that of the trimeric FCP complexes indicated a close mutual association, the higher oligomeric pool is only weakly associated with the photosystems, albeit its abundance in the thylakoid membrane. Full Article
x SCFTIR1/AFB Auxin Signaling for Bending Termination during Shoot Gravitropism By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Full Article
x Overcoming Algal Vitamin B12 Auxotrophy by Experimental Evolution By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Full Article
x Dissimilarity of the gut-lung axis and dysbiosis of the lower airways in ventilated preterm infants By erj.ersjournals.com Published On :: 2020-05-07T01:15:54-07:00 Background Chronic lung disease of prematurity (CLD), also called bronchopulmonary dysplasia, is a major consequence of preterm birth, but the role of the microbiome in its development remains unclear. Therefore, we assessed the progression of the bacterial community in ventilated preterm infants over time in the upper and lower airways, and assessed the gut–lung axis by comparing bacterial communities in the upper and lower airways with stool findings. Finally, we assessed whether the bacterial communities were associated with lung inflammation to suggest dysbiosis. Methods We serially sampled multiple anatomical sites including the upper airway (nasopharyngeal aspirates), lower airways (tracheal aspirate fluid and bronchoalveolar lavage fluid) and the gut (stool) of ventilated preterm-born infants. Bacterial DNA load was measured in all samples and sequenced using the V3–V4 region of the 16S rRNA gene. Results From 1102 (539 nasopharyngeal aspirates, 276 tracheal aspirate fluid, 89 bronchoalveolar lavage, 198 stool) samples from 55 preterm infants, 352 (32%) amplified suitably for 16S RNA gene sequencing. Bacterial load was low at birth and quickly increased with time, but was associated with predominant operational taxonomic units (OTUs) in all sample types. There was dissimilarity in bacterial communities between the upper and lower airways and the gut, with a separate dysbiotic inflammatory process occurring in the lower airways of infants. Individual OTUs were associated with increased inflammatory markers. Conclusions Taken together, these findings suggest that targeted treatment of the predominant organisms, including those not routinely treated, such as Ureaplasma spp., may decrease the development of CLD in preterm-born infants. Full Article
x Therapeutic drug monitoring using saliva as matrix: an opportunity for linezolid, but challenge for moxifloxacin By erj.ersjournals.com Published On :: 2020-05-07T01:15:54-07:00 The World Health Organization (WHO) has listed moxifloxacin and linezolid among the preferred "group A" drugs in the treatment of multidrug-resistant (MDR)-tuberculosis (TB) [1]. Therapeutic drug monitoring (TDM) could potentially optimise MDR-TB therapy, since moxifloxacin and linezolid show large pharmacokinetic variability [1–4]. TDM of moxifloxacin focuses on identifying patients with low drug exposure who are at risk of treatment failure and acquired fluoroquinolone resistance [5, 6]. Alternatively, TDM of linezolid strives to reduce toxicity while ensuring an adequate drug exposure because of its narrow therapeutic index [1, 3, 7]. Full Article
x Forced oscillation technique for optimising PEEP in ventilated extremely preterm infants By erj.ersjournals.com Published On :: 2020-05-07T01:15:54-07:00 Ventilatory settings are critical in mechanically ventilated extremely preterm newborn infants due to the risk of ventilation-induced lung injury (VILI) and the subsequent development of bronchopulmonary dysplasia (BPD) [1]. Positive end-expiratory pressure (PEEP) settings usually rely on blood gases, oxygen requirement, lung auscultation, evaluation of chest radiograph and assessment of the pressure/volume curves provided by ventilators. Studies of optimal PEEP settings in the surfactant-treated preterm infant in need of mechanical ventilation are limited and evidence-based clinical guidelines are sparse [2, 3]. A bedside method identifying the PEEP value that comprises maximal lung volume recruitment and minimising tissue overdistension could improve real-time optimisation of PEEP and potentially minimise the risk of VILI and BPD [4, 5]. Full Article
