mo

Characterization of blaCTX-M-27/F1:A2:B20 Plasmids Harbored by Escherichia coli Sequence Type 131 Sublineage C1/H30R Isolates Spreading among Elderly Japanese in Nonacute-Care Settings [Mechanisms of Resistance]

We characterized 29 blaCTX-M-27-harboring plasmids of Escherichia coli sequence type 131 (ST131) sublineage C1/H30R isolates from healthy individuals and long-term-care facility (LTCF) residents. Most (27/29) plasmids were of the FIA, FIB, and FII multireplicon type with the same plasmid multilocus sequence typing (pMLST). Several plasmids (7/23) from LTCF residents harbored only blaCTX-M-27 as the resistance gene; however, their fundamental structures were very similar to those of previously isolated blaCTX-M-27/F1:A2:B20 plasmids, suggesting their prevalence as a newly arising public health concern.




mo

Molecular and Clinical Characterization of Multidrug-Resistant and Hypervirulent Klebsiella pneumoniae Strains from Liver Abscess in Taiwan [Epidemiology and Surveillance]

Hypervirulent Klebsiella pneumoniae strains are the major cause of liver abscesses throughout East Asia, and these strains are usually antibiotic susceptible. Recently, multidrug-resistant and hypervirulent (MDR-HV) K. pneumoniae strains have emerged due to hypervirulent strains acquiring antimicrobial resistance determinants or the transfer of a virulence plasmid into a classic MDR strain. In this study, we characterized the clinical and microbiological properties of K. pneumoniae liver abscess (KPLA) caused by MDR-HV strains in Taiwan. Patients with community onset KPLA were retrospectively identified at Taipei Veterans General Hospital during January 2013 to May 2018. Antimicrobial resistance mechanisms, capsular types, and sequence types were determined. MDR-HV strains and their parental antimicrobial-susceptible strains further underwent whole-genome sequencing (WGS) and in vivo mice lethality tests. Thirteen MDR-HV strains were identified from a total of 218 KPLA episodes. MDR-HV strains resulted in similar outcomes to antimicrobial-susceptible strains. All MDR-HV strains were traditional hypervirulent clones carrying virulence capsular types. The major resistance mechanisms were the overexpression of efflux pumps and/or the acquisition of ESBL or AmpC β-lactamase genes. WGS revealed that two hypervirulent strains had evolved to an MDR phenotype due to mutation in the ramR gene and the acquisition of an SHV-12-bearing plasmid, respectively. Both these MDR-HV strains retained high virulence compared to their parental strains. The spread of MDR-HV K. pneumoniae strains in the community raises significant public concerns, and measures should be taken to prevent the further acquisition of carbapenemase and other resistance genes among these strains in order to avoid the occurrence of untreatable KPLA.




mo

ISEcp1-Mediated Transposition Leads to Fosfomycin and Broad-Spectrum Cephalosporin Resistance in Klebsiella pneumoniae [Mechanisms of Resistance]

A fosfomycin-resistant and carbapenemase (OXA-48)-producing Klebsiella pneumoniae isolate was recovered, and whole-genome sequencing revealed ISEcp1-blaCTX-M-14b tandemly inserted upstream of the chromosomally encoded lysR-fosA locus. Quantitative evaluation of the expression of lysR and fosA genes showed that this insertion brought a strong hybrid promoter leading to overexpression of the fosA gene, resulting in fosfomycin resistance. This work showed the concomitant acquisition of resistance to broad-spectrum cephalosporins and fosfomycin due to a single genetic event.




mo

Structural Insights into Ceftobiprole Inhibition of Pseudomonas aeruginosa Penicillin-Binding Protein 3 [Experimental Therapeutics]

Ceftobiprole is an advanced-generation broad-spectrum cephalosporin antibiotic with potent and rapid bactericidal activity against Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus, as well as susceptible Gram-negative pathogens, including Pseudomonas sp. pathogens. In the case of Pseudomonas aeruginosa, ceftobiprole acts by inhibiting P. aeruginosa penicillin-binding protein 3 (PBP3). Structural studies were pursued to elucidate the molecular details of this PBP inhibition. The crystal structure of the His-tagged PBP3-ceftobiprole complex revealed a covalent bond between the ligand and the catalytic residue S294. Ceftobiprole binding leads to large active site changes near binding sites for the pyrrolidinone and pyrrolidine rings. The S528 to L536 region adopts a conformation previously not observed in PBP3, including partial unwinding of the α11 helix. These molecular insights can lead to a deeper understanding of β-lactam-PBP interactions that result in major changes in protein structure, as well as suggesting how to fine-tune current inhibitors and to develop novel inhibitors of this PBP.




mo

Levonadifloxacin, a Novel Benzoquinolizine Fluoroquinolone, Modulates Lipopolysaccharide-Induced Inflammatory Responses in Human Whole-Blood Assay and Murine Acute Lung Injury Model [Pharmacology]

Fluoroquinolones are reported to possess immunomodulatory activity; hence, a novel benzoquinolizine fluoroquinolone, levonadifloxacin, was evaluated in lipopolysaccharide-stimulated human whole-blood (HWB) and mouse acute lung injury (ALI) models. Levonadifloxacin significantly mitigated the inflammatory responses in an HWB assay through inhibition of proinflammatory cytokines and in the ALI model by lowering lung total white blood cell count, myeloperoxidase, and cytokine levels. The immunomodulatory effect of levonadifloxacin, along with promising antibacterial activity, is expected to provide clinical benefits in the treatment of infections.




mo

ARGONAUT II Study of the In Vitro Activity of Plazomicin against Carbapenemase-Producing Klebsiella pneumoniae [Mechanisms of Resistance]

Plazomicin was tested against 697 recently acquired carbapenem-resistant Klebsiella pneumoniae isolates from the Great Lakes region of the United States. Plazomicin MIC50 and MIC90 values were 0.25 and 1 mg/liter, respectively; 680 isolates (97.6%) were susceptible (MICs of ≤2 mg/liter), 9 (1.3%) intermediate (MICs of 4 mg/liter), and 8 (1.1%) resistant (MICs of >32 mg/liter). Resistance was associated with rmtF-, rmtB-, or armA-encoded 16S rRNA methyltransferases in all except 1 isolate.




mo

Insecticidal Activity of Doxycycline against the Common Bedbug [Experimental Therapeutics]

