mp

Got Flu? Deal Quickly With Complications

Title: Got Flu? Deal Quickly With Complications
Category: Health News
Created: 2/2/2020 12:00:00 AM
Last Editorial Review: 2/3/2020 12:00:00 AM




mp

CDK9 Blockade Exploits Context-dependent Transcriptional Changes to Improve Activity and Limit Toxicity of Mithramycin for Ewing Sarcoma

There is a need to develop novel approaches to improve the balance between efficacy and toxicity for transcription factor–targeted therapies. In this study, we exploit context-dependent differences in RNA polymerase II processivity as an approach to improve the activity and limit the toxicity of the EWS-FLI1–targeted small molecule, mithramycin, for Ewing sarcoma. The clinical activity of mithramycin for Ewing sarcoma is limited by off-target liver toxicity that restricts the serum concentration to levels insufficient to inhibit EWS-FLI1. In this study, we perform an siRNA screen of the druggable genome followed by a matrix drug screen to identify mithramycin potentiators and a synergistic "class" effect with cyclin-dependent kinase 9 (CDK9) inhibitors. These CDK9 inhibitors enhanced the mithramycin-mediated suppression of the EWS-FLI1 transcriptional program leading to a shift in the IC50 and striking regressions of Ewing sarcoma xenografts. To determine whether these compounds may also be liver protective, we performed a qPCR screen of all known liver toxicity genes in HepG2 cells to identify mithramycin-driven transcriptional changes that contribute to the liver toxicity. Mithramycin induces expression of the BTG2 gene in HepG2 but not Ewing sarcoma cells, which leads to a liver-specific accumulation of reactive oxygen species (ROS). siRNA silencing of BTG2 rescues the induction of ROS and the cytotoxicity of mithramycin in these cells. Furthermore, CDK9 inhibition blocked the induction of BTG2 to limit cytotoxicity in HepG2, but not Ewing sarcoma cells. These studies provide the basis for a synergistic and less toxic EWS-FLI1–targeted combination therapy for Ewing sarcoma.




mp

Inhibition of Importin {beta}1 Augments the Anticancer Effect of Agonistic Anti-Death Receptor 5 Antibody in TRAIL-resistant Tumor Cells

TNF-related apoptosis-inducing ligand (TRAIL) and an agonistic antibody against the death-inducing TRAIL receptor 5, DR5, are thought to selectively induce tumor cell death and therefore, have gained attention as potential therapeutics currently under investigation in several clinical trials. However, some tumor cells are resistant to TRAIL/DR5–induced cell death, even though they express DR5. Previously, we reported that DR5 is transported into the nucleus by importin β1, and knockdown of importin β1 upregulates cell surface expression of DR5 resulting in increased TRAIL sensitivity in vitro. Here, we examined the impact of importin β1 knockdown on agonistic anti-human DR5 (hDR5) antibody therapy. Drug-inducible importin β1 knockdown sensitizes HeLa cells to TRAIL-induced cell death in vitro, and exerts an antitumor effect when combined with agonistic anti-hDR5 antibody administration in vivo. Therapeutic importin β1 knockdown, administered via the atelocollagen delivery system, as well as treatment with the importin β inhibitor, importazole, induced regression and/or eradication of two human TRAIL-resistant tumor cells when combined with agonistic anti-hDR5 antibody treatment. Thus, these findings suggest that the inhibition of importin β1 would be useful to improve the therapeutic effects of agonistic anti-hDR5 antibody against TRAIL-resistant cancers.




mp

Emplacement of oil in the Devonian Weardale Granite of northern England

Oil residues occur as solid bitumen in mineralized zones within the Devonian Weardale Granite of the northern Pennines, northern England. Comparable residues are present in the overlying Mississippian rocks and were probably derived from a Carboniferous source, i.e. during later mineralization of the granite. The bitumen was already solidified during fluorite mineralization, which does not contain oil inclusions. The residues do not show the high thermal maturity of organic matter in the region altered by the earliest Permian Whin Sill. Like the sulphide-fluorite mineralization, oil emplacement post-dated intrusion of the sill. Pyrite associated with the oil residues is enriched in trace elements including lead, silver, gold, selenium and tellurium, which suggests that mineralizing fluids at least shared pathways with migrating hydrocarbons and possibly also suggests undiscovered valuable metal resources.




mp

Redefining Medical Competencies for an Oral Medicine Specialty Training Curriculum Using a Modified Delphi Technique

This article describes the development of medical competencies for oral medicine specialty training in the UK and Ireland by a collaborative working group using a modified Delphi technique. The current specialty training curriculum for oral medicine (OM) in the UK was developed by a working group including members of the British Society for Oral Medicine (BSOM) and members of the Specialty Advisory Committee for Additional Dental Specialties (SACADS) and adopted by the UK General Dental Council (GDC) in 2010. When the curriculum was developed, the entry requirements for specialty training in OM included undergraduate degrees in both dentistry and medicine. At the time of adoption, the requirement for a medical degree was removed. Medical competencies were assumed to have been delivered in medical undergraduate and postgraduate training. Accordingly, there was a need to define the medical competencies for OM specialty training to benefit trainees, trainers, and assessors. In 2018, a group comprising specialty trainers, recent former specialty trainees, and current specialty trainees in OM held face-to-face meetings in addition to email discussions and developed an updated curriculum document to better reflect the medical competencies required in specialty training. A collaborative modified Delphi approach was used to evaluate medical foundation competencies and to include only those that were considered relevant to OM specialty training. A list of relevant and achievable medical competencies was determined that has been approved by SACADS and will be incorporated into a revised OM curriculum from the UK GDC. The newly agreed-upon document for medical competencies in OM specialty training will serve as a reference for trainees, trainers, and assessors and reflects a successful use of a modified Delphi approach.




mp

Residents Perspectives on and Application of Dental Public Health Competencies Using Case-Based Methods

The aims of this study were to qualitatively assess dental public health (DPH) residents’ perspectives on teaching methods for DPH competencies and to develop and implement a case-based simulation to address those competencies, constructed on the basis of the qualitative assessment. Focus group discussions were conducted with 18 DPH residents enrolled in two university-based DPH programs. Topic areas discussed in the two focus groups were perceived value of DPH competencies, ways to acquire new DPH skills/abilities, and additional skills/abilities needed by DPH residents. The focus groups’ responses showed that the residents felt competent in the analytical thinking competencies such as research methodology and critiquing literature. They emphasized the importance of learning leadership skills and reported feeling somewhat uncertain about their mastery of the policy and advocacy and system evaluation competencies. Of the two distinct categories of DPH skills and competencies— analytical/critical thinking and practical competencies—these residents reported that a greater proportion of time needed to be devoted to integrating the practical competencies into their education. Based on the residents’ feedback, the authors developed a structured seminar series taking a case-based approach to simulate real-world DPH problems, using real and semi-hypothetical planning projects to meet the residents’ perceived needs and covering gaps between didactic learning and practice.




mp

Impact of Collaborative Leadership in Dental School Team Clinics

Dental students’ ability to critique team performance in dental school team clinics is a key component of dental education. The aim of this study was to determine if students’ perceptions of their team leaders’ openness of communication, cooperative decision making, and well-defined goals were positively related to the students’ improvement-oriented voice behavior and willingness to raise concerns in the clinical environment. This study used a voluntary 12-question survey, distributed via email to all 311 students at the University of Nevada, Las Vegas School of Dental Medicine after completion of the spring 2017 semester. Eighty-seven students responded, for a response rate of 28%. Responses were stratified by team, class year, and gender, and the quantitative distribution of answers to each question was correlated with each other. Team leader collaborative qualities, which included openness for communication, cooperative decision making, and well-defined goals, were found to have a significant positive relationship with students’ willingness to both raise concerns and make suggestions. Additionally, when measured by class year and gender, team differences in voice behavior assessment by students across the teams were found to be independent of class year, and no significant differences were found by gender. These results suggested that, to maintain high levels of communication, proper reporting of concerns, and a high standard of care, dental schools should encourage team leaders to enhance their capacity to present active collaborative behaviors in the school’s clinic. The study also highlighted potential opportunities for further study of faculty traits and development in the dental school team model.




mp

Perceptions of Dental Hygienists About Thesis Completion in Graduate Education

Few studies have been published on thesis completion experiences of master’s degree students. However, for doctoral students, dissertation completion has been found to be dependent on individual, relational, and institutional factors. The aim of this study was to examine dental hygienists’ perceptions of their experiences completing a thesis as a requirement for an advanced degree. A qualitative phenomenological research design was used utilizing virtual focus groups with a national purposive sample of dental hygienists (n=25) who had graduated from a degree program in which a thesis was a requirement for the degree. Data analysis used an inductive approach to identify themes using Liechty et al.’s framework of individual, relational, and institutional factors impacting completion of a dissertation. Liechty et al.’s framework is based on Vygotsky’s sociocultural theory of learning. In the results, individual factors identified included family/work responsibilities, lack of understanding of the thesis process, time management, health issues, and reaching personal and professional goals. Relational factors focused primarily on positive and negative experiences with the thesis advisor/committee and support from expert peers/family. Institutional factors included the thesis structure, financial concerns, and challenges in recruiting research participants. This study found many factors influencing the thesis experience that may help guide the process in graduate degree programs. In addition, the findings suggest a need to provide mentoring and support for thesis advisors and committee members to more effectively guide students through the thesis process. Effective modifications of these may improve retention of students and facilitate timely completion of thesis research.




mp

Challenges with Adherence to Clinical Practice Guidelines: Lessons for Implementation Science




mp

Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids [Research Articles]

The formation and properties of liquid-ordered (Lo) lipid domains (rafts) in the plasma membrane are still poorly understood. This limits our ability to manipulate ordered lipid domain-dependent biological functions. Giant plasma membrane vesicles (GPMVs) undergo large-scale phase separations into coexisting Lo and liquid-disordered lipid domains. However, large-scale phase separation in GPMVs detected by light microscopy is observed only at low temperatures. Comparing Förster resonance energy transfer-detected versus light microscopy-detected domain formation, we found that nanodomains, domains of nanometer size, persist at temperatures up to 20°C higher than large-scale phases, up to physiologic temperature. The persistence of nanodomains at higher temperatures is consistent with previously reported theoretical calculations. To investigate the sensitivity of nanodomains to lipid composition, GPMVs were prepared from mammalian cells in which sterol, phospholipid, or sphingolipid composition in the plasma membrane outer leaflet had been altered by cyclodextrin-catalyzed lipid exchange. Lipid substitutions that stabilize or destabilize ordered domain formation in artificial lipid vesicles had a similar effect on the thermal stability of nanodomains and large-scale phase separation in GPMVs, with nanodomains persisting at higher temperatures than large-scale phases for a wide range of lipid compositions. This indicates that it is likely that plasma membrane nanodomains can form under physiologic conditions more readily than large-scale phase separation. We also conclude that membrane lipid substitutions carried out in intact cells are able to modulate the propensity of plasma membranes to form ordered domains. This implies lipid substitutions can be used to alter biological processes dependent upon ordered domains.