x Apraxia of speech involves lesions of dorsal arcuate fasciculus and insula in patients with aphasia By cp.neurology.org Published On :: 2020-04-06T12:45:20-07:00 Objective To determine the contributions of apraxia of speech (AOS) and anomia to conversational dysfluency. Methods In this observational study of 52 patients with chronic aphasia, 47 with concomitant AOS, fluency was quantified using correct information units per minute (CIUs/min) from propositional speech tasks. Videos of patients performing conversational, how-to and picture-description tasks, word and sentence repetition, and diadochokinetic tasks were used to diagnose AOS using the Apraxia of Speech Rating Scale (ASRS). Anomia was quantified by patients' scores on the 30 even-numbered items from the Boston Naming Test (BNT). Results Together, ASRS and BNT scores accounted for 51.4% of the total variance in CIUs/min; the ASRS score accounted for the majority of that variance. The BNT score was associated with lesions in the left superior temporal gyrus, left inferior frontal gyrus, and large parts of the insula. The global ASRS score was associated with lesions in the left dorsal arcuate fasciculus (AF), pre- and post-central gyri, and both banks of the central sulcus of the insula. The ASRS score for the primary distinguishing features of AOS (no overlap with features of aphasia) was associated with less AF and more insular involvement. Only ~27% of this apraxia-specific lesion overlapped with lesions associated with the BNT score. Lesions associated with AOS had minimal overlap with the frontal aslant tract (FAT) (<1%) or the extreme capsule fiber tract (1.4%). Finally, ASRS scores correlated significantly with damage to the insula but not to the AF, extreme capsule, or FAT. Conclusions Results are consistent with previous findings identifying lesions of the insula and AF in patients with AOS, damage to both of which may create dysfluency in patients with aphasia. Full Article
x Ataxic-hypotonic cerebral palsy in a cerebral palsy registry: Insights into a distinct subtype By cp.neurology.org Published On :: 2020-04-06T12:45:20-07:00 Objective To specifically report on ataxic-hypotonic cerebral palsy (CP) using registry data and to directly compare its features with other CP subtypes. Methods Data on prenatal, perinatal, and neonatal characteristics and gross motor function (Gross Motor Function Classification System [GMFCS]) and comorbidities in 35 children with ataxic-hypotonic CP were extracted from the Canadian Cerebral Palsy Registry and compared with 1,804 patients with other subtypes of CP. Results Perinatal adversity was detected significantly more frequently in other subtypes of CP (odds ratio [OR] 4.3, 95% confidence interval [CI] 1.5–11.7). The gestational age at birth was higher in ataxic-hypotonic CP (median 39.0 weeks vs 37.0 weeks, p = 0.027). Children with ataxic-hypotonic CP displayed more intrauterine growth restriction (OR 2.6, 95% CI 1.0–6.8) and congenital malformation (OR 2.4, 95% CI 1.2–4.8). MRI was more likely to be either normal (OR 3.8, 95% CI 1.4–10.5) or to show a cerebral malformation (OR 4.2, 95% CI 1.5–11.9) in ataxic-hypotonic CP. There was no significant difference in terms of GMFCS or the presence of comorbidities, except for more frequent communication impairment in ataxic-hypotonic CP (OR 4.2, 95% CI 1.5–11.6). Conclusions Our results suggest a predominantly genetic or prenatal etiology for ataxic-hypotonic CP and imply that a diagnosis of ataxic-hypotonic CP does not impart a worse prognosis with respect to comorbidities or functional impairment. This study contributes toward a better understanding of ataxic-hypotonic CP as a distinct nosologic entity within the spectrum of CP with its own pathogenesis, risk factors, clinical profile, and prognosis compared with other CP subtypes. Full Article
x Emerging Issues in Male Adolescent Sexual and Reproductive Health Care By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 Pediatricians are encouraged to address male adolescent sexual and reproductive health on a regular basis, including taking a sexual history, discussing healthy sexuality, performing an appropriate physical examination, providing patient-centered and age-appropriate anticipatory guidance, and administering appropriate vaccinations. These services can be provided to male adolescent patients in a confidential and culturally appropriate manner, can promote healthy sexual relationships and responsibility, can and involve parents in age-appropriate discussions about sexual health. Full Article
x Adolescent Sexual Health Interventions: Innovation, Efficacy, Cost, and the Urgent Need to Scale By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 Full Article
x Exploring Early Childhood Factors as an Avenue to Address Chronic Peer Victimization By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 Full Article