There is an ongoing need for safe and effective anti-bedbug compounds. Here, we tested the toxicity of three antimicrobial agents against bedbugs when administered orally. We reveal that doxycycline has direct insecticidal activity at 250 μg/ml (0.025%) that is particularly strong against immature bedbugs and appears to be independent of antimicrobial activity. Future studies to determine the mechanisms behind this property could be useful for the development of orally active insecticides or anti-bedbug therapeutics.




mo

Targeting HER2 with Trastuzumab Deruxtecan: A Dose-Expansion, Phase I Study in Multiple Advanced Solid Tumors [Research Articles]

HER2-targeted therapies are approved only for HER2-positive breast and gastric cancers. We assessed the safety/tolerability and activity of the novel HER2-targeted antibody–drug conjugate trastuzumab deruxtecan (T-DXd) in 60 patients with pretreated, HER2-expressing (IHC ≥ 1+), non-breast/non-gastric or HER2-mutant solid tumors from a phase I trial (NCT02564900). Most common (>50%) treatment-emergent adverse events (TEAE) were nausea, decreased appetite, and vomiting. Two drug-related TEAEs were associated with fatal outcomes. The confirmed objective response rate (ORR) was 28.3% (17/60). Median progression-free survival (PFS) was 7.2 [95% confidence interval (CI), 4.8–11.1] months. In HER2-mutant non–small cell lung cancer (NSCLC), ORR was 72.7% (8/11), and median PFS was 11.3 (95% CI, 8.1–14.3) months. Confirmed responses were observed in six tumor types, including HER2-expressing NSCLC, colorectal cancer, salivary gland cancer, biliary tract cancer, endometrial cancer, and HER2-mutant NSCLC and breast cancer. Results suggest T-DXd holds promise for HER2-expressing/mutant solid tumors.

Significance:

T-DXd demonstrated promising activity in a heterogeneous patient population with heavily pretreated HER2-expressing or HER2-mutant solid tumors, especially HER2-mutant NSCLC. The safety profile was generally acceptable. Interstitial lung disease can be severe and requires prompt monitoring and intervention. Further research of T-DXd is warranted to address these unmet medical needs.

See related commentary by Rolfo and Russo, p. 643.

This article is highlighted in the In This Issue feature, p. 627




mo

Plasma DNA End-Motif Profiling as a Fragmentomic Marker in Cancer, Pregnancy, and Transplantation [Research Briefs]

Plasma DNA fragmentomics is an emerging area of research covering plasma DNA sizes, end points, and nucleosome footprints. In the present study, we found a significant increase in the diversity of plasma DNA end motifs in patients with hepatocellular carcinoma (HCC). Compared with patients without HCC, patients with HCC showed a preferential pattern of 4-mer end motifs. In particular, the abundance of plasma DNA motif CCCA was much lower in patients with HCC than in subjects without HCC. The aberrant end motifs were also observed in patients with other cancer types, including colorectal cancer, lung cancer, nasopharyngeal carcinoma, and head and neck squamous cell carcinoma. We further observed that the profile of plasma DNA end motifs originating from the same organ, such as the liver, placenta, and hematopoietic cells, generally clustered together. The profile of end motifs may therefore serve as a class of biomarkers for liquid biopsy in oncology, noninvasive prenatal testing, and transplantation monitoring.

Significance:

Plasma DNA molecules originating from the liver, HCC and other cancers, placenta, and hematopoietic cells each harbor a set of characteristic plasma DNA end motifs. Such markers carry tissue-of-origin information and represent a new class of biomarkers in the nascent field of fragmentomics.

This article is highlighted in the In This Issue feature, p. 627




mo

Fibroblast Heterogeneity in the Pancreatic Tumor Microenvironment [Mini Review]

The poor prognosis for patients with pancreatic ductal adenocarcinoma (PDAC) impels an improved understanding of disease biology to facilitate the development of better therapies. PDAC typically features a remarkably dense stromal reaction, featuring and established by a prominent population of cancer-associated fibroblasts (CAF). Genetically engineered mouse models and increasingly sophisticated cell culture techniques have demonstrated important roles for fibroblasts in PDAC progression and therapy response, but these roles are complex, with strong evidence for both tumor-supportive and tumor-suppressive or homeostatic functions. Here, we review the recent literature that has improved our understanding of heterogeneity in fibroblast fate and function in this disease including the existence of distinct fibroblast populations, and highlight important avenues for future study.

Significance:

Although the abundant stromal reaction associated with pancreatic cancer has long been appreciated, the functions of the CAF cells that establish this stromal reaction remain unclear. An improved understanding of the transcriptional and functional heterogeneity of pancreatic CAFs, as well as their tumor-supportive versus tumor-suppressive capacity, may facilitate the development of effective therapies for this disease.




mo

Strong HPV Vaccine Response Predicts Better Survival with Chemotherapy [Clinical Trials]

Patients with HPV16+ cervical cancer and high T-cell responses to an HPV16 vaccine survived longer.




mo

Neoantigens Elicit Protumorigenic Immune Responses in Pancreatic Cancer [Pancreatic Cancer]

Neoantigen-expressing pancreatic cancers had hastened progression and poor immunotherapy response.




mo

A Previously Unknown Dendritic Cell Type Reduces Antitumor Response [Immunology]

A cluster of dendritic cells (termed mregDCs), observed in humans and mice, restricted antitumor immunity.




mo

Thermo to Buy Qiagen for $11.5 Billion [News in Brief]

Thermo Fisher Scientific announced plans in March to acquire Qiagen in a $11.5 billion deal that could bring morediagnostic offeringsand sample-preparation technologies to one of the world's leading manufacturers of scientific instruments, research services, and laboratory consumables.




mo

Protein Instability Is Targetable in Mismatch Repair-Deficient Tumors [Research Watch]

Mismatch repair (MMR)–deficient tumors exhibit proteome-wide protein instability and aggregation.




mo

Increased B-cell ICOSL Expression Improves Chemotherapy Response [Immunology]

A chemotherapy-induced shift to ICOSL+ B cells in breast tumors correlated with better survival.




mo

Retinoic Acid Mediates Monocyte Differentiation and Immune Response [Immunology]

Tumor-derived retinoic acid promotes monocyte differentiation into immunosuppressive macrophages.




mo

Engagement of T Cell-Expressed PD-L1 Weakens Antitumor Immunity [Immunology]