mp

Lipid rafts as signaling hubs in cancer cell survival/death and invasion: implications in tumor progression and therapy [Thematic Reviews]

Cholesterol/sphingolipid-rich membrane domains, known as lipid rafts or membrane rafts, play a critical role in the compartmentalization of signaling pathways. Physical segregation of proteins in lipid rafts may modulate the accessibility of proteins to regulatory or effector molecules. Thus, lipid rafts serve as sorting platforms and hubs for signal transduction proteins. Cancer cells contain higher levels of intracellular cholesterol and lipid rafts than their normal non-tumorigenic counterparts. Many signal transduction processes involved in cancer development (insulin-like growth factor system and phosphatidylinositol 3-kinase-AKT) and metastasis [cluster of differentiation (CD)44] are dependent on or modulated by lipid rafts. Additional proteins playing an important role in several malignant cancers (e.g., transmembrane glycoprotein mucin 1) are also being detected in association with lipid rafts, suggesting a major role of lipid rafts in tumor progression. Conversely, lipid rafts also serve as scaffolds for the recruitment and clustering of Fas/CD95 death receptors and downstream signaling molecules leading to cell death-promoting raft platforms. The partition of death receptors and downstream signaling molecules in aggregated lipid rafts has led to the formation of the so-called cluster of apoptotic signaling molecule-enriched rafts, or CASMER, which leads to apoptosis amplification and can be pharmacologically modulated. These death-promoting rafts can be viewed as a linchpin from which apoptotic signals are launched. In this review, we discuss the involvement of lipid rafts in major signaling processes in cancer cells, including cell survival, cell death, and metastasis, and we consider the potential of lipid raft modulation as a promising target in cancer therapy.




mp

Using Colonization Assays and Comparative Genomics To Discover Symbiosis Behaviors and Factors in Vibrio fischeri

ABSTRACT

The luminous marine Gram-negative bacterium Vibrio (Aliivibrio) fischeri is the natural light organ symbiont of several squid species, including the Hawaiian bobtail squid, Euprymna scolopes, and the Japanese bobtail squid, Euprymna morsei. Work with E. scolopes has shown how the bacteria establish their niche in the light organ of the newly hatched host. Two types of V. fischeri strains have been distinguished based upon their behavior in cocolonization competition assays in juvenile E. scolopes, i.e., (i) niche-sharing or (ii) niche-dominant behavior. This study aimed to determine whether these behaviors are observed with other V. fischeri strains or whether they are specific to those isolated from E. scolopes light organs. Cocolonization competition assays between V. fischeri strains isolated from the congeneric squid E. morsei or from other marine animals revealed the same sharing or dominant behaviors. In addition, whole-genome sequencing of these strains showed that the dominant behavior is polyphyletic and not associated with the presence or absence of a single gene or genes. Comparative genomics of 44 squid light organ isolates from around the globe led to the identification of symbiosis-specific candidates in the genomes of these strains. Colonization assays using genetic derivatives with deletions of these candidates established the importance of two such genes in colonization. This study has allowed us to expand the concept of distinct colonization behaviors to strains isolated from a number of squid and fish hosts.

IMPORTANCE There is an increasing recognition of the importance of strain differences in the ecology of a symbiotic bacterial species and, in particular, how these differences underlie crucial interactions with their host. Nevertheless, little is known about the genetic bases for these differences, how they manifest themselves in specific behaviors, and their distribution among symbionts of different host species. In this study, we sequenced the genomes of Vibrio fischeri isolated from the tissues of squids and fishes and applied comparative genomics approaches to look for patterns between symbiont lineages and host colonization behavior. In addition, we identified the only two genes that were exclusively present in all V. fischeri strains isolated from the light organs of sepiolid squid species. Mutational studies of these genes indicated that they both played a role in colonization of the squid light organ, emphasizing the value of applying a comparative genomics approach in the study of symbioses.




mp

A Polar Flagellar Transcriptional Program Mediated by Diverse Two-Component Signal Transduction Systems and Basal Flagellar Proteins Is Broadly Conserved in Polar Flagellates

ABSTRACT

Bacterial flagella are rotating nanomachines required for motility. Flagellar gene expression and protein secretion are coordinated for efficient flagellar biogenesis. Polar flagellates, unlike peritrichous bacteria, commonly order flagellar rod and hook gene transcription as a separate step after production of the MS ring, C ring, and flagellar type III secretion system (fT3SS) core proteins that form a competent fT3SS. Conserved regulatory mechanisms in diverse polar flagellates to create this polar flagellar transcriptional program have not been thoroughly assimilated. Using in silico and genetic analyses and our previous findings in Campylobacter jejuni as a foundation, we observed a large subset of Gram-negative bacteria with the FlhF/FlhG regulatory system for polar flagellation to possess flagellum-associated two-component signal transduction systems (TCSs). We present data supporting a general theme in polar flagellates whereby MS ring, rotor, and fT3SS proteins contribute to a regulatory checkpoint during polar flagellar biogenesis. We demonstrate that Vibrio cholerae and Pseudomonas aeruginosa require the formation of this regulatory checkpoint for the TCSs to directly activate subsequent rod and hook gene transcription, which are hallmarks of the polar flagellar transcriptional program. By reprogramming transcription in V. cholerae to more closely follow the peritrichous flagellar transcriptional program, we discovered a link between the polar flagellar transcription program and the activity of FlhF/FlhG flagellar biogenesis regulators in which the transcriptional program allows polar flagellates to continue to produce flagella for motility when FlhF or FlhG activity may be altered. Our findings integrate flagellar transcriptional and biogenesis regulatory processes involved in polar flagellation in many species.

IMPORTANCE Relative to peritrichous bacteria, polar flagellates possess regulatory systems that order flagellar gene transcription differently and produce flagella in specific numbers only at poles. How transcriptional and flagellar biogenesis regulatory systems are interlinked to promote the correct synthesis of polar flagella in diverse species has largely been unexplored. We found evidence for many Gram-negative polar flagellates encoding two-component signal transduction systems with activity linked to the formation of flagellar type III secretion systems to enable production of flagellar rod and hook proteins at a discrete, subsequent stage during flagellar assembly. This polar flagellar transcriptional program assists, in some manner, the FlhF/FlhG flagellar biogenesis regulatory system, which forms specific flagellation patterns in polar flagellates in maintaining flagellation and motility when activity of FlhF or FlhG might be altered. Our work provides insight into the multiple regulatory processes required for polar flagellation.




mp

Repurposed Drugs That Block the Gonococcus-Complement Receptor 3 Interaction Can Prevent and Cure Gonococcal Infection of Primary Human Cervical Epithelial Cells

ABSTRACT

In the absence of a vaccine, multidrug-resistant Neisseria gonorrhoeae has emerged as a major human health threat, and new approaches to treat gonorrhea are urgently needed. N. gonorrhoeae pili are posttranslationally modified by a glycan that terminates in a galactose. The terminal galactose is critical for initial contact with the human cervical mucosa via an interaction with the I-domain of complement receptor 3 (CR3). We have now identified the I-domain galactose-binding epitope and characterized its galactose-specific lectin activity. Using surface plasmon resonance and cellular infection assays, we found that a peptide mimic of this galactose-binding region competitively inhibited the N. gonorrhoeae-CR3 interaction. A compound library was screened for potential drugs that could similarly prohibit the N. gonorrhoeae-CR3 interaction and be repurposed as novel host-targeted therapeutics for multidrug-resistant gonococcal infections in women. Two drugs, methyldopa and carbamazepine, prevented and cured cervical cell infection by multidrug-resistant gonococci by blocking the gonococcal-CR3 I-domain interaction.

IMPORTANCE Novel therapies that avert the problem of Neisseria gonorrhoeae with acquired antibiotic resistance are urgently needed. Gonococcal infection of the human cervix is initiated by an interaction between a galactose modification made to its surface appendages, pili, and the I-domain region of (host) complement receptor 3 (CR3). By targeting this crucial gonococcal–I-domain interaction, it may be possible to prevent cervical infection in females. To this end, we identified the I-domain galactose-binding epitope of CR3 and characterized its galactose lectin activity. Moreover, we identified two drugs, carbamazepine and methyldopa, as effective host-targeted therapies for gonorrhea treatment. At doses below those currently used for their respective existing indications, both carbamazepine and methyldopa were more effective than ceftriaxone in curing cervical infection ex vivo. This host-targeted approach would not be subject to N. gonorrhoeae drug resistance mechanisms. Thus, our data suggest a long-term solution to the growing problem of multidrug-resistant N. gonorrhoeae infections.




mp

Emergence of a Plasmid-Encoded Resistance-Nodulation-Division Efflux Pump Conferring Resistance to Multiple Drugs, Including Tigecycline, in Klebsiella pneumoniae

ABSTRACT

Transporters belonging to the chromosomally encoded resistance-nodulation-division (RND) superfamily mediate multidrug resistance in Gram-negative bacteria. However, the cotransfer of large gene clusters encoding RND-type pumps from the chromosome to a plasmid appears infrequent, and no plasmid-mediated RND efflux pump gene cluster has yet been found to confer resistance to tigecycline. Here, we identified a novel RND efflux pump gene cluster, designated tmexCD1-toprJ1, on plasmids from five pandrug-resistant Klebsiella pneumoniae isolates of animal origin. TMexCD1-TOprJ1 increased (by 4- to 32-fold) the MICs of tetracyclines (including tigecycline and eravacycline), quinolones, cephalosporins, and aminoglycosides for K. pneumoniae, Escherichia coli, and Salmonella. TMexCD1-TOprJ1 is closely related (64.5% to 77.8% amino acid identity) to the MexCD-OprJ efflux pump encoded on the chromosome of Pseudomonas aeruginosa. In an IncFIA plasmid, pHNAH8I, the tmexCD1-toprJ1 gene cluster lies adjacent to two genes encoding site-specific integrases, which may have been responsible for its acquisition. Expression of TMexCD1-TOprJ1 in E. coli resulted in increased tigecycline efflux and in K. pneumoniae negated the efficacy of tigecycline in an in vivo infection model. Expression of TMexCD1-TOprJ1 reduced the growth of E. coli and Salmonella but not K. pneumoniae. tmexCD1-toprJ1-positive Enterobacteriaceae isolates were rare in humans (0.08%) but more common in chicken fecal (14.3%) and retail meat (3.4%) samples. Plasmid-borne tmexCD1-toprJ1-like gene clusters were identified in sequences in GenBank from Enterobacteriaceae and Pseudomonas strains from multiple continents. The possibility of further global dissemination of the tmexCD1-toprJ1 gene cluster and its analogues in Enterobacteriaceae via plasmids may be an important consideration for public health planning.