x ACA Medicaid Expansion and Insurance Coverage Among New Mothers Living in Poverty By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 BACKGROUND: Medicaid plays a critical role during the perinatal period, but pregnancy-related Medicaid eligibility only extends for 60 days post partum. In 2014, the Affordable Care Act’s (ACA’s) Medicaid expansions increased adult Medicaid eligibility to 138% of the federal poverty level in participating states, allowing eligible new mothers to remain covered after pregnancy-related coverage expires. We investigate the impact of ACA Medicaid expansions on insurance coverage among new mothers living in poverty. METHODS: We define new mothers living in poverty as women ages 19 to 44 with incomes below the federal poverty level who report giving birth in the past 12 months. We use 2010–2017 American Community Survey data and a difference-in-differences approach using parental Medicaid-eligibility thresholds to estimate the effect of ACA Medicaid expansions on insurance coverage among poor new mothers. RESULTS: A 100-percentage-point increase in parental Medicaid-eligibility is associated with an 8.8-percentage-point decrease (P < .001) in uninsurance, a 13.2-percentage-point increase (P < .001) in Medicaid coverage, and a 4.4-percentage-point decrease in private or other coverage (P = .001) among poor new mothers. The average increase in Medicaid eligibility is associated with a 28% decrease in uninsurance, a 13% increase in Medicaid coverage, and an 18% decline in private or other insurance among poor new mothers in expansion states. However, in 2017, there were ~142 000 remaining uninsured, poor new mothers. CONCLUSIONS: ACA Medicaid expansions are associated with increased Medicaid coverage and reduced uninsurance among poor new mothers. Opportunities remain for expansion and nonexpansion states to increase insurance coverage among new mothers living in poverty. Full Article
x A Triadic Intervention for Adolescent Sexual Health: A Randomized Clinical Trial By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 OBJECTIVES: In this study, we evaluate the efficacy of Families Talking Together (FTT), a triadic intervention to reduce adolescent sexual risk behavior. METHODS: Adolescents aged 11 to 14 and their female caregivers were recruited from a pediatric clinic; 900 families were enrolled; 84 declined. Families were randomly assigned to FTT or 1 of 2 control conditions. The FTT triadic intervention consisted of a 45-minute face-to-face session for mothers, health care provider endorsement of intervention content, printed materials for families, and a booster call for mothers. The primary outcomes were ever having had vaginal intercourse, sexual debut within the past 12 months, and condom use at last sexual intercourse. Assessments occurred at baseline, 3 months post baseline, and 12 months post baseline. RESULTS: Of enrolled families, 73.4% identified as Hispanic, 20.4% as African American, and 6.2% as mixed race. Mean maternal age was 38.8 years, and mean adolescent grade was seventh grade. At the 12-month follow-up, 5.2% of adolescents in the experimental group reported having had sexual intercourse, compared with 18% of adolescents in the control groups (P < .05). In the experimental group, 4.7% of adolescents reported sexual debut within the past 12 months, compared with 14.7% of adolescents in the control group (P < .05). In the experimental group, 74.2% of sexually active adolescents indicated using a condom at last sexual intercourse, compared with 49.1% of adolescents in the control group (P < .05). CONCLUSIONS: This research suggests that the FTT triadic intervention is efficacious in delaying sexual debut and reducing sexual risk behavior among adolescents. Full Article
x Preparing Residents for Children With Complex Medical Needs By pediatrics.aappublications.org Published On :: 2020-05-01T01:00:46-07:00 Full Article