T cell–expressed PD-L1 exerts tolerogenic effects on tumor immunity in pancreatic cancer.




mo

Gastrin Blocks Symmetric Stem-Cell Division and Gastric Tumorigenesis [Gastric Cancer]

Symmetric division of stem cells positive for gastrin receptor CCK2R is linked to gastric cancer.




mo

BRAF V600E-mutated metastatic pediatric Wilms tumor with complete response to targeted RAF/MEK inhibition [RESEARCH REPORT]

Wilms tumor (WT) is the most common renal malignancy of childhood and accounts for 6% of all childhood malignancies. With current therapies, the 5-yr overall survival (OS) for children with unilateral favorable histology WT is greater than 85%. The prognosis is worse, however, for the roughly 15% of patients who relapse, with only 50%–80% OS reported in those with recurrence. Herein, we describe the extended and detailed clinical course of a rare case of a child with recurrent, pulmonary metastatic, favorable histology WT harboring a BRAF V600E mutation. The BRAF V600E mutation, commonly found in melanoma and other cancers, and previously undescribed in WT, has recently been reported by our group in a subset of epithelial-predominant WT. This patient, who was included in that series, presented with unilateral, stage 1, favorable histology WT and was treated with standard chemotherapy. Following the completion of therapy, the patient relapsed with pulmonary metastatic disease, that then again recurred despite an initial response to salvage chemotherapy and radiation. Next-generation sequencing (NGS) on the metastatic pulmonary nodule revealed a BRAF V600E mutation. After weighing the therapeutic options, a novel approach with dual BRAF/MEK inhibitor combination therapy was initiated. Complete radiographic response was observed following 4 months of therapy with dabrafenib and trametinib. At 12 months following the start of BRAF/MEK combination treatment, the patient continues with a complete response and has experienced minimal treatment-related side effects. This represents the first case, to our knowledge, of effective treatment with BRAF/MEK molecularly targeted therapy in a pediatric Wilms tumor patient.




mo

Tumoral and immune heterogeneity in an anti-PD-1-responsive glioblastoma: a case study [RESEARCH REPORT]

Clinical benefit of immune checkpoint blockade in glioblastoma (GBM) is rare, and we hypothesize that tumor clonal evolution and the immune microenvironment are key determinants of response. Here, we present a detailed molecular characterization of the intratumoral and immune heterogeneity in an IDH wild-type, MGMT-negative GBM patient who plausibly benefited from anti-PD-1 therapy with an unusually long 25-mo overall survival time. We leveraged multiplex immunohistochemistry, RNA-seq, and whole-exome data from the primary tumor and three resected regions of recurrent disease to survey regional tumor-immune interactions, genomic instability, mutation burden, and expression profiles. We found significant regional heterogeneity in the neoantigenic and immune landscape, with a differential T-cell signature among recurrent sectors, a uniform loss of focal amplifications in EGFR, and a novel subclonal EGFR mutation. Comparisons with recently reported correlates of checkpoint blockade in GBM and with TCGA-GBM revealed appreciable intratumoral heterogeneity that may have contributed to a differential PD-1 blockade response.




mo

[Developmental Biology] Reptiles as a Model System to Study Heart Development

A chambered heart is common to all vertebrates, but reptiles show unparalleled variation in ventricular septation, ranging from almost absent in tuataras to full in crocodilians. Because mammals and birds evolved independently from reptile lineages, studies on reptile development may yield insight into the evolution and development of the full ventricular septum. Compared with reptiles, mammals and birds have evolved several other adaptations, including compact chamber walls and a specialized conduction system. These adaptations appear to have evolved from precursor structures that can be studied in present-day reptiles. The increase in the number of studies on reptile heart development has been greatly facilitated by sequencing of several genomes and the availability of good staging systems. Here, we place reptiles in their phylogenetic context with a focus on features that are primitive when compared with the homologous features of mammals. Further, an outline of major developmental events is given, and variation between reptile species is discussed.




mo

[Molecular Pathology] The Formation of Coronary Vessels in Cardiac Development and Disease

Understanding how coronary blood vessels form and regenerate during development and progression of cardiac diseases will shed light on the development of new treatment options targeting coronary artery diseases. Recent studies with the state-of-the-art technologies have identified novel origins of, as well as new, cellular and molecular mechanisms underlying the formation of coronary vessels in the postnatal heart, including collateral artery formation, endocardial-to-endothelial differentiation and mesenchymal-to-endothelial transition. These new mechanisms of coronary vessel formation and regeneration open up new possibilities targeting neovascularization for promoting cardiac repair and regeneration. Here, we highlight some recent studies on cellular mechanisms of coronary vessel formation, and discuss the potential impact and significance of the findings on basic research and clinical application for treating ischemic heart disease.




mo

[Molecular Pathology] Toward Combined Cell and Gene Therapy for Genodermatoses

To date, more than 200 monogenic, often devastating, skin diseases have been described. Because of unmet medical needs, development of long-lasting and curative therapies has been consistently attempted, with the aim of correcting the underlying molecular defect. In this review, we will specifically address the few combined cell and gene therapy strategies that made it to the clinics. Based on these studies, what can be envisioned for the future is a patient-oriented strategy, built on the specific features of the individual in need. Most likely, a combination of different strategies, approaches, and advanced therapies will be required to reach the finish line at the end of the long and winding road hampering the achievement of definitive treatments for genodermatoses.




mo

[Molecular Pathology] Pharmacologic Approaches for Adapting Proteostasis in the Secretory Pathway to Ameliorate Protein Conformational Diseases