IMPORTANCE In an era of increasing concerns about antimicrobial resistance, tigecycline is likely to have a critically important role in the treatment of carbapenem-resistant Enterobacteriaceae, the most problematic pathogens in human clinical settings—especially carbapenem-resistant K. pneumoniae. Here, we identified a new plasmid-borne RND-type tigecycline resistance determinant, TMexCD1-TOprJ1, which is widespread among K. pneumoniae isolates from food animals. tmexCD1-toprJ1 appears to have originated from the chromosome of a Pseudomonas species and may have been transferred onto plasmids by adjacent site-specific integrases. Although tmexCD1-toprJ1 still appears to be rare in human clinical isolates, considering the transferability of the tmexCD1-toprJ1 gene cluster and the broad substrate spectrum of TMexCD1-TOprJ1, further dissemination of this mobile tigecycline resistance determinant is possible. Therefore, from a "One Health" perspective, measures are urgently needed to monitor and control its further spread. The current low prevalence in human clinical isolates provides a precious time window to design and implement measures to tackle this.




mp

Diversity and Complexity of the Large Surface Protein Family in the Compacted Genomes of Multiple Pneumocystis Species

ABSTRACT

Pneumocystis, a major opportunistic pathogen in patients with a broad range of immunodeficiencies, contains abundant surface proteins encoded by a multicopy gene family, termed the major surface glycoprotein (Msg) gene superfamily. This superfamily has been identified in all Pneumocystis species characterized to date, highlighting its important role in Pneumocystis biology. In this report, through a comprehensive and in-depth characterization of 459 msg genes from 7 Pneumocystis species, we demonstrate, for the first time, the phylogeny and evolution of conserved domains in Msg proteins and provide a detailed description of the classification, unique characteristics, and phylogenetic relatedness of five Msg families. We further describe, for the first time, the relative expression levels of individual msg families in two rodent Pneumocystis species, the substantial variability of the msg repertoires in P. carinii from laboratory and wild rats, and the distinct features of the expression site for the classic msg genes in Pneumocystis from 8 mammalian host species. Our analysis suggests multiple functions for this superfamily rather than just conferring antigenic variation to allow immune evasion as previously believed. This study provides a rich source of information that lays the foundation for the continued experimental exploration of the functions of the Msg superfamily in Pneumocystis biology.

IMPORTANCE Pneumocystis continues to be a major cause of disease in humans with immunodeficiency, especially those with HIV/AIDS and organ transplants, and is being seen with increasing frequency worldwide in patients treated with immunodepleting monoclonal antibodies. Annual health care associated with Pneumocystis pneumonia costs ~$475 million dollars in the United States alone. In addition to causing overt disease in immunodeficient individuals, Pneumocystis can cause subclinical infection or colonization in healthy individuals, which may play an important role in species preservation and disease transmission. Our work sheds new light on the diversity and complexity of the msg superfamily and strongly suggests that the versatility of this superfamily reflects multiple functions, including antigenic variation to allow immune evasion and optimal adaptation to host environmental conditions to promote efficient infection and transmission. These findings are essential to consider in developing new diagnostic and therapeutic strategies.




mp

Modeling of the Coral Microbiome: the Influence of Temperature and Microbial Network

ABSTRACT

Host-associated microbial communities are shaped by extrinsic and intrinsic factors to the holobiont organism. Environmental factors and microbe-microbe interactions act simultaneously on the microbial community structure, making the microbiome dynamics challenging to predict. The coral microbiome is essential to the health of coral reefs and sensitive to environmental changes. Here, we develop a dynamic model to determine the microbial community structure associated with the surface mucus layer (SML) of corals using temperature as an extrinsic factor and microbial network as an intrinsic factor. The model was validated by comparing the predicted relative abundances of microbial taxa to the relative abundances of microbial taxa from the sample data. The SML microbiome from Pseudodiploria strigosa was collected across reef zones in Bermuda, where inner and outer reefs are exposed to distinct thermal profiles. A shotgun metagenomics approach was used to describe the taxonomic composition and the microbial network of the coral SML microbiome. By simulating the annual temperature fluctuations at each reef zone, the model output is statistically identical to the observed data. The model was further applied to six scenarios that combined different profiles of temperature and microbial network to investigate the influence of each of these two factors on the model accuracy. The SML microbiome was best predicted by model scenarios with the temperature profile that was closest to the local thermal environment, regardless of the microbial network profile. Our model shows that the SML microbiome of P. strigosa in Bermuda is primarily structured by seasonal fluctuations in temperature at a reef scale, while the microbial network is a secondary driver.

IMPORTANCE Coral microbiome dysbiosis (i.e., shifts in the microbial community structure or complete loss of microbial symbionts) caused by environmental changes is a key player in the decline of coral health worldwide. Multiple factors in the water column and the surrounding biological community influence the dynamics of the coral microbiome. However, by including only temperature as an external factor, our model proved to be successful in describing the microbial community associated with the surface mucus layer (SML) of the coral P. strigosa. The dynamic model developed and validated in this study is a potential tool to predict the coral microbiome under different temperature conditions.




mp

A Shift in Central Metabolism Accompanies Virulence Activation in Pseudomonas aeruginosa

ABSTRACT

The availability of energy has significant impact on cell physiology. However, the role of cellular metabolism in bacterial pathogenesis is not understood. We investigated the dynamics of central metabolism during virulence induction by surface sensing and quorum sensing in early-stage biofilms of the multidrug-resistant bacterium Pseudomonas aeruginosa. We established a metabolic profile for P. aeruginosa using fluorescence lifetime imaging microscopy (FLIM), which reports the activity of NADH in live cells. We identified a critical growth transition period during which virulence is activated. We performed FLIM measurements and direct measurements of NADH and NAD+ concentrations during this period. Here, planktonic (low-virulence) and surface-attached (virulence-activated) populations diverged into distinct metabolic states, with the surface-attached population exhibiting FLIM lifetimes that were associated with lower levels of enzyme-bound NADH and decreasing total NAD(H) production. We inhibited virulence by perturbing central metabolism using citrate and pyruvate, which further decreased the enzyme-bound NADH fraction and total NAD(H) production and suggested the involvement of the glyoxylate pathway in virulence activation in surface-attached populations. In addition, we induced virulence at an earlier time using the electron transport chain oxidase inhibitor antimycin A. Our results demonstrate the use of FLIM to noninvasively measure NADH dynamics in biofilms and suggest a model in which a metabolic rearrangement accompanies the virulence activation period.

IMPORTANCE The rise of antibiotic resistance requires the development of new strategies to combat bacterial infection and pathogenesis. A major direction has been the development of drugs that broadly target virulence. However, few targets have been identified due to the species-specific nature of many virulence regulators. The lack of a virulence regulator that is conserved across species has presented a further challenge to the development of therapeutics. Here, we identify that NADH activity has an important role in the induction of virulence in the pathogen P. aeruginosa. This finding, coupled with the ubiquity of NADH in bacterial pathogens, opens up the possibility of targeting enzymes that process NADH as a potential broad antivirulence approach.




mp

Reply to Losick, "Concerns about Continuing Claims that a Protein Complex Interacts with the Phosphorelay"




mp

Context Is Key: Comparative Biology Illuminates the Vertebrate Microbiome

ABSTRACT

Microbes affect vertebrates on timescales from daily to evolutionary, and the cumulative effect of these interactions is immense. However, how microbiomes compare across (host) species is poorly understood, as most studies focus on relatively few species. A recent mBio article by S. J. Song, J. G. Sanders, F. Delsuc, J. Metcalf, et al. (mBio 11:e02901-19, 2019, https://doi.org/10.1128/mBio.02901-19) expands our collective understanding of the vertebrate microbiome by analyzing ~900 species. They demonstrate that patterns within mammals contrast with those within birds. Their results suggest many hypotheses about the role of host ecology and evolution on microbiome variation. Bats, the only volant mammals, appear to contradict many of the general mammal microbiome trends, in some ways resembling birds. What role has powered flight, and the evolution thereof, played in microbiome structure and function? Comparative methods, mechanistic hypotheses, and theory will elucidate this exciting question (and others) that we can ask using Song, Sanders et al.’s data and results.




mp

CO2/HCO3- Accelerates Iron Reduction through Phenolic Compounds

ABSTRACT

Iron is a vital mineral for almost all living organisms and has a pivotal role in central metabolism. Despite its great abundance on earth, the accessibility for microorganisms is often limited, because poorly soluble ferric iron (Fe3+) is the predominant oxidation state in an aerobic environment. Hence, the reduction of Fe3+ is of essential importance to meet the cellular demand of ferrous iron (Fe2+) but might become detrimental as excessive amounts of intracellular Fe2+ tend to undergo the cytotoxic Fenton reaction in the presence of hydrogen peroxide. We demonstrate that the complex formation rate of Fe3+ and phenolic compounds like protocatechuic acid was increased by 46% in the presence of HCO3 and thus accelerated the subsequent redox reaction, yielding reduced Fe2+. Consequently, elevated CO2/HCO3 levels increased the intracellular Fe2+ availability, which resulted in at least 50% higher biomass-specific fluorescence of a DtxR-based Corynebacterium glutamicum reporter strain, and stimulated growth. Since the increased Fe2+ availability was attributed to the interaction of HCO3 and chemical iron reduction, the abiotic effect postulated in this study is of general relevance in geochemical and biological environments.

IMPORTANCE In an oxygenic environment, poorly soluble Fe3+ must be reduced to meet the cellular Fe2+ demand. This study demonstrates that elevated CO2/HCO3 levels accelerate chemical Fe3+ reduction through phenolic compounds, thus increasing intracellular Fe2+ availability. A number of biological environments are characterized by the presence of phenolic compounds and elevated HCO3 levels and include soil habitats and the human body. Fe2+ availability is of particular interest in the latter, as it controls the infectiousness of pathogens. Since the effect postulated here is abiotic, it generally affects the Fe2+ distribution in nature.




mp

More than Simple Parasites: the Sociobiology of Bacteriophages and Their Bacterial Hosts

ABSTRACT

Bacteria harbor viruses called bacteriophages that, like all viruses, co-opt the host cellular machinery to replicate. Although this relationship is at first glance parasitic, there are social interactions among and between bacteriophages and their bacterial hosts. These social interactions can take on many forms, including cooperation, altruism, and cheating. Such behaviors among individuals in groups of bacteria have been well described. However, the social nature of some interactions between phages or phages and bacteria is only now becoming clear. We are just beginning to understand how bacteriophages affect the sociobiology of bacteria, and we know even less about social interactions within bacteriophage populations. In this review, we discuss recent developments in our understanding of bacteriophage sociobiology, including how selective pressures influence the outcomes of social interactions between populations of bacteria and bacteriophages. We also explore how tripartite social interactions between bacteria, bacteriophages, and an animal host affect host-microbe interactions. Finally, we argue that understanding the sociobiology of bacteriophages will have implications for the therapeutic use of bacteriophages to treat bacterial infections.




mp

Concerns about Continuing Claims that a Protein Complex Interacts with the Phosphorelay




mp

Pyocin S5 Import into Pseudomonas aeruginosa Reveals a Generic Mode of Bacteriocin Transport

ABSTRACT

Pyocin S5 (PyoS5) is a potent protein bacteriocin that eradicates the human pathogen Pseudomonas aeruginosa in animal infection models, but its import mechanism is poorly understood. Here, using crystallography, biophysical and biochemical analyses, and live-cell imaging, we define the entry process of PyoS5 and reveal links to the transport mechanisms of other bacteriocins. In addition to its C-terminal pore-forming domain, elongated PyoS5 comprises two novel tandemly repeated kinked 3-helix bundle domains that structure-based alignments identify as key import domains in other pyocins. The central domain binds the lipid-bound common polysaccharide antigen, allowing the pyocin to accumulate on the cell surface. The N-terminal domain binds the ferric pyochelin transporter FptA while its associated disordered region binds the inner membrane protein TonB1, which together drive import of the bacteriocin across the outer membrane. Finally, we identify the minimal requirements for sensitizing Escherichia coli toward PyoS5, as well as other pyocins, and suggest that a generic pathway likely underpins the import of all TonB-dependent bacteriocins across the outer membrane of Gram-negative bacteria.