x Genetic Associations in Four Decades of Multienvironment Trials Reveal Agronomic Trait Evolution in Common Bean [Genetics of Complex Traits] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 Multienvironment trials (METs) are widely used to assess the performance of promising crop germplasm. Though seldom designed to elucidate genetic mechanisms, MET data sets are often much larger than could be duplicated for genetic research and, given proper interpretation, may offer valuable insights into the genetics of adaptation across time and space. The Cooperative Dry Bean Nursery (CDBN) is a MET for common bean (Phaseolus vulgaris) grown for > 70 years in the United States and Canada, consisting of 20–50 entries each year at 10–20 locations. The CDBN provides a rich source of phenotypic data across entries, years, and locations that is amenable to genetic analysis. To study stable genetic effects segregating in this MET, we conducted genome-wide association studies (GWAS) using best linear unbiased predictions derived across years and locations for 21 CDBN phenotypes and genotypic data (1.2 million SNPs) for 327 CDBN genotypes. The value of this approach was confirmed by the discovery of three candidate genes and genomic regions previously identified in balanced GWAS. Multivariate adaptive shrinkage (mash) analysis, which increased our power to detect significant correlated effects, found significant effects for all phenotypes. Mash found two large genomic regions with effects on multiple phenotypes, supporting a hypothesis of pleiotropic or linked effects that were likely selected on in pursuit of a crop ideotype. Overall, our results demonstrate that statistical genomics approaches can be used on MET phenotypic data to discover significant genetic effects and to define genomic regions associated with crop improvement. Full Article
x Pathogen Genetic Control of Transcriptome Variation in the Arabidopsis thaliana - Botrytis cinerea Pathosystem [Genetics of Complex Traits] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 In plant–pathogen relations, disease symptoms arise from the interaction of the host and pathogen genomes. Host–pathogen functional gene interactions are well described, whereas little is known about how the pathogen genetic variation modulates both organisms’ transcriptomes. To model and generate hypotheses on a generalist pathogen control of gene expression regulation, we used the Arabidopsis thaliana–Botrytis cinerea pathosystem and the genetic diversity of a collection of 96 B. cinerea isolates. We performed expression-based genome-wide association (eGWA) for each of 23,947 measurable transcripts in Arabidopsis (host), and 9267 measurable transcripts in B. cinerea (pathogen). Unlike other eGWA studies, we detected a relative absence of locally acting expression quantitative trait loci (cis-eQTL), partly caused by structural variants and allelic heterogeneity hindering their identification. This study identified several distantly acting trans-eQTL linked to eQTL hotspots dispersed across Botrytis genome that altered only Botrytis transcripts, only Arabidopsis transcripts, or transcripts from both species. Gene membership in the trans-eQTL hotspots suggests links between gene expression regulation and both known and novel virulence mechanisms in this pathosystem. Genes annotated to these hotspots provide potential targets for blocking manipulation of the host response by this ubiquitous generalist necrotrophic pathogen. Full Article
x A Novel Variation in the FRIZZLE PANICLE (FZP) Gene Promoter Improves Grain Number and Yield in Rice [Genetics of Complex Traits] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 Secondary branch number per panicle plays a crucial role in regulating grain number and yield in rice. Here, we report the positional cloning and functional characterization for SECONDARY BRANCH NUMBER7 (qSBN7), a quantitative trait locus affecting secondary branch per panicle and grain number. Our research revealed that the causative variants of qSBN7 are located in the distal promoter region of FRIZZLE PANICLE (FZP), a gene previously associated with the repression of axillary meristem development in rice spikelets. qSBN7 is a novel allele of FZP that causes an ~56% decrease in its transcriptional level, leading to increased secondary branch and grain number, and reduced grain length. Field evaluations showed that qSBN7 increased grain yield by 10.9% in a temperate japonica variety, TN13, likely due to its positive effect on sink capacity. Our findings suggest that incorporation of qSBN7 can increase yield potential and improve the breeding of elite rice varieties. Full Article