Maintenance of the proteome, ensuring the proper locations, proper conformations, appropriate concentrations, etc., is essential to preserve the health of an organism in the face of environmental insults, infectious diseases, and the challenges associated with aging. Maintaining the proteome is even more difficult in the background of inherited mutations that render a given protein and others handled by the same proteostasis machinery misfolding prone and/or aggregation prone. Maintenance of the proteome or maintaining proteostasis requires the orchestration of protein synthesis, folding, trafficking, and degradation by way of highly conserved, interacting, and competitive proteostasis pathways. Each subcellular compartment has a unique proteostasis network compromising common and specialized proteostasis maintenance pathways. Stress-responsive signaling pathways detect the misfolding and/or aggregation of proteins in specific subcellular compartments using stress sensors and respond by generating an active transcription factor. Subsequent transcriptional programs up-regulate proteostasis network capacity (i.e., ability to fold and degrade proteins in that compartment). Stress-responsive signaling pathways can also be linked by way of signaling cascades to nontranscriptional means to reestablish proteostasis (e.g., by translational attenuation). Proteostasis is also strongly influenced by the inherent kinetics and thermodynamics of the folding, misfolding, and aggregation of individual proteins, and these sequence-based attributes in combination with proteostasis network capacity together influence proteostasis. In this review, we will focus on the growing body of evidence that proteostasis deficits leading to human pathology can be reversed by pharmacologic adaptation of proteostasis network capacity through stress-responsive signaling pathway activation. The power of this approach will be exemplified by focusing on the ATF6 arm of the unfolded protein response stress responsive-signaling pathway that regulates proteostasis network capacity of the secretory pathway.




mo

Optimizing Diabetes Care With the Standardized Continuous Glucose Monitoring Report




mo

Flash Continuous Home Glucose Monitoring to Improve Adherence to Self-Monitoring of Blood Glucose and Self-Efficacy in Adolescents With Type 1 Diabetes

Adolescents with type 1 diabetes face self-management challenges that make it difficult for them to achieve good glycemic control. In our population of adolescents with poorly controlled type 1 diabetes, the use of continuous glucose monitoring (CGM) improved patients’ glycemic time in range (TIR) and identified hypoglycemia more frequently than with intermittent self-monitoring of blood glucose throughout a 4-week interval. However, the adolescents were unable to synthesize this information to problem-solve or reduce the frequency of hypoglycemic events. Setting SMART (specific, measurable, achievable, relevant, and time-bound) diabetes management goals and providing intensive diabetes education and support could increase adolescents’ TIR and prevent hypoglycemia.




mo

Continuous Glucose Monitoring As a Behavior Modification Tool

Real-time continuous glucose monitoring (CGM) use may lead to behavioral modifications in food selection and physical activity, but there are limited data on the utility of CGM in facilitating lifestyle changes. This article describes an 18-item survey developed to explore whether patients currently using CGM believe the technology has caused them to change their behavior.




mo

Objectively-Measured Light-Intensity Physical Activity and Risk of Cancer Mortality: A Meta-analysis of Prospective Cohort Studies

Background:

The impact of light-intensity physical activity (LPA) in preventing cancer mortality has been questioned. To address this concern, the present meta-analysis aimed to quantify the association between objectively-measured LPA and risk of cancer mortality.

Methods:

We conducted a systematic literature search in PubMed and Scopus to January 2020. Prospective cohort studies reporting the association between objectively-measured LPA using activity monitors (e.g., accelerometers) and risk of cancer mortality in the general population were included. The summary hazard ratios (HR) per 30 min/day of LPA and 95% confidence intervals (CI) were obtained using a random-effects model. Dose–response analysis was used to plot their relationship.

Results:

Five prospective cohort studies were included, in which the definition of LPA based on accelerometer readings was mainly set within 100 to 2,100 counts/min. The summary HR for cancer mortality per 30 min/day of LPA was 0.86 (95% CI, 0.79–0.95; I2 < 1%), and the association between LPA and risk reduction in cancer mortality was linearly shaped (Pnonlinearity = 0.72). LPA exhibited a comparable magnitude of risk reduction in cancer mortality of moderate-to-vigorous physical activity regardless of equal time-length (0.87 per 30 min/day vs. 0.94 per 30 min/day, Pinteraction = 0.46) or equal amount (0.74 vs. 0.94 per 150 metabolic equivalents-min/day, Pinteraction = 0.11). Furthermore, replacing sedentary time by LPA of 30 min/day decreased the risk of cancer mortality by 9%.

Conclusions:

Objectively-measured LPA conferred benefits in decreasing the risk of cancer mortality.

Impact:

LPA should be considered in physical activity guidelines to decrease the risk of cancer mortality.




mo

Prediagnostic Circulating Levels of Sex Steroid Hormones and SHBG in Relation to Risk of Ductal Carcinoma In Situ of the Breast among UK Women

Background:

Sex steroid hormones and sex hormone–binding globulin (SHBG) have been implicated in the etiology of invasive breast cancer, but their associations with risk of the precursor lesion, ductal carcinoma in situ (DCIS) of the breast, remain unclear.

Methods:

We used Cox proportional hazards regression models to estimate the associations of serum levels of estradiol (premenopausal women only), testosterone, and/or SHBG with DCIS risk among 182,935 women. After a median follow-up of 7.1 years, 186 and 531 DCIS cases were ascertained in premenopausal and postmenopausal women, respectively.

Results:

Total and free estradiol were positively associated with risk of DCIS among premenopausal women. The HRs for the highest versus the lowest tertiles were 1.54 (1.06–2.23) and 1.72 [95% confidence interval (CI), 1.15–2.57], respectively. Among postmenopausal women, elevated levels of free testosterone (FT), and to a lesser extent, total testosterone, were positively associated with DCIS risk. The HRs for the highest versus the lowest quartiles were 1.42 (95% CI, 1.09–1.85) and 1.16 (95% CI, 0.91–1.48), respectively. Serum SHBG levels were inversely associated with risk of DCIS among postmenopausal women (HRq4 vs. q1: 0.75; 95% CI, 0.56–0.99).

Conclusions:

This study suggests that elevated levels of estradiol are associated with increased risk of DCIS among premenopausal women, and that among postmenopausal women, elevated levels of testosterone, and particularly those of FT, are associated with increased DCIS risk, while elevated levels of SHBG are associated with reduced risk.

Impact:

These findings may be helpful in developing prevention strategies aimed at reducing breast cancer risk among premenopausal and postmenopausal women.




mo

Alcohol and Tobacco Use in Relation to Mammographic Density in 23,456 Women

Background:

Percent density (PD) is a strong risk factor for breast cancer that is potentially modifiable by lifestyle factors. PD is a composite of the dense (DA) and nondense (NDA) areas of a mammogram, representing predominantly fibroglandular or fatty tissues, respectively. Alcohol and tobacco use have been associated with increased breast cancer risk. However, their effects on mammographic density (MD) phenotypes are poorly understood.

Methods:

We examined associations of alcohol and tobacco use with PD, DA, and NDA in a population-based cohort of 23,456 women screened using full-field digital mammography machines manufactured by Hologic or General Electric. MD was measured using Cumulus. Machine-specific effects were estimated using linear regression, and combined using random effects meta-analysis.