IMPORTANCE Bacteriocins are toxic polypeptides made by bacteria to kill their competitors, making them interesting as potential antibiotics. Here, we reveal unsuspected commonalities in bacteriocin uptake pathways, through molecular and cellular dissection of the import pathway for the pore-forming bacteriocin pyocin S5 (PyoS5), which targets Pseudomonas aeruginosa. In addition to its C-terminal pore-forming domain, PyoS5 is composed of two tandemly repeated helical domains that we also identify in other pyocins. Functional analyses demonstrate that they have distinct roles in the import process. One recognizes conserved sugars projected from the surface, while the other recognizes a specific outer membrane siderophore transporter, FptA, in the case of PyoS5. Through engineering of Escherichia coli cells, we show that pyocins can be readily repurposed to kill other species. This suggests basic ground rules for the outer membrane translocation step that likely apply to many bacteriocins targeting Gram-negative bacteria.




mp

Cyclic di-GMP Signaling in Bacillus subtilis Is Governed by Direct Interactions of Diguanylate Cyclases and Cognate Receptors

ABSTRACT

Bacillus subtilis contains two known cyclic di-GMP (c-di-GMP)-dependent receptors, YdaK and DgrA, as well as three diguanylate cyclases (DGCs): soluble DgcP and membrane-integral DgcK and DgcW. DgrA regulates motility, while YdaK is responsible for the formation of a putative exopolysaccharide, dependent on the activity of DgcK. Using single-molecule tracking, we show that a majority of DgcK molecules are statically positioned in the cell membrane but significantly less so in the absence of YdaK but more so upon overproduction of YdaK. The soluble domains of DgcK and of YdaK show a direct interaction in vitro, which depends on an intact I-site within the degenerated GGDEF domain of YdaK. These experiments suggest a direct handover of a second messenger at a single subcellular site. Interestingly, all three DGC proteins contribute toward downregulation of motility via the PilZ protein DgrA. Deletion of dgrA also affects the mobility of DgcK within the membrane and also that of DgcP, which arrests less often at the membrane in the absence of DgrA. Both, DgcK and DgcP interact with DgrA in vitro, showing that divergent as well as convergent direct connections exist between cyclases and their effector proteins. Automated determination of molecule numbers in live cells revealed that DgcK and DgcP are present at very low copy numbers of 6 or 25 per cell, respectively, such that for DgcK, a part of the cell population does not contain any DgcK molecule, rendering signaling via c-di-GMP extremely efficient.

IMPORTANCE Second messengers are free to diffuse through the cells and to activate all responsive elements. Cyclic di-GMP (c-di-GMP) signaling plays an important role in the determination of the life style transition between motility and sessility/biofilm formation but involves numerous distinct synthetases (diguanylate cyclases [DGCs]) or receptor pathways that appear to act in an independent manner. Using Bacillus subtilis as a model organism, we show that for two c-di-GMP pathways, DGCs and receptor molecules operate via direct interactions, where a synthesized dinucleotide appears to be directly used for the protein-protein interaction. We show that very few DGC molecules exist within cells; in the case of exopolysaccharide (EPS) formation via membrane protein DgcK, the DGC molecules act at a single site, setting up a single signaling pool within the cell membrane. Using single-molecule tracking, we show that the soluble DGC DgcP arrests at the cell membrane, interacting with its receptor, DgrA, which slows down motility. DgrA also directly binds to DgcK, showing that divergent as well as convergent modules exist in B. subtilis. Thus, local-pool signal transduction operates extremely efficiently and specifically.




mp

Epstein-Barr Virus Epitope-Major Histocompatibility Complex Interaction Combined with Convergent Recombination Drives Selection of Diverse T Cell Receptor {alpha} and {beta} Repertoires

ABSTRACT

Recognition modes of individual T cell receptors (TCRs) are well studied, but factors driving the selection of TCR repertoires from primary through persistent human virus infections are less well understood. Using deep sequencing, we demonstrate a high degree of diversity of Epstein-Barr virus (EBV)-specific clonotypes in acute infectious mononucleosis (AIM). Only 9% of unique clonotypes detected in AIM persisted into convalescence; the majority (91%) of unique clonotypes detected in AIM were not detected in convalescence and were seeming replaced by equally diverse "de novo" clonotypes. The persistent clonotypes had a greater probability of being generated than nonpersistent clonotypes due to convergence recombination of multiple nucleotide sequences to encode the same amino acid sequence, as well as the use of shorter complementarity-determining regions 3 (CDR3s) with fewer nucleotide additions (i.e., sequences closer to germ line). Moreover, the two most immunodominant HLA-A2-restricted EBV epitopes, BRLF1109 and BMLF1280, show highly distinct antigen-specific public (i.e., shared between individuals) features. In fact, TCRα CDR3 motifs played a dominant role, while TCRβ played a minimal role, in the selection of TCR repertoire to an immunodominant EBV epitope, BRLF1. This contrasts with the majority of previously reported repertoires, which appear to be selected either on TCRβ CDR3 interactions with peptide/major histocompatibility complex (MHC) or in combination with TCRα CDR3. Understanding of how TCR-peptide-MHC complex interactions drive repertoire selection can be used to develop optimal strategies for vaccine design or generation of appropriate adoptive immunotherapies for viral infections in transplant settings or for cancer.

IMPORTANCE Several lines of evidence suggest that TCRα and TCRβ repertoires play a role in disease outcomes and treatment strategies during viral infections in transplant patients and in cancer and autoimmune disease therapy. Our data suggest that it is essential that we understand the basic principles of how to drive optimum repertoires for both TCR chains, α and β. We address this important issue by characterizing the CD8 TCR repertoire to a common persistent human viral infection (EBV), which is controlled by appropriate CD8 T cell responses. The ultimate goal would be to determine if the individuals who are infected asymptomatically develop a different TCR repertoire than those that develop the immunopathology of AIM. Here, we begin by doing an in-depth characterization of both CD8 T cell TCRα and TCRβ repertoires to two immunodominant EBV epitopes over the course of AIM, identifying potential factors that may be driving their selection.




mp

Feedback Control of a Two-Component Signaling System by an Fe-S-Binding Receiver Domain

ABSTRACT

Two-component signaling systems (TCSs) function to detect environmental cues and transduce this information into a change in transcription. In its simplest form, TCS-dependent regulation of transcription entails phosphoryl-transfer from a sensory histidine kinase to its cognate DNA-binding receiver protein. However, in certain cases, auxiliary proteins may modulate TCSs in response to secondary environmental cues. Caulobacter crescentus FixT is one such auxiliary regulator. FixT is composed of a single receiver domain and functions as a feedback inhibitor of the FixL-FixJ (FixLJ) TCS, which regulates the transcription of genes involved in adaptation to microaerobiosis. We sought to define the impact of fixT on Caulobacter cell physiology and to understand the molecular mechanism by which FixT represses FixLJ signaling. fixT deletion results in excess production of porphyrins and premature entry into stationary phase, demonstrating the importance of feedback inhibition of the FixLJ signaling system. Although FixT is a receiver domain, it does not affect dephosphorylation of the oxygen sensor kinase FixL or phosphoryl-transfer from FixL to its cognate receiver FixJ. Rather, FixT represses FixLJ signaling by inhibiting the FixL autophosphorylation reaction. We have further identified a 4-cysteine motif in Caulobacter FixT that binds an Fe-S cluster and protects the protein from degradation by the Lon protease. Our data support a model in which the oxidation of this Fe-S cluster promotes the degradation of FixT in vivo. This proteolytic mechanism facilitates clearance of the FixT feedback inhibitor from the cell under normoxia and resets the FixLJ system for a future microaerobic signaling event.

IMPORTANCE Two-component signal transduction systems (TCSs) are broadly conserved in the bacterial kingdom and generally contain two molecular components, a sensor histidine kinase and a receiver protein. Sensor histidine kinases alter their phosphorylation state in direct response to a physical or chemical cue, whereas receiver proteins "receive" the phosphoryl group from the kinase to regulate a change in cell physiology. We have discovered that a single-domain receiver protein, FixT, binds an Fe-S cluster and controls Caulobacter heme homeostasis though its function as a negative-feedback regulator of the oxygen sensor kinase FixL. We provide evidence that the Fe-S cluster protects FixT from Lon-dependent proteolysis in the cell and endows FixT with the ability to function as a second, autonomous oxygen/redox sensor in the FixL-FixJ signaling pathway. This study introduces a novel mechanism of regulated TCS feedback control by an Fe-S-binding receiver domain.




mp

Role of Plasmodium falciparum Protein GEXP07 in Maurers Cleft Morphology, Knob Architecture, and P. falciparum EMP1 Trafficking

ABSTRACT

The malaria parasite Plasmodium falciparum traffics the virulence protein P. falciparum erythrocyte membrane protein 1 (PfEMP1) to the surface of infected red blood cells (RBCs) via membranous organelles, known as the Maurer’s clefts. We developed a method for efficient enrichment of Maurer’s clefts and profiled the protein composition of this trafficking organelle. We identified 13 previously uncharacterized or poorly characterized Maurer’s cleft proteins. We generated transfectants expressing green fluorescent protein (GFP) fusions of 7 proteins and confirmed their Maurer’s cleft location. Using co-immunoprecipitation and mass spectrometry, we generated an interaction map of proteins at the Maurer’s clefts. We identified two key clusters that may function in the loading and unloading of PfEMP1 into and out of the Maurer’s clefts. We focus on a putative PfEMP1 loading complex that includes the protein GEXP07/CX3CL1-binding protein 2 (CBP2). Disruption of GEXP07 causes Maurer’s cleft fragmentation, aberrant knobs, ablation of PfEMP1 surface expression, and loss of the PfEMP1-mediated adhesion. GEXP07 parasites have a growth advantage compared to wild-type parasites, and the infected RBCs are more deformable and more osmotically fragile.