x Deciphering Sex-Specific Genetic Architectures Using Local Bayesian Regressions [Genetics of Complex Traits] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 Many complex human traits exhibit differences between sexes. While numerous factors likely contribute to this phenomenon, growing evidence from genome-wide studies suggest a partial explanation: that males and females from the same population possess differing genetic architectures. Despite this, mapping gene-by-sex (GxS) interactions remains a challenge likely because the magnitude of such an interaction is typically and exceedingly small; traditional genome-wide association techniques may be underpowered to detect such events, due partly to the burden of multiple test correction. Here, we developed a local Bayesian regression (LBR) method to estimate sex-specific SNP marker effects after fully accounting for local linkage-disequilibrium (LD) patterns. This enabled us to infer sex-specific effects and GxS interactions either at the single SNP level, or by aggregating the effects of multiple SNPs to make inferences at the level of small LD-based regions. Using simulations in which there was imperfect LD between SNPs and causal variants, we showed that aggregating sex-specific marker effects with LBR provides improved power and resolution to detect GxS interactions over traditional single-SNP-based tests. When using LBR to analyze traits from the UK Biobank, we detected a relatively large GxS interaction impacting bone mineral density within ABO, and replicated many previously detected large-magnitude GxS interactions impacting waist-to-hip ratio. We also discovered many new GxS interactions impacting such traits as height and body mass index (BMI) within regions of the genome where both male- and female-specific effects explain a small proportion of phenotypic variance (R2 < 1 x 10–4), but are enriched in known expression quantitative trait loci. Full Article
x Development of the Proximal-Anterior Skeletal Elements in the Mouse Hindlimb Is Regulated by a Transcriptional and Signaling Network Controlled by Sall4 [Developmental and Behavioral Genetics] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 The vertebrate limb serves as an experimental paradigm to study mechanisms that regulate development of the stereotypical skeletal elements. In this study, we simultaneously inactivated Sall4 using Hoxb6Cre and Plzf in mouse embryos, and found that their combined function regulates development of the proximal-anterior skeletal elements in hindlimbs. The Sall4; Plzf double knockout exhibits severe defects in the femur, tibia, and anterior digits, distinct defects compared to other allelic series of Sall4; Plzf. We found that Sall4 regulates Plzf expression prior to hindlimb outgrowth. Further expression analysis indicated that Hox10 genes and GLI3 are severely downregulated in the Sall4; Plzf double knockout hindlimb bud. In contrast, PLZF expression is reduced but detectable in Sall4; Gli3 double knockout limb buds, and SALL4 is expressed in the Plzf; Gli3 double knockout limb buds. These results indicate that Plzf, Gli3, and Hox10 genes downstream of Sall4, regulate femur and tibia development. In the autopod, we show that Sall4 negatively regulates Hedgehog signaling, which allows for development of the most anterior digit. Collectively, our study illustrates genetic systems that regulate development of the proximal-anterior skeletal elements in hindlimbs. Full Article
x Promoter-Proximal Chromatin Domain Insulator Protein BEAF Mediates Local and Long-Range Communication with a Transcription Factor and Directly Activates a Housekeeping Promoter in Drosophila [Gene Expression] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 BEAF (Boundary Element-Associated Factor) was originally identified as a Drosophila melanogaster chromatin domain insulator-binding protein, suggesting a role in gene regulation through chromatin organization and dynamics. Genome-wide mapping found that BEAF usually binds near transcription start sites, often of housekeeping genes, suggesting a role in promoter function. This would be a nontraditional role for an insulator-binding protein. To gain insight into molecular mechanisms of BEAF function, we identified interacting proteins using yeast two-hybrid assays. Here, we focus on the transcription factor Serendipity (Sry-). Interactions were confirmed in pull-down experiments using bacterially expressed proteins, by bimolecular fluorescence complementation, and in a genetic assay in transgenic flies. Sry- interacted with promoter-proximal BEAF both when bound to DNA adjacent to BEAF or > 2-kb upstream to activate a reporter gene in transient transfection experiments. The interaction between BEAF and Sry- was detected using both a minimal developmental promoter (y) and a housekeeping promoter (RpS12), while BEAF alone strongly activated the housekeeping promoter. These two functions for BEAF implicate it in playing a direct role in gene regulation at hundreds of BEAF-associated promoters. Full Article