Results:

Alcohol use was positively associated with PD (Ptrend = 0.01), unassociated with DA (Ptrend = 0.23), and inversely associated with NDA (Ptrend = 0.02) adjusting for age, body mass index, reproductive factors, physical activity, and family history of breast cancer. In contrast, tobacco use was inversely associated with PD (Ptrend = 0.0008), unassociated with DA (Ptrend = 0.93), and positively associated with NDA (Ptrend<0.0001). These trends were stronger in normal and overweight women than in obese women.

Conclusions:

These findings suggest that associations of alcohol and tobacco use with PD result more from their associations with NDA than DA.

Impact:

PD and NDA may mediate the association of alcohol drinking, but not tobacco smoking, with increased breast cancer risk. Further studies are needed to elucidate the modifiable lifestyle factors that influence breast tissue composition, and the important role of the fatty tissues on breast health.




mo

Red and Processed Meat, Poultry, Fish, and Egg Intakes and Cause-Specific and All-Cause Mortality among Men with Nonmetastatic Prostate Cancer in a U.S. Cohort

Background:

Research on the relationship of meat, fish, and egg consumption and mortality among prostate cancer survivors is limited.

Methods:

In the Cancer Prevention Study-II Nutrition Cohort, men diagnosed with nonmetastatic prostate cancer between baseline in 1992/1993 and 2015 were followed for mortality until 2016. Analyses of pre- and postdiagnosis intakes of red and processed meat, poultry, fish, and eggs included 9,286 and 4,882 survivors, respectively. Multivariable-adjusted RRs and 95% confidence intervals (CI) were estimated using Cox proportional hazards models.

Results:

A total of 4,682 and 2,768 deaths occurred during follow-up in pre- and postdiagnosis analyses, respectively. Both pre- and postdiagnosis intakes of total red and processed meat were positively associated with all-cause mortality (quartile 4 vs. 1: RR = 1.13; 95% CI, 1.03–1.25; Ptrend = 0.02; RR = 1.22; 95% CI, 1.07–1.39; Ptrend = 0.03, respectively), and both pre- and postdiagnosis poultry intakes were inversely associated with all-cause mortality (quartile 4 vs. 1 RR = 0.90; 95% CI, 0.82–0.98; Ptrend = 0.04; RR = 0.84; 95% CI, 0.75–0.95; Ptrend = 0.01, respectively). No associations were seen for prostate cancer–specific mortality, except that higher postdiagnosis unprocessed red meat intake was associated with lower risk.

Conclusions:

Higher red and processed meat, and lower poultry, intakes either before or after prostate cancer diagnosis were associated with higher risk of all-cause mortality.

Impact:

Our findings provide additional evidence that prostate cancer survivors should follow the nutrition guidelines limiting red and processed meat consumption to improve overall survival. Additional research on the relationship of specific meat types and mortality is needed.




mo

Total Antioxidant Capacity and Pancreatic Cancer Incidence and Mortality in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial

Background:

Total antioxidant capacity (TAC) reflects an individual's overall antioxidant intake. We sought to clarify whether higher TAC is associated with lower risks of pancreatic cancer incidence and mortality in the U.S. general population.

Methods:

A total of 96,018 American adults were identified from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. A ferric-reducing ability of plasma score was used to reflect an individual's TAC intake from diet and/or supplements. Cox regression was used to calculate hazard ratios (HR) for pancreatic cancer incidence, and competing risk regression was used to calculate subdistribution HRs for pancreatic cancer mortality. Restricted cubic spline regression was used to test nonlinearity.

Results:

A total of 393 pancreatic cancer cases and 353 pancreatic cancer–related deaths were documented. Total (diet + supplements) TAC was found to be inversely associated with pancreatic cancer incidence (HR quartile 4 vs. quartile 1 = 0.53; 95% confidence interval, 0.39–0.72; Ptrend = 0.0002) and mortality (subdistribution HR quartile 4 vs. quartile 1 = 0.52; 95% confidence interval 0.38–0.72; Ptrend = 0.0003) in a nonlinear dose–response manner (all Pnonlinearity < 0.01). Similar results were observed for dietary TAC. No association of supplemental TAC with pancreatic cancer incidence and mortality was found.

Conclusions:

In the U.S. general population, dietary but not supplemental TAC level is inversely associated with risks of pancreatic cancer incidence and mortality in a nonlinear dose–response pattern.

Impact:

This is the first prospective study indicating that a diet rich in antioxidants may be beneficial in decreasing pancreatic cancer incidence and mortality.




mo

Pancreatic Cancer Risk in Relation to Lifetime Smoking Patterns, Tobacco Type, and Dose-Response Relationships

Background:

Despite smoking being a well-established risk factor for pancreatic cancer, there is a need to further characterize pancreatic cancer risk according to lifespan smoking patterns and other smoking features, such as tobacco type. Our aim was to deeply investigate them within a large European case–control study.

Methods:

Tobacco smoking habits and other relevant information were obtained from 2,009 cases and 1,532 controls recruited in the PanGenEU study using standardized tools. Multivariate logistic regression analysis was performed to evaluate pancreatic cancer risk by smoking characteristics and interactions with other pancreatic cancer risk factors. Fractional polynomials and restricted cubic splines were used to test for nonlinearity of the dose–response relationships and to analyze their shape.

Results:

Relative to never-smokers, current smokers [OR = 1.72; 95% confidence interval (95% CI), 1.39–2.12], those inhaling into the throat (OR = 1.48; 95% CI, 1.11–1.99) or chest (OR = 1.33; 95% CI, 1.12–1.58), and those using nonfiltered cigarettes (OR = 1.69; 95% CI, 1.10–2.61), were all at an increased pancreatic cancer risk. Pancreatic cancer risk was highest in current black tobacco smokers (OR = 2.09; 95% CI, 1.31–3.41), followed by blond tobacco smokers (OR = 1.43; 95% CI, 1.01–2.04). Childhood exposure to tobacco smoke relative to parental smoking was also associated with increased pancreatic cancer risk (OR = 1.24; 95% CI, 1.03–1.49). Dose–response relationships for smoking duration, intensity, cumulative dose, and smoking cessation were nonlinear and showed different shapes by tobacco type. Effect modification by family history of pancreatic cancer and diabetes was likely.