IMPORTANCE The trafficking of the virulence antigen PfEMP1 and its presentation at the knob structures at the surface of parasite-infected RBCs are central to severe adhesion-related pathologies such as cerebral and placental malaria. This work adds to our understanding of how PfEMP1 is trafficked to the RBC membrane by defining the protein-protein interaction networks that function at the Maurer’s clefts controlling PfEMP1 loading and unloading. We characterize a protein needed for virulence protein trafficking and provide new insights into the mechanisms for host cell remodeling, parasite survival within the host, and virulence.




mp

Phosphoric Metabolites Link Phosphate Import and Polysaccharide Biosynthesis for Candida albicans Cell Wall Maintenance

ABSTRACT

The Candida albicans high-affinity phosphate transporter Pho84 is required for normal Target of Rapamycin (TOR) signaling, oxidative stress resistance, and virulence of this fungal pathogen. It also contributes to C. albicans’ tolerance of two antifungal drug classes, polyenes and echinocandins. Echinocandins inhibit biosynthesis of a major cell wall component, beta-1,3-glucan. Cells lacking Pho84 were hypersensitive to other forms of cell wall stress beyond echinocandin exposure, while their cell wall integrity signaling response was weak. Metabolomics experiments showed that levels of phosphoric intermediates, including nucleotides like ATP and nucleotide sugars, were low in pho84 mutant compared to wild-type cells recovering from phosphate starvation. Nonphosphoric precursors like nucleobases and nucleosides were elevated. Outer cell wall phosphomannan biosynthesis requires a nucleotide sugar, GDP-mannose. The nucleotide sugar UDP-glucose is the substrate of enzymes that synthesize two major structural cell wall polysaccharides, beta-1,3- and beta-1,6-glucan. Another nucleotide sugar, UDP-N-acetylglucosamine, is the substrate of chitin synthases which produce a stabilizing component of the intercellular septum and of lateral cell walls. Lack of Pho84 activity, and phosphate starvation, potentiated pharmacological or genetic perturbation of these enzymes. We posit that low substrate concentrations of beta-d-glucan- and chitin synthases, together with pharmacologic inhibition of their activity, diminish enzymatic reaction rates as well as the yield of their cell wall-stabilizing products. Phosphate import is not conserved between fungal and human cells, and humans do not synthesize beta-d-glucans or chitin. Hence, inhibiting these processes simultaneously could yield potent antifungal effects with low toxicity to humans.

IMPORTANCE Candida species cause hundreds of thousands of invasive infections with high mortality each year. Developing novel antifungal agents is challenging due to the many similarities between fungal and human cells. Maintaining phosphate balance is essential for all organisms but is achieved completely differently by fungi and humans. A protein that imports phosphate into fungal cells, Pho84, is not present in humans and is required for normal cell wall stress resistance and cell wall integrity signaling in C. albicans. Nucleotide sugars, which are phosphate-containing building block molecules for construction of the cell wall, are diminished in cells lacking Pho84. Cell wall-constructing enzymes may be slowed by lack of these building blocks, in addition to being inhibited by drugs. Combined targeting of Pho84 and cell wall-constructing enzymes may provide a strategy for antifungal therapy by which two sequential steps of cell wall maintenance are blocked for greater potency.




mp

Activity and Metabolic Versatility of Complete Ammonia Oxidizers in Full-Scale Wastewater Treatment Systems

ABSTRACT

The recent discovery of complete ammonia oxidizers (comammox) contradicts the paradigm that chemolithoautotrophic nitrification is always catalyzed by two different microorganisms. However, our knowledge of the survival strategies of comammox in complex ecosystems, such as full-scale wastewater treatment plants (WWTPs), remains limited. Analyses of genomes and in situ transcriptomes of four comammox organisms from two full-scale WWTPs revealed that comammox were active and showed a surprisingly high metabolic versatility. A gene cluster for the utilization of urea and a gene encoding cyanase suggest that comammox may use diverse organic nitrogen compounds in addition to free ammonia as the substrates. The comammox organisms also encoded the genomic potential for multiple alternative energy metabolisms, including respiration with hydrogen, formate, and sulfite as electron donors. Pathways for the biosynthesis and degradation of polyphosphate, glycogen, and polyhydroxyalkanoates as intracellular storage compounds likely help comammox survive unfavorable conditions and facilitate switches between lifestyles in fluctuating environments. One of the comammox strains acquired from the anaerobic tank encoded and transcribed genes involved in homoacetate fermentation or in the utilization of exogenous acetate, both pathways being unexpected in a nitrifying bacterium. Surprisingly, this strain also encoded a respiratory nitrate reductase which has not yet been found in any other Nitrospira genome and might confer a selective advantage to this strain over other Nitrospira strains in anoxic conditions.

IMPORTANCE The discovery of comammox in the genus Nitrospira changes our perception of nitrification. However, genomes of comammox organisms have not been acquired from full-scale WWTPs, and very little is known about their survival strategies and potential metabolisms in complex wastewater treatment systems. Here, four comammox metagenome-assembled genomes and metatranscriptomic data sets were retrieved from two full-scale WWTPs. Their impressive and—among nitrifiers—unsurpassed ecophysiological versatility could make comammox Nitrospira an interesting target for optimizing nitrification in current and future bioreactor configurations.




mp

Neutralizing Monoclonal Antibodies against the Gn and the Gc of the Andes Virus Glycoprotein Spike Complex Protect from Virus Challenge in a Preclinical Hamster Model

ABSTRACT

Hantaviruses are the etiological agent of hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). The latter is associated with case fatality rates ranging from 30% to 50%. HCPS cases are rare, with approximately 300 recorded annually in the Americas. Recently, an HCPS outbreak of unprecedented size has been occurring in and around Epuyén, in the southwestern Argentinian state of Chubut. Since November of 2018, at least 29 cases have been laboratory confirmed, and human-to-human transmission is suspected. Despite posing a significant threat to public health, no treatment or vaccine is available for hantaviral disease. Here, we describe an effort to identify, characterize, and develop neutralizing and protective antibodies against the glycoprotein complex (Gn and Gc) of Andes virus (ANDV), the causative agent of the Epuyén outbreak. Using murine hybridoma technology, we generated 19 distinct monoclonal antibodies (MAbs) against ANDV GnGc. When tested for neutralization against a recombinant vesicular stomatitis virus expressing the Andes glycoprotein (GP) (VSV-ANDV), 12 MAbs showed potent neutralization and 8 showed activity in an antibody-dependent cellular cytotoxicity reporter assay. Escape mutant analysis revealed that neutralizing MAbs targeted both the Gn and the Gc. Four MAbs that bound different epitopes were selected for preclinical studies and were found to be 100% protective against lethality in a Syrian hamster model of ANDV infection. These data suggest the existence of a wide array of neutralizing antibody epitopes on hantavirus GnGc with unique properties and mechanisms of action.

IMPORTANCE Infections with New World hantaviruses are associated with high case fatality rates, and no specific vaccine or treatment options exist. Furthermore, the biology of the hantaviral GnGc complex, its antigenicity, and its fusion machinery are poorly understood. Protective monoclonal antibodies against GnGc have the potential to be developed into therapeutics against hantaviral disease and are also great tools to elucidate the biology of the glycoprotein complex.




mp

Localized Hypermutation is the Major Driver of Meningococcal Genetic Variability during Persistent Asymptomatic Carriage

ABSTRACT

Host persistence of bacteria is facilitated by mutational and recombinatorial processes that counteract loss of genetic variation during transmission and selection from evolving host responses. Genetic variation was investigated during persistent asymptomatic carriage of Neisseria meningitidis. Interrogation of whole-genome sequences for paired isolates from 25 carriers showed that de novo mutations were infrequent, while horizontal gene transfer occurred in 16% of carriers. Examination of multiple isolates per time point enabled separation of sporadic and transient allelic variation from directional variation. A comprehensive comparative analysis of directional allelic variation with hypermutation of simple sequence repeats and hyperrecombination of class 1 type IV pilus genes detected an average of seven events per carrier and 2:1 bias for changes due to localized hypermutation. Directional genetic variation was focused on the outer membrane with 69% of events occurring in genes encoding enzymatic modifiers of surface structures or outer membrane proteins. Multiple carriers exhibited directional and opposed switching of allelic variants of the surface-located Opa proteins that enables continuous expression of these adhesins alongside antigenic variation. A trend for switching from PilC1 to PilC2 expression was detected, indicating selection for specific alterations in the activities of the type IV pilus, whereas phase variation of restriction modification (RM) systems, as well as associated phasevarions, was infrequent. We conclude that asymptomatic meningococcal carriage on mucosal surfaces is facilitated by frequent localized hypermutation and horizontal gene transfer affecting genes encoding surface modifiers such that optimization of adhesive functions occurs alongside escape of immune responses by antigenic variation.

IMPORTANCE Many bacterial pathogens coexist with host organisms, rarely causing disease while adapting to host responses. Neisseria meningitidis, a major cause of meningitis and septicemia, is a frequent persistent colonizer of asymptomatic teenagers/young adults. To assess how genetic variation contributes to host persistence, whole-genome sequencing and hypermutable sequence analyses were performed on multiple isolates obtained from students naturally colonized with meningococci. High frequencies of gene transfer were observed, occurring in 16% of carriers and affecting 51% of all nonhypermutable variable genes. Comparative analyses showed that hypermutable sequences were the major mechanism of variation, causing 2-fold more changes in gene function than other mechanisms. Genetic variation was focused on genes affecting the outer membrane, with directional changes in proteins responsible for bacterial adhesion to host surfaces. This comprehensive examination of genetic plasticity in individual hosts provides a significant new platform for rationale design of approaches to prevent the spread of this pathogen.




mp

The Hypercomplex Genome of an Insect Reproductive Parasite Highlights the Importance of Lateral Gene Transfer in Symbiont Biology

ABSTRACT

Mobile elements—plasmids and phages—are important components of microbial function and evolution via traits that they encode and their capacity to shuttle genetic material between species. We here report the unusually rich array of mobile elements within the genome of Arsenophonus nasoniae, the son-killer symbiont of the parasitic wasp Nasonia vitripennis. This microbe’s genome has the highest prophage complement reported to date, with over 50 genomic regions that represent either intact or degraded phage material. Moreover, the genome is predicted to include 17 extrachromosomal genetic elements, which carry many genes predicted to be important at the microbe-host interface, derived from a diverse assemblage of insect-associated gammaproteobacteria. In our system, this diversity was previously masked by repetitive mobile elements that broke the assembly derived from short reads. These findings suggest that other complex bacterial genomes will be revealed in the era of long-read sequencing.