x Fast Algorithms for Conducting Large-Scale GWAS of Age-at-Onset Traits Using Cox Mixed-Effects Models [Statistical Genetics and Genomics] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 Age-at-onset is one of the critical traits in cohort studies of age-related diseases. Large-scale genome-wide association studies (GWAS) of age-at-onset traits can provide more insights into genetic effects on disease progression and transitions between stages. Moreover, proportional hazards (or Cox) regression models can achieve higher statistical power in a cohort study than a case-control trait using logistic regression. Although mixed-effects models are widely used in GWAS to correct for sample dependence, application of Cox mixed-effects models (CMEMs) to large-scale GWAS is so far hindered by intractable computational cost. In this work, we propose COXMEG, an efficient R package for conducting GWAS of age-at-onset traits using CMEMs. COXMEG introduces fast estimation algorithms for general sparse relatedness matrices including, but not limited to, block-diagonal pedigree-based matrices. COXMEG also introduces a fast and powerful score test for dense relatedness matrices, accounting for both population stratification and family structure. In addition, COXMEG generalizes existing algorithms to support positive semidefinite relatedness matrices, which are common in twin and family studies. Our simulation studies suggest that COXMEG, depending on the structure of the relatedness matrix, is orders of magnitude computationally more efficient than coxme and coxph with frailty for GWAS. We found that using sparse approximation of relatedness matrices yielded highly comparable results in controlling false-positive rate and retaining statistical power for an ethnically homogeneous family-based sample. By applying COXMEG to a study of Alzheimer’s disease (AD) with a Late-Onset Alzheimer’s Disease Family Study from the National Institute on Aging sample comprising 3456 non-Hispanic whites and 287 African Americans, we identified the APOE 4 variant with strong statistical power (P = 1e–101), far more significant than that reported in a previous study using a transformed variable and a marginal Cox model. Furthermore, we identified novel SNP rs36051450 (P = 2e–9) near GRAMD1B, the minor allele of which significantly reduced the hazards of AD in both genders. These results demonstrated that COXMEG greatly facilitates the application of CMEMs in GWAS of age-at-onset traits. Full Article
x Fear and Foxes: An Educational Primer for Use with "Anterior Pituitary Transcriptome Suggests Differences in ACTH Release in Tame and Aggressive Foxes" [Primer] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 The way genes contribute to behavior is complicated. Although there are some single genes with large contributions, most behavioral differences are due to small effects from many interacting genes. This makes it hard to identify the genes that cause behavioral differences. Mutagenesis screens in model organisms, selective breeding experiments in animals, comparisons between related populations with different behaviors, and genome-wide association studies in humans are promising and complementary approaches to understanding the heritable aspects of complex behaviors. To connect genes to behaviors requires measuring behavioral differences, locating correlated genetic changes, determining when, where, and how these candidate genes act, and designing causative confirmatory experiments. This area of research has implications from basic discovery science to human mental health. Full Article
x Development of IFN-Stimulated Gene Expression from Embryogenesis through Adulthood, with and without Constitutive MDA5 Pathway Activation [INNATE IMMUNITY AND INFLAMMATION] By www.jimmunol.org Published On :: 2020-05-04T13:00:28-07:00 Key Points The augmented ISG profile of RdRP mice develops largely postnatally. Elevated ISG expression is then maintained through adulthood. The ISG signature in adults requires persistent type I IFN signaling. Full Article
x Complexes between C-Reactive Protein and Very Low Density Lipoprotein Delay Bacterial Clearance in Sepsis [INFECTIOUS DISEASE AND HOST RESPONSE] By www.jimmunol.org Published On :: 2020-05-04T13:00:27-07:00 Key Points Kupffer cells phagocytose both bacteria and CRP–VLDL complexes. High levels of CRP–VLDL complexes delay bacterial clearance. Pch disrupts CRP–VLDL complexes to improve bacterial clearance. Full Article