Conclusions:

This study reveals differences in pancreatic cancer risk by tobacco type and other habit characteristics, as well as nonlinear risk associations.

Impact:

This characterization of smoking-related pancreatic cancer risk profiles may help in defining pancreatic cancer high-risk populations.




mo

Associations of Abdominal Skeletal Muscle Mass, Fat Mass, and Mortality among Men and Women with Stage I-III Colorectal Cancer

Background:

The associations of abdominal skeletal muscle mass index (SMI), visceral and subcutaneous adipose tissue (VAT and SAT, respectively), and mortality among patients with stage I–III colorectal cancer may differ for men and women, but only few studies stratified their data into men and women. We investigated associations of abdominal SMI, VAT, and SAT with overall mortality among men and among women with stage I–III colorectal cancer.

Methods:

SMI, VAT, and SAT were assessed from abdominal CT images for 1,998 patients with stage I–III colorectal cancer diagnosed between 2006 and 2015. Restricted cubic splines (RCS) were used to investigate associations of SMI, VAT, and SAT with overall mortality.

Results:

Average age of the participants was 67.9 ± 10.6 years and 58% were men. During a median follow-up of 4.3 years, 546 (27%) patients died. Among men, the association of SMI and mortality was statistically significant in a nonlinear way in the RCS analyses, with lower SMI levels associated with higher mortality. SMI was not associated with mortality among women. SAT was associated with mortality in a nonlinear way for men and for women, with lower SAT levels being associated with higher mortality. VAT was not significantly associated with mortality in men or women.

Conclusion:

Associations of abdominal skeletal muscle mass with mortality among patients with colorectal cancer were not the same for men and for women.

Impact:

This study stresses the importance for more attention on sex-related differences in body composition and cancer outcomes.




mo

Assessing Cancer Treatment Information Using Medicare and Hospital Discharge Data among Women with Non-Hodgkin Lymphoma in a Los Angeles County Case-Control Study

Background:

We assessed the ability to supplement existing epidemiologic/etiologic studies with data on treatment and clinical outcomes by linking to publicly available cancer registry and administrative databases.

Methods:

Medical records were retrieved and abstracted for cases enrolled in a Los Angeles County case–control study of non-Hodgkin lymphoma (NHL). Cases were linked to the Los Angeles County cancer registry (CSP), the California state hospitalization discharge database (OSHPD), and the SEER-Medicare database. We assessed sensitivity, specificity, and positive predictive value (PPV) of cancer treatment in linked databases, compared with medical record abstraction.

Results:

We successfully retrieved medical records for 918 of 1,004 participating NHL cases and abstracted treatment for 698. We linked 59% of cases (96% of cases >65 years old) to SEER-Medicare and 96% to OSHPD. Chemotherapy was the most common treatment and best captured, with the highest sensitivity in SEER-Medicare (80%) and CSP (74%); combining all three data sources together increased sensitivity (92%), at reduced specificity (56%). Sensitivity for radiotherapy was moderate: 77% with aggregated data. Sensitivity of BMT was low in the CSP (42%), but high for the administrative databases, especially OSHPD (98%). Sensitivity for surgery reached 83% when considering all three datasets in aggregate, but PPV was 60%. In general, sensitivity and PPV for chronic lymphocytic leukemia/small lymphocytic lymphoma were low.

Conclusions:

Chemotherapy was accurately captured by all data sources. Hospitalization data yielded the highest performance values for BMTs. Performance measures for radiotherapy and surgery were moderate.

Impact:

Various administrative databases can supplement epidemiologic studies, depending on treatment type and NHL subtype of interest.




mo

Screen to Save: Results from NCI's Colorectal Cancer Outreach and Screening Initiative to Promote Awareness and Knowledge of Colorectal Cancer in Racial/Ethnic and Rural Populations

Background:

The Center to Reduce Cancer Health Disparities (CRCHD), NCI, implemented Screen to Save, NCI's Colorectal Cancer Outreach and Screening Initiative to promote awareness and knowledge of colorectal cancer in racial/ethnic and rural populations.

Methods:

The initiative was implemented through CRCHD's National Outreach Network (NON). NON is a national network of Community Health Educators (CHE), aligned with NCI-designated Cancer Centers across the nation. In phases I and II, the CHEs focused on the dissemination of cancer-related information and implementation of evidence-based educational outreach.

Results:

In total, 3,183 pre/post surveys were obtained from male and female participants, ages 50 to 74 years, during the 347 educational events held in phase I. Results demonstrated all racial/ethnic groups had an increase in colorectal cancer–related knowledge, and each group strongly agreed that the educational event increased the likelihood that they would engage in colorectal cancer–related healthful behaviors (e.g., obtain colorectal cancer screening and increase physical activity). For phase II, Connections to Care, event participants were linked to screening. Eighty-two percent of the participants who obtained colorectal cancer screening during the 3-month follow-up period obtained their screening results.

Conclusions:

These results suggest that culturally tailored, standardized educational messaging and data collection tools are key change agents that can serve to inform the effectiveness of educational outreach to advance awareness and knowledge of colorectal cancer.

Impact:

Future initiatives should focus on large-scale national efforts to elucidate effective models of connections to care, related to colorectal cancer screening, follow-up, and treatments that are modifiable to meet community needs.




mo

One Size Does Not Fit All: Marked Heterogeneity in Incidence of and Survival from Gastric Cancer among Asian American Subgroups

Background:

Asian Americans are at higher risk for noncardia gastric cancers (NCGC) relative to non-Hispanic Whites (NHW). Asian Americans are genetically, linguistically, and culturally heterogeneous, yet have mostly been treated as a single population in prior studies. This aggregation may obscure important subgroup-specific cancer patterns.

Methods:

We utilized data from 13 regional United States cancer registries from 1990 to 2014 to determine secular trends in incidence and survivorship from NCGC. Data were analyzed for NHWs and the six largest Asian American subgroups: Chinese, Japanese, Filipino, Korean, Vietnamese, and South Asian (Indian/Pakistani).