IMPORTANCE The biology of many bacteria is critically dependent on genes carried on plasmid and phage mobile elements. These elements shuttle between microbial species, thus providing an important source of biological innovation across taxa. It has recently been recognized that mobile elements are also important in symbiotic bacteria, which form long-lasting interactions with their host. In this study, we report a bacterial symbiont genome that carries a highly complex array of these elements. Arsenophonus nasoniae is the son-killer microbe of the parasitic wasp Nasonia vitripennis and exists with the wasp throughout its life cycle. We completed its genome with the aid of recently developed long-read technology. This assembly contained over 50 chromosomal regions of phage origin and 17 extrachromosomal elements within the genome, encoding many important traits at the host-microbe interface. Thus, the biology of this symbiont is enabled by a complex array of mobile elements.




mp

Estimating the Timing of Early Simian-Human Immunodeficiency Virus Infections: a Comparison between Poisson Fitter and BEAST

ABSTRACT

Many HIV prevention strategies are currently under consideration where it is highly informative to know the study participants’ times of infection. These can be estimated using viral sequence data sampled early in infection. However, there are several scenarios that, if not addressed, can skew timing estimates. These include multiple transmitted/founder (TF) viruses, APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like)-mediated mutational enrichment, and recombination. Here, we suggest a pipeline to identify these problems and resolve the biases that they introduce. We then compare two modeling strategies to obtain timing estimates from sequence data. The first, Poisson Fitter (PF), is based on a Poisson model of random accumulation of mutations relative to the TF virus (or viruses) that established the infection. The second uses a coalescence-based phylogenetic strategy as implemented in BEAST. The comparison is based on timing predictions using plasma viral RNA (cDNA) sequence data from 28 simian-human immunodeficiency virus (SHIV)-infected animals for which the exact day of infection is known. In this particular setting, based on nucleotide sequences from samples obtained in early infection, the Poisson method yielded more accurate, more precise, and unbiased estimates for the time of infection than did the explored implementations of BEAST.

IMPORTANCE The inference of the time of infection is a critical parameter in testing the efficacy of clinical interventions in protecting against HIV-1 infection. For example, in clinical trials evaluating the efficacy of passively delivered antibodies (Abs) for preventing infections, accurate time of infection data are essential for discerning levels of the Abs required to confer protection, given the natural Ab decay rate in the human body. In such trials, genetic sequences from early in the infection are regularly sampled from study participants, generally prior to immune selection, when the viral population is still expanding and genetic diversity is low. In this particular setting of early viral growth, the Poisson method is superior to the alternative approach based on coalescent methods. This approach can also be applied in human vaccine trials, where accurate estimates of infection times help ascertain if vaccine-elicited immune protection wanes over time.




mp

A Virus Hosted in Malaria-Infected Blood Protects against T Cell-Mediated Inflammatory Diseases by Impairing DC Function in a Type I IFN-Dependent Manner

ABSTRACT

Coinfections shape immunity and influence the development of inflammatory diseases, resulting in detrimental or beneficial outcome. Coinfections with concurrent Plasmodium species can alter malaria clinical evolution, and malaria infection itself can modulate autoimmune reactions. Yet, the underlying mechanisms remain ill defined. Here, we demonstrate that the protective effects of some rodent malaria strains on T cell-mediated inflammatory pathologies are due to an RNA virus cohosted in malaria-parasitized blood. We show that live and extracts of blood parasitized by Plasmodium berghei K173 or Plasmodium yoelii 17X YM, protect against P. berghei ANKA-induced experimental cerebral malaria (ECM) and myelin oligodendrocyte glycoprotein (MOG)/complete Freund’s adjuvant (CFA)-induced experimental autoimmune encephalomyelitis (EAE), and that protection is associated with a strong type I interferon (IFN-I) signature. We detected the presence of the RNA virus lactate dehydrogenase-elevating virus (LDV) in the protective Plasmodium stabilates and we established that LDV infection alone was necessary and sufficient to recapitulate the protective effects on ECM and EAE. In ECM, protection resulted from an IFN-I-mediated reduction in the abundance of splenic conventional dendritic cell and impairment of their ability to produce interleukin (IL)-12p70, leading to a decrease in pathogenic CD4+ Th1 responses. In EAE, LDV infection induced IFN-I-mediated abrogation of IL-23, thereby preventing the differentiation of granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing encephalitogenic CD4+ T cells. Our work identifies a virus cohosted in several Plasmodium stabilates across the community and deciphers its major consequences on the host immune system. More generally, our data emphasize the importance of considering contemporaneous infections for the understanding of malaria-associated and autoimmune diseases.

IMPORTANCE Any infection modifies the host immune status, potentially ameliorating or aggravating the pathophysiology of a simultaneous inflammatory condition. In the course of investigating how malaria infection modulates the severity of contemporaneous inflammatory diseases, we identified a nonpathogenic mouse virus in stabilates of two widely used rodent parasite lines: Plasmodium berghei K173 and Plasmodium yoelii 17X YM. We established that the protective effects of these Plasmodium lines on cerebral malaria and multiple sclerosis are exclusively due to this virus. The virus induces a massive type I interferon (IFN-I) response and causes quantitative and qualitative defects in the ability of dendritic cells to promote pathogenic T cell responses. Beyond revealing a possible confounding factor in rodent malaria models, our work uncovers some bases by which a seemingly innocuous viral (co)infection profoundly changes the immunopathophysiology of inflammatory diseases.




mp

Prokaryotic and Viral Community Composition of Freshwater Springs in Florida, USA

ABSTRACT

Aquifers, which are essential underground freshwater reservoirs worldwide, are understudied ecosystems that harbor diverse forms of microbial life. This study investigated the abundance and composition of prokaryotic and viral communities in the outflow of five springs across northern Florida, USA, as a proxy of microbial communities found in one of the most productive aquifers in the world, the Floridan aquifer. The average abundances of virus-like particles and prokaryotic cells were slightly lower than those reported from other groundwater systems, ranging from 9.6 x 103 ml–1 to 1.1 x 105 ml–1 and 2.2 x 103 ml–1 to 3.4 x 104 ml–1, respectively. Despite all of the springs being fed by the Floridan aquifer, sequencing of 16S rRNA genes and viral metagenomes (viromes) revealed unique communities in each spring, suggesting that groundwater microbial communities are influenced by land usage in recharge zones. The prokaryotic communities were dominated by Bacteria, and though the most abundant phyla (Proteobacteria, Cyanobacteria, and Bacteroidetes) were found in relatively high abundance across springs, variation was seen at finer taxonomic resolution. The viral sequences were most similar to those described from other aquatic environments. Sequencing resulted in the completion of 58 novel viral genomes representing members of the order Caudovirales as well as prokaryotic and eukaryotic single-stranded DNA (ssDNA) viruses. Sequences similar to those of ssDNA viruses were detected at all spring sites and dominated the identifiable sequences at one spring site, showing that these small viruses merit further investigation in groundwater systems.

IMPORTANCE Aquifer systems may hold up to 40% of the total microbial biomass on Earth. However, little is known about the composition of microbial communities within these critical freshwater ecosystems. Here, we took advantage of Florida’s first-magnitude springs (the highest spring classification based on water discharge), each discharging at least 246 million liters of water each day from the Floridan aquifer system (FAS), to investigate prokaryotic and viral communities from the aquifer. The FAS serves as a major source of potable water in the Southeastern United States, providing water for large cities and citizens in three states. Unfortunately, the health of the FAS and its associated springs has declined in the past few decades due to nutrient loading, increased urbanization and agricultural activity in aquifer recharge zones, and saltwater intrusion. This is the first study to describe the prokaryotic and viral communities in Florida’s first-magnitude springs, providing a baseline against which to compare future ecosystem change.




mp

The WblC/WhiB7 Transcription Factor Controls Intrinsic Resistance to Translation-Targeting Antibiotics by Altering Ribosome Composition

ABSTRACT

Bacteria that encounter antibiotics can efficiently change their physiology to develop resistance. This intrinsic antibiotic resistance is mediated by multiple pathways, including a regulatory system(s) that activates specific genes. In some Streptomyces and Mycobacterium spp., the WblC/WhiB7 transcription factor is required for intrinsic resistance to translation-targeting antibiotics. Wide conservation of WblC/WhiB7 within Actinobacteria indicates a critical role of WblC/WhiB7 in developing resistance to such antibiotics. Here, we identified 312 WblC target genes in Streptomyces coelicolor, a model antibiotic-producing bacterium, using a combined analysis of RNA sequencing and chromatin immunoprecipitation sequencing. Interestingly, WblC controls many genes involved in translation, in addition to previously identified antibiotic resistance genes. Moreover, WblC promotes translation rate during antibiotic stress by altering the ribosome-associated protein composition. Our genome-wide analyses highlight a previously unappreciated antibiotic resistance mechanism that modifies ribosome composition and maintains the translation rate in the presence of sub-MIC levels of antibiotics.

IMPORTANCE The emergence of antibiotic-resistant bacteria is one of the top threats in human health. Therefore, we need to understand how bacteria acquire resistance to antibiotics and continue growth even in the presence of antibiotics. Streptomyces coelicolor, an antibiotic-producing soil bacterium, intrinsically develops resistance to translation-targeting antibiotics. Intrinsic resistance is controlled by the WblC/WhiB7 transcription factor that is highly conserved within Actinobacteria, including Mycobacterium tuberculosis. Here, identification of the WblC/WhiB7 regulon revealed that WblC/WhiB7 controls ribosome maintenance genes and promotes translation in the presence of antibiotics by altering the composition of ribosome-associated proteins. Also, the WblC-mediated ribosomal alteration is indeed required for resistance to translation-targeting antibiotics. This suggests that inactivation of the WblC/WhiB7 regulon could be a potential target to treat antibiotic-resistant mycobacteria.




mp

YejM Modulates Activity of the YciM/FtsH Protease Complex To Prevent Lethal Accumulation of Lipopolysaccharide

ABSTRACT

Lipopolysaccharide (LPS) is an essential glycolipid present in the outer membrane (OM) of many Gram-negative bacteria. Balanced biosynthesis of LPS is critical for cell viability; too little LPS weakens the OM, while too much LPS is lethal. In Escherichia coli, this balance is maintained by the YciM/FtsH protease complex, which adjusts LPS levels by degrading the LPS biosynthesis enzyme LpxC. Here, we provide evidence that activity of the YciM/FtsH protease complex is inhibited by the essential protein YejM. Using strains in which LpxC activity is reduced, we show that yciM is epistatic to yejM, demonstrating that YejM acts upstream of YciM to prevent toxic overproduction of LPS. Previous studies have shown that this toxicity can be suppressed by deleting lpp, which codes for a highly abundant OM lipoprotein. It was assumed that deletion of lpp restores lipid balance by increasing the number of acyl chains available for glycerophospholipid biosynthesis. We show that this is not the case. Rather, our data suggest that preventing attachment of lpp to the peptidoglycan sacculus allows excess LPS to be shed in vesicles. We propose that this loss of OM material allows continued transport of LPS to the OM, thus preventing lethal accumulation of LPS within the inner membrane. Overall, our data justify the commitment of three essential inner membrane proteins to avoid toxic over- or underproduction of LPS.

IMPORTANCE Gram-negative bacteria are encapsulated by an outer membrane (OM) that is impermeable to large and hydrophobic molecules. As such, these bacteria are intrinsically resistant to several clinically relevant antibiotics. To better understand how the OM is established or maintained, we sought to clarify the function of the essential protein YejM in Escherichia coli. Here, we show that YejM inhibits activity of the YciM/FtsH protease complex, which regulates synthesis of the essential OM glycolipid lipopolysaccharide (LPS). Our data suggest that disrupting proper communication between LPS synthesis and transport to the OM leads to accumulation of LPS within the inner membrane (IM). The lethality associated with this event can be suppressed by increasing OM vesiculation. Our research has identified a completely novel signaling pathway that we propose coordinates LPS synthesis and transport.




mp

Burkholderia ubonensis Meropenem Resistance: Insights into Distinct Properties of Class A {beta}-Lactamases in Burkholderia cepacia Complex and Burkholderia pseudomallei Complex Bacteria

ABSTRACT

Burkholderia pseudomallei, the founding member of the B. pseudomallei complex (Bpc), is a biothreat agent and causes melioidosis, a disease whose treatment mainly relies on ceftazidime and meropenem. The concern is that B. pseudomallei could enhance its drug resistance repertoire by the acquisition of DNA from resistant near-neighbor species. Burkholderia ubonensis, a member of the B. cepacia complex (Bcc), is commonly coisolated from environments where B. pseudomallei is present. Unlike B. pseudomallei, in which significant primary carbapenem resistance is rare, it is not uncommon in B. ubonensis, but the underlying mechanisms are unknown. We established that carbapenem resistance in B. ubonensis is due to an inducible class A PenB β-lactamase, as has been shown for other Bcc bacteria. Inducibility is not sufficient for high-level resistance but also requires other determinants, such as a PenB that is more robust than that present in susceptible isolates, as well as other resistance factors. Curiously and diagnostic for the two complexes, both Bpc and Bcc bacteria contain distinct annotated PenA class A β-lactamases. However, the protein from Bcc bacteria is missing its essential active-site serine and, therefore, is not a β-lactamase. Regulated expression of a transcriptional penB'-lacZ (β-galactosidase) fusion in the B. pseudomallei surrogate B. thailandensis confirms that although Bpc bacteria lack an inducible β-lactamase, they contain the components required for responding to aberrant peptidoglycan synthesis resulting from β-lactam challenge. Understanding the diversity of antimicrobial resistance in Burkholderia species is informative about how the challenges arising from potential resistance transfer between them can be met.

IMPORTANCE Burkholderia pseudomallei causes melioidosis, a tropical disease that is highly fatal if not properly treated. Our data show that, in contrast to B. pseudomallei, B. ubonensis β-lactam resistance is fundamentally different because intrinsic resistance is mediated by an inducible class A β-lactamase. This includes resistance to carbapenems. Our work demonstrates that studies with near-neighbor species are informative about the diversity of antimicrobial resistance in Burkholderia and can also provide clues about the potential of resistance transfer between bacteria inhabiting the same environment. Knowledge about potential adverse challenges resulting from the horizontal transfer of resistance genes between members of the two complexes enables the design of effective countermeasures.




mp

Simian Immunodeficiency Virus-Infected Memory CD4+ T Cells Infiltrate to the Site of Infected Macrophages in the Neuroparenchyma of a Chronic Macaque Model of Neurological Complications of AIDS

ABSTRACT

Simian immunodeficiency virus (SIV)-infected nonhuman primates can serve as a relevant model for AIDS neuropathogenesis. Current SIV-induced encephalitis (SIVE)/neurological complications of AIDS (neuroAIDS) models are generally associated with rapid progression to neuroAIDS, which does not reflect the tempo of neuroAIDS progression in humans. Recently, we isolated a neuropathogenic clone, SIVsm804E-CL757 (CL757), obtained from an SIV-infected rhesus macaque (RM). CL757 causes a more protracted progression to disease, inducing SIVE in 50% of inoculated animals, with high cerebral spinal fluid viral loads, multinucleated giant cells (MNGCs), and perivascular lymphocytic cuffing in the central nervous system (CNS). This latter finding is reminiscent of human immunodeficiency virus (HIV) encephalitis in humans but not generally observed in rapid progressor animals with neuroAIDS. Here, we studied which subsets of cells within the CNS were targeted by CL757 in animals with neurological symptoms of SIVE. Immunohistochemistry of brain sections demonstrated infiltration of CD4+ T cells (CD4) and macrophages (Ms) to the site of MNGCs. Moreover, an increase in mononuclear cells isolated from the brain tissues of RMs with SIVE correlated with increased cerebrospinal fluid (CSF) viral load. Subset analysis showed a specific increase in brain CD4+ memory T cells (Br-mCD4), brain-Ms (Br-Ms), and brain B cells (Br-B cells). Both Br-mCD4s and Br-Ms harbored replication-competent viral DNA, as demonstrated by virus isolation by coculture. However, only in animals exhibiting SIVE/neuroAIDS was virus isolated from Br-Ms. These findings support the use of CL757 to study the pathogenesis of AIDS viruses in the central nervous system and indicate a previously unanticipated role of CD4s cells as a potential reservoir in the brain.

IMPORTANCE While the use of combination antiretroviral therapy effectively suppresses systemic viral replication in the body, neurocognitive disorders as a result of HIV infection of the central nervous system (CNS) remain a clinical problem. Therefore, the use of nonhuman primate models is necessary to study mechanisms of neuropathogenesis. The neurotropic, molecular clone SIVsm804E-CL757 (CL757) results in neuroAIDS in 50% of infected rhesus macaques approximately 1 year postinfection. Using CL757-infected macaques, we investigate disease progression by examining subsets of cells within the CNS that were targeted by CL757 and could potentially serve as viral reservoirs. By isolating mononuclear cells from the brains of SIV-infected rhesus macaques with and without encephalitis, we show that immune cells invade the neuroparenchyma and increase in number in the CNS in animals with SIV-induced encephalitis (SIVE). Of these cells, both brain macrophages and brain memory CD4+ T cells harbor replication-competent SIV DNA; however, only brain CD4+ T cells harbored SIV DNA in animals without SIVE. These findings support use of CL757 as an important model to investigate disease progression in the CNS and as a model to study virus reservoirs in the CNS.




mp

Temporal Dynamics of the Adult Female Lower Urinary Tract Microbiota

ABSTRACT

Temporal dynamics of certain human microbiotas have been described in longitudinal studies; variability often relates to modifiable factors or behaviors. Early studies of the urinary microbiota preferentially used samples obtained by transurethral catheterization to minimize vulvovaginal microbial contributions. Whereas voided specimens are preferred for longitudinal studies, the few studies that reported longitudinal data were limited to women with lower urinary tract (LUT) symptoms, due to ease of accessing a clinical population for sampling and the impracticality and risk of collecting repeated catheterized urine specimens in a nonclinical population. Here, we studied the microbiota of the LUT of nonsymptomatic, premenopausal women using midstream voided urine (MSU) specimens to investigate relationships between microbial dynamics and personal factors. Using 16S rRNA gene sequencing and a metaculturomics method called expanded quantitative urine culture (EQUC), we characterized the microbiotas of MSU and periurethral swab specimens collected daily for approximately 3 months from a small cohort of adult women. Participants were screened for eligibility, including the ability to self-collect paired urogenital specimens prior to enrollment. In this population, we found that measures of microbial dynamics related to specific participant-reported factors, particularly menstruation and vaginal intercourse. Further investigation of the trends revealed differences in the composition and diversity of LUT microbiotas within and across participants. These data, in combination with previous studies showing relationships between the LUT microbiota and LUT symptoms, suggest that personal factors relating to the genitourinary system may be an important consideration in the etiology, prevention, and/or treatment of LUT disorders.

IMPORTANCE Following the discovery of the collective human urinary microbiota, important knowledge gaps remain, including the stability and variability of this microbial niche over time. Initial urinary studies preferentially utilized samples obtained by transurethral catheterization to minimize contributions from vulvovaginal microbes. However, catheterization has the potential to alter the urinary microbiota; therefore, voided specimens are preferred for longitudinal studies. In this report, we describe microbial findings obtained by daily assessment over 3 months in a small cohort of adult women. We found that, similarly to vaginal microbiotas, lower urinary tract (LUT) microbiotas are dynamic, with changes relating to several factors, particularly menstruation and vaginal intercourse. Our study results show that LUT microbiotas are both dynamic and resilient. They also offer novel opportunities to target LUT microbiotas by preventative or therapeutic means, through risk and/or protective factor modification.




mp

Deep Sequencing Uncovers Caste-Associated Diversity of Symbionts in the Social Ant Camponotus japonicus

ABSTRACT

Symbiotic microorganisms can have a profound impact on the host physiology and behavior, and novel relationships between symbionts and their hosts are continually discovered. A colony of social ants consists of various castes that exhibit distinct lifestyles and is, thus, a unique model for investigating how symbionts may be involved in host eusociality. Yet our knowledge of social ant-symbiont dynamics has remained rudimentary. Through 16S rRNA gene deep sequencing of the carpenter ant Camponotus japonicus symbiont community across various castes, we here report caste-dependent diversity of commensal gut microbiota and lineage divergence of "Candidatus Blochmannia," an obligate endosymbiont. While most prevalent gut-associated bacterial populations are found across all castes (Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes, and Cyanobacteria), we also discovered uncultured populations that are found only in males (belonging to Corynebacteriales, Alkanindiges, and Burkholderia). Most of those populations are not detected in laboratory-maintained queens and workers, suggesting that they are facultative gut symbionts introduced via environmental acquisition. Further inspection of "Ca. Blochmannia" endosymbionts reveals that two populations are dominant in all individuals across all castes but that males preferentially contain two different sublineages that are diversified from others. Clearly, each caste has distinct symbiont communities, suggesting an overlooked biological aspect of host-symbiont interaction in social insects.

IMPORTANCE Social animals, such as primates and some insects, have been shown to exchange symbiotic microbes among individuals through sharing diet or habitats, resulting in increased consistency of microbiota among social partners. The ant is a representative of social insects exhibiting various castes within a colony; queens, males, and nonreproductive females (so-called workers) show distinct morphologies, physiologies, and behaviors but tightly interact with each other in the nest. However, how this social context affects their gut microbiota has remained unclear. In this study, we deeply sequenced the gut symbiont community across various castes of the carpenter ant Camponotus japonicus. We report caste-dependent diversity of commensal gut microbial community and lineage divergence of the mutualistic endosymbiont "Candidatus Blochmannia." This report sheds light on the hidden diversity in microbial populations and community structure associated with guts of males in social ants.




mp

The Proteasome Governs Fungal Morphogenesis via Functional Connections with Hsp90 and cAMP-Protein Kinase A Signaling

ABSTRACT

Protein homeostasis is critical for proliferation and viability of all organisms. For Candida albicans, protein homeostasis also modulates the transition between yeast and filamentous forms, which is critical for virulence. A key regulator of morphogenesis is the molecular chaperone Hsp90, which mediates proteostasis under physiological and stress conditions. Hsp90 regulates morphogenesis by repressing cyclic AMP-protein kinase A (cAMP-PKA) signaling, such that inhibition of Hsp90 causes filamentation in the absence of an inducing cue. We explored the effect of perturbation of another facet of protein homeostasis and discovered that morphogenesis is also regulated by the proteasome, a large 33-subunit protein complex consisting of a 20S catalytic core and two 19S regulatory particles, which controls degradation of intracellular proteins. We identified a conserved role of the proteasome in morphogenesis as pharmacological inhibition of the proteasome induced filamentation of C. albicans and the related species Candida dubliniensis, Candida tropicalis, Candida krusei, and Candida parapsilosis. For C. albicans, genetic depletion of any of 29 subunits of the 19S or 20S particle induced filamentation. Filaments induced by inhibition of either the proteasome or Hsp90 have shared structural characteristics, such as aberrant nuclear content, and shared genetic dependencies, such as intact cAMP-PKA signaling. Consistent with a functional connection between these facets of protein homeostasis that modulate morphogenesis, we observed that proteasome inhibition results in an accumulation of ubiquitinated proteins that overwhelm Hsp90 function, relieving Hsp90-mediated repression of morphogenesis. Together, our findings provide a mechanism whereby interconnected facets of proteostasis regulate C. albicans morphogenesis.