Results:

There exists substantial heterogeneity in NCGC incidence between Asian subgroups, with Koreans (48.6 per 100,000 person-years) having seven-fold higher age-adjusted incidence than South Asians (7.4 per 100,000 person-years). Asians had generally earlier stages of diagnosis and higher rates of surgical resection compared with NHWs. All Asian subgroups also demonstrated higher 5-year observed survival compared with NHWs, with Koreans (41.3%) and South Asians (42.8%) having survival double that of NHWs (20.1%, P < 0.001). In multivariable regression, differences in stage of diagnosis and rates of resection partially explained the difference in survivorship between Asian subgroups.

Conclusions:

We find substantial differences in incidence, staging, histology, treatment, and survivorship from NCGC between Asian subgroups, data which challenge our traditional perceptions about gastric cancer in Asians. Both biological heterogeneity and cultural/environmental differences may underlie these findings.

Impact:

These data are relevant to the national discourse regarding the appropriate role of gastric cancer screening, and identifies high-risk racial/ethnic subgroups who many benefit from customized risk attenuation programs.




mo

The Impact of One-week Dietary Supplementation with Kava on Biomarkers of Tobacco Use and Nitrosamine-based Carcinogenesis Risk among Active Smokers

Tobacco smoking is the primary risk factor for lung cancer, driven by the addictive nature of nicotine and the indisputable carcinogenicity of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) as well as other compounds. The integration of lung cancer chemoprevention with smoking cessation is one potential approach to reduce this risk and mitigate lung cancer mortality. Experimental data from our group suggest that kava, commonly consumed in the South Pacific Islands as a beverage to promote relaxation, may reduce lung cancer risk by enhancing NNK detoxification and reducing NNK-derived DNA damage. Building upon these observations, we conducted a pilot clinical trial to evaluate the effects of a 7-day course of kava on NNK metabolism in active smokers. The primary objective was to compare urinary total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL plus its glucuronides, major metabolites of NNK) before and after kava administration as an indicator of NNK detoxification. Secondary objectives included determining kava's safety, its effects on DNA damage, tobacco use, and cortisol (a biomarker of stress). Kava increased urinary excretion of total NNAL and reduced urinary 3-methyladenine in participants, suggestive of its ability to reduce the carcinogenicity of NNK. Kava also reduced urinary total nicotine equivalents, indicative of its potential to facilitate tobacco cessation. Plasma cortisol and urinary total cortisol equivalents were reduced upon kava use, which may contribute to reductions in tobacco use. These results demonstrate the potential of kava intake to reduce lung cancer risk among smokers.




mo

Adiposity Change Over the Life Course and Mammographic Breast Density in Postmenopausal Women

Mammographic breast density is a strong risk factor for breast cancer. We comprehensively investigated the associations of body mass index (BMI) change from ages 10, 18, and 30 to age at mammogram with mammographic breast density in postmenopausal women. We used multivariable linear regression models, adjusted for confounders, to investigate the associations of BMI change with volumetric percent density, dense volume, and nondense volume, assessed using Volpara in 367 women. At the time of mammogram, the mean age was 57.9 years. Compared with women who had a BMI gain of 0.1–5 kg/m2 from age 10, women who had a BMI gain of 5.1–10 kg/m2 had a 24.4% decrease [95% confidence interval (CI), 6.0%–39.2%] in volumetric percent density; women who had a BMI gain of 10.1–15 kg/m2 had a 46.1% decrease (95% CI, 33.0%–56.7%) in volumetric percent density; and women who had a BMI gain of >15 kg/m2 had a 56.5% decrease (95% CI, 46.0%–65.0%) in volumetric percent density. Similar, but slightly attenuated associations were observed for BMI gain from ages 18 and 30 to age at mammogram and volumetric percent density. BMI gain over the life course was positively associated with nondense volume, but not dense volume. We observed strong associations between BMI change over the life course and mammographic breast density. The inverse associations between early-life adiposity change and volumetric percent density suggest that childhood adiposity may confer long-term protection against postmenopausal breast cancer via its effect of mammographic breast density.




mo

Oral Microbiome Profiling in Smokers with and without Head and Neck Cancer Reveals Variations Between Health and Disease

While smoking is inextricably linked to oral/head and neck cancer (HNSCC), only a small fraction of smokers develop HNSCC. Thus, we have sought to identify other factors, which may influence the development of HNSCC in smokers including microbiology. To determine microbial associations with HNSCC among tobacco users, we characterized oral microbiome composition in smokers with and without HNSCC. 16S rRNA MiSeq sequencing was used to examine the oral mucosa microbiome of 27 smokers with (cases) and 24 without HNSCC (controls). In addition, we correlated previously reported levels of DNA damage with the microbiome data. Smokers with HNSCC showed lower microbiome richness compared with controls (q = 0.012). Beta-diversity analyses, assessed as UniFrac (weighted and unweighted) and Bray–Curtis distances, showed significant differences in oral mucosal microbiome signatures between cases and controls (r2 = 0.03; P = 0.03) and higher interindividual microbiome heterogeneity in the former (q ≤ 0.01). Higher relative abundance of Stenotrophomonas and Comamonadaceae and predicted bacterial pathways mainly involved in xenobiotic and amine degradation were found in cases compared with controls. The latter, in contrast, exhibited higher abundance of common oral commensals and predicted sugar degradation pathways. Finally, levels of DNA damage in the oral cavity were correlated with the microbiome profiles above. Oral microbiome traits differ in smokers with and without HNSCC, potentially informing the risk of eventual HNSCC and shedding light into possible microbially mediated mechanisms of disease. These findings present data that may be useful in screening efforts for HNSCC among smokers who are unable to quit.




mo

Retraction: Insulin-Like Growth Factor I Suppresses Bone Morphogenetic Protein Signaling in Prostate Cancer Cells by Activating mTOR Signaling




mo

NOX4 Inhibition Potentiates Immunotherapy by Overcoming Cancer-Associated Fibroblast-Mediated CD8 T-cell Exclusion from Tumors