IMPORTANCE Fungi cause life-threatening infections and pose a serious threat to human health as there are very few effective antifungal drugs. Candida albicans is a major human fungal pathogen and cause of morbidity and mortality in immunocompromised individuals. A key trait that enables C. albicans virulence is its ability to transition between yeast and filamentous forms. Understanding the mechanisms regulating this virulence trait can facilitate the development of much-needed, novel therapeutic strategies. A key regulator of morphogenesis is the molecular chaperone Hsp90, which is crucial for proteostasis. Here, we expanded our understanding of how proteostasis regulates fungal morphogenesis and identified the proteasome as a repressor of filamentation in C. albicans and related species. Our work suggests that proteasome inhibition overwhelms Hsp90 function, thereby inducing morphogenesis. This work provides a foundation for understanding the role of the proteasome in fungal virulence and offers potential for targeting the proteasome to disarm fungal pathogens.




mp

A Simple, Cost-Effective, and Robust Method for rRNA Depletion in RNA-Sequencing Studies

ABSTRACT

The profiling of gene expression by RNA sequencing (RNA-seq) has enabled powerful studies of global transcriptional patterns in all organisms, including bacteria. Because the vast majority of RNA in bacteria is rRNA, it is standard practice to deplete the rRNA from a total RNA sample such that the reads in an RNA-seq experiment derive predominantly from mRNA. One of the most commonly used commercial kits for rRNA depletion, the Ribo-Zero kit from Illumina, was recently discontinued abruptly and for an extended period of time. Here, we report the development of a simple, cost-effective, and robust method for depleting rRNA that can be easily implemented by any lab or facility. We first developed an algorithm for designing biotinylated oligonucleotides that will hybridize tightly and specifically to the 23S, 16S, and 5S rRNAs from any species of interest. Precipitation of these oligonucleotides bound to rRNA by magnetic streptavidin-coated beads then depletes rRNA from a complex, total RNA sample such that ~75 to 80% of reads in a typical RNA-seq experiment derive from mRNA. Importantly, we demonstrate a high correlation of RNA abundance or fold change measurements in RNA-seq experiments between our method and the Ribo-Zero kit. Complete details on the methodology are provided, including open-source software for designing oligonucleotides optimized for any bacterial species or community of interest.

IMPORTANCE The ability to examine global patterns of gene expression in microbes through RNA sequencing has fundamentally transformed microbiology. However, RNA-seq depends critically on the removal of rRNA from total RNA samples. Otherwise, rRNA would comprise upward of 90% of the reads in a typical RNA-seq experiment, limiting the reads coming from mRNA or requiring high total read depth. A commonly used kit for rRNA subtraction from Illumina was recently unavailable for an extended period of time, disrupting routine rRNA depletion. Here, we report the development of a "do-it-yourself" kit for rapid, cost-effective, and robust depletion of rRNA from total RNA. We present an algorithm for designing biotinylated oligonucleotides that will hybridize to the rRNAs from a target set of species. We then demonstrate that the designed oligonucleotides enable sufficient rRNA depletion to produce RNA-seq data with 75 to 80% of reads coming from mRNA. The methodology presented should enable RNA-seq studies on any species or metagenomic sample of interest.




mp

Complete Structure of the Enterococcal Polysaccharide Antigen (EPA) of Vancomycin-Resistant Enterococcus faecalis V583 Reveals that EPA Decorations Are Teichoic Acids Covalently Linked to a Rhamnopolysaccharide Backbone

ABSTRACT

All enterococci produce a complex polysaccharide called the enterococcal polysaccharide antigen (EPA). This polymer is required for normal cell growth and division and for resistance to cephalosporins and plays a critical role in host-pathogen interaction. The EPA contributes to host colonization and is essential for virulence, conferring resistance to phagocytosis during the infection. Recent studies revealed that the "decorations" of the EPA polymer, encoded by genetic loci that are variable between isolates, underpin the biological activity of this surface polysaccharide. In this work, we investigated the structure of the EPA polymer produced by the high-risk enterococcal clonal complex Enterococcus faecalis V583. We analyzed purified EPA from the wild-type strain and a mutant lacking decorations and elucidated the structure of the EPA backbone and decorations. We showed that the rhamnan backbone of EPA is composed of a hexasaccharide repeat unit of C2- and C3-linked rhamnan chains, partially substituted in the C3 position by α-glucose (α-Glc) and in the C2 position by β-N-acetylglucosamine (β-GlcNAc). The so-called "EPA decorations" consist of phosphopolysaccharide chains corresponding to teichoic acids covalently bound to the rhamnan backbone. The elucidation of the complete EPA structure allowed us to propose a biosynthetic pathway, a first essential step toward the design of antimicrobials targeting the synthesis of this virulence factor.

IMPORTANCE Enterococci are opportunistic pathogens responsible for hospital- and community-acquired infections. All enterococci produce a surface polysaccharide called EPA (enterococcal polysaccharide antigen) required for biofilm formation, antibiotic resistance, and pathogenesis. Despite the critical role of EPA in cell growth and division and as a major virulence factor, no information is available on its structure. Here, we report the complete structure of the EPA polymer produced by the model strain E. faecalis V583. We describe the structure of the EPA backbone, made of a rhamnan hexasaccharide substituted by Glc and GlcNAc residues, and show that teichoic acids are covalently bound to this rhamnan chain, forming the so-called "EPA decorations" essential for host colonization and pathogenesis. This report represents a key step in efforts to identify the structural properties of EPA that are essential for its biological activity and to identify novel targets to develop preventive and therapeutic approaches against enterococci.




mp

Study: Drivers who drink but arent legally impaired cause thousands of deaths

Drivers with blood-alcohol levels below legal limits cause 15% of all crash deaths that involve alcohol, a study in the March issue of the American Journal of Preventive Medicine finds.




mp

A Call to Action for North Carolina Legislators on Improving Access to Health

To better the health of all North Carolinians, policymakers must come together to improve access to care, expand broadband, and close the coverage gap.




mp

Moving Upstream to Impact Health: Building a Physician Workforce that Understands Social Determinants

Decades of rallying cries from professional societies, medical education and training programs, and government stakeholders have distilled the conversation of social determinants of health (SDOH) from theoretical proposals into practical solutions [1-3]. No longer standing on the precipice of change, we are now in the trenches. The nation's health care system recognizes SDOH as important drivers of health and is taking steps to address them in the practice environment.

More widespread action and attention by the health care system drives the need to train the next generation of physicians in the concepts and actions related to SDOH. This includes SDOH as a core part of the medical curriculum, offering clinical and research experiences and service in the community [4-5]. Unfortunately, to date only a handful of programs have brought this vision to fruition. Across the country, most programs offer educational content that is largely didactic and provided in short or one-time sessions [6]. Though a start, such approaches are insufficient to prepare the next generation of physicians for their important work ahead.

In New Orleans, the NOLA Hotspotters are an interdisciplinary group of medical, public health, nursing, and pharmacy students inspired by the work out of Camden, New Jersey, to "hot spot" patients with high utilization, which is often related to social needs [7]. While the results of the Camden program have been widely discussed following publication of their work, we argue the benefit of such a program exists beyond reduced emergency department visits or health care spending [8]. The...




mp

Vital Directions for Health & Health Care: The North Carolina Experience

In 2019, the National Academy of Medicine (NAM) turned to the all-important state level to draw insights on the status of health and health care within the context of the NAM Vital Directions for Health and Health Care initiative. The NAM held a two-day symposium in the Research Triangle to bring together various stakeholders to better understand actions that states and localities are taking to achieve—and the barriers they face in pursuing—more affordable, value-driven quality care and health outcomes. The NAM purposefully chose to pivot to the state level with North Carolina given that it has been at the forefront of health care transformation and illustrates the promise but also the challenges facing US health and health care nationally. A 19-member planning committee, cochaired by NAM President Victor Dzau and Secretary Mandy Cohen of the North Carolina Department of Health and Human Services, selected topics that resonate with the state's activities within the context of the Vital Directions framework, ranging from empowering people and connecting care through the integration of social, physical, and behavioral health to payer alignment though the advancement of new payment models (Figure 1). The priorities discussed during the symposium continue to be central to health reform in North Carolina and are further explored in the commentaries in this issue.




mp

A Cohort Comparison of Differences Between Regional and Buncombe County Patients of a Comprehensive Perinatal Substance Use Disorders Program in Western North Carolina

BACKGROUND Pregnant patients from rural counties of Western North Carolina face additional barriers when accessing comprehensive perinatal substance use disorders care at Project CARA as compared to patients local to the program in Buncombe County. We hypothesized regional patients would be less engaged in care.

METHOD Using a retrospective cohort design, univariate analyses (2, t-test; P < .05) compared patients' characteristics, engagement in care, and delivery outcomes. Engagement in care, the primary outcome, was operationalized as: attendance at expected, program-specific prenatal and postpartum visits, utilization of in-house counseling, community-based and/or inpatient substance use disorders treatment, and maternal urine drug screen at delivery negative for illicit substances.

RESULTS Regional patients (n = 324) were more likely than Buncombe County patients (n = 284) to have opioid [209 (64.5%) versus 162 (57.0%)] or amphetamine/methamphetamine use disorders (25 [7.7%] versus 13 [4.6%]), but less likely to have cannabis use (19 [5.9%] versus 38 [13.4%]; P = .009) and concurrent psychiatric disorders (214 [66.0%] versus 220 [77.5%]; P = .002). Engagement at postpartum visits was the significantly different outcome between patients (110/221 [49.8%] versus 146/226 [64.6%]; P = .002).

LIMITATIONS Outcomes were available for 66.8% of regional and 79.6% of Buncombe County patients of one program in one predominately white, non-Hispanic region of the state.

CONCLUSION Contrary to our hypothesis, regional and Buncombe County women engaged in prenatal care equally. However, a more formal transition into the postpartum period is needed, especially for regional women. A "hub-and-spokes" model that extends delivery of perinatal substance use disorders care into rural communities may be more effective for engagement retention.