Determining mechanisms of resistance to αPD-1/PD-L1 immune-checkpoint immunotherapy is key to developing new treatment strategies. Cancer-associated fibroblasts (CAF) have many tumor-promoting functions and promote immune evasion through multiple mechanisms, but as yet, no CAF-specific inhibitors are clinically available. Here we generated CAF-rich murine tumor models (TC1, MC38, and 4T1) to investigate how CAFs influence the immune microenvironment and affect response to different immunotherapy modalities [anticancer vaccination, TC1 (HPV E7 DNA vaccine), αPD-1, and MC38] and found that CAFs broadly suppressed response by specifically excluding CD8+ T cells from tumors (not CD4+ T cells or macrophages); CD8+ T-cell exclusion was similarly present in CAF-rich human tumors. RNA sequencing of CD8+ T cells from CAF-rich murine tumors and immunochemistry analysis of human tumors identified significant upregulation of CTLA-4 in the absence of other exhaustion markers; inhibiting CTLA-4 with a nondepleting antibody overcame the CD8+ T-cell exclusion effect without affecting Tregs. We then examined the potential for CAF targeting, focusing on the ROS-producing enzyme NOX4, which is upregulated by CAF in many human cancers, and compared this with TGFβ1 inhibition, a key regulator of the CAF phenotype. siRNA knockdown or pharmacologic inhibition [GKT137831 (Setanaxib)] of NOX4 “normalized” CAF to a quiescent phenotype and promoted intratumoral CD8+ T-cell infiltration, overcoming the exclusion effect; TGFβ1 inhibition could prevent, but not reverse, CAF differentiation. Finally, NOX4 inhibition restored immunotherapy response in CAF-rich tumors. These findings demonstrate that CAF-mediated immunotherapy resistance can be effectively overcome through NOX4 inhibition and could improve outcome in a broad range of cancers.Significance:NOX4 is critical for maintaining the immune-suppressive CAF phenotype in tumors. Pharmacologic inhibition of NOX4 potentiates immunotherapy by overcoming CAF-mediated CD8+ T-cell exclusion.Graphical Abstract:http://cancerres.aacrjournals.org/content/canres/80/9/1846/F1.large.jpg.See related commentary by Hayward, p. 1799




mo

Glial TIM-3 Modulates Immune Responses in the Brain Tumor Microenvironment

T-cell immunoglobulin and mucin domain–containing molecule 3 (TIM-3), a potential immunotherapeutic target for cancer, has been shown to display diverse characteristics in a context-dependent manner. Thus, it would be useful to delineate the precise functional features of TIM-3 in a given situation. Here, we report that glial TIM-3 shows distinctive properties in the brain tumor microenvironment. TIM-3 was expressed on both growing tumor cells and their surrounding cells including glia and T cells in an orthotopic mouse glioma model. The expression pattern of TIM-3 was distinct from those of other immune checkpoint molecules in tumor-exposed and tumor-infiltrating glia. Comparison of cells from tumor-bearing and contralateral hemispheres of a glioma model showed that TIM-3 expression was lower in tumor-infiltrating CD11b+CD45mid glial cells but higher in tumor-infiltrating CD8+ T cells. In TIM-3 mutant mice with intracellular signaling defects and Cre-inducible TIM-3 mice, TIM-3 affected the expression of several immune-associated molecules including iNOS and PD-L1 in primary glia-exposed conditioned media (CM) from brain tumors. Further, TIM-3 was cross-regulated by TLR2, but not by TLR4, in brain tumor CM- or Pam3CSK4-exposed glia. In addition, following exposure to tumor CM, IFNγ production was lower in T cells cocultured with TIM-3–defective glia than with normal glia. Collectively, these findings suggest that glial TIM-3 actively and distinctively responds to brain tumor, and plays specific intracellular and intercellular immunoregulatory roles that might be different from TIM-3 on T cells in the brain tumor microenvironment.Significance:TIM-3 is typically thought of as a T-cell checkpoint receptor. This study demonstrates a role for TIM-3 in mediating myeloid cell responses in glioblastoma.




mo

Targeting the E3 Ubiquitin Ligase PJA1 Enhances Tumor-Suppressing TGF{beta} Signaling

RING-finger E3 ligases are instrumental in the regulation of inflammatory cascades, apoptosis, and cancer. However, their roles are relatively unknown in TGFβ/SMAD signaling. SMAD3 and its adaptors, such as β2SP, are important mediators of TGFβ signaling and regulate gene expression to suppress stem cell–like phenotypes in diverse cancers, including hepatocellular carcinoma (HCC). Here, PJA1, an E3 ligase, promoted ubiquitination and degradation of phosphorylated SMAD3 and impaired a SMAD3/β2SP-dependent tumor-suppressing pathway in multiple HCC cell lines. In mice deficient for SMAD3 (Smad3+/−), PJA1 overexpression promoted the transformation of liver stem cells. Analysis of genes regulated by PJA1 knockdown and TGFβ1 signaling revealed 1,584 co-upregulated genes and 1,280 co-downregulated genes, including many implicated in cancer. The E3 ligase inhibitor RTA405 enhanced SMAD3-regulated gene expression and reduced growth of HCC cells in culture and xenografts of HCC tumors, suggesting that inhibition of PJA1 may be beneficial in treating HCC or preventing HCC development in at-risk patients.Significance: These findings provide a novel mechanism regulating the tumor suppressor function of TGFβ in liver carcinogenesis.




mo

Risk SNP-Mediated Enhancer-Promoter Interaction Drives Colorectal Cancer through Both FADS2 and AP002754.2

Although genome-wide association studies (GWAS) have identified more than 100 colorectal cancer risk loci, most of the biological mechanisms associated with these loci remain unclear. Here we first performed a comprehensive expression quantitative trait loci analysis in colorectal cancer tissues adjusted for multiple confounders to test the determinants of germline variants in established GWAS susceptibility loci on mRNA and long noncoding RNA (lncRNA) expression. Combining integrative functional genomic/epigenomic analyses and a large-scale population study consisting of 6,024 cases and 10,022 controls, we then prioritized rs174575 with a C>G change as a potential causal candidate for colorectal cancer at 11q12.2, as its G allele was associated with an increased risk of colorectal cancer (OR = 1.26; 95% confidence interval = 1.17–1.36; P = 2.57 × 10–9). rs174575 acted as an allele-specific enhancer to distally facilitate expression of both FADS2 and lncRNA AP002754.2 via long-range enhancer–promoter interaction loops, which were mediated by E2F1. AP002754.2 further activated a transcriptional activator that upregulated FADS2 expression. FADS2, in turn, was overexpressed in colorectal cancer tumor tissues and functioned as a potential oncogene that facilitated colorectal cancer cell proliferation and xenograft growth in vitro and in vivo by increasing the metabolism of PGE2, an oncogenic molecule involved in colorectal cancer tumorigenesis. Our findings represent a novel mechanism by which a noncoding variant can facilitate long-range genome interactions to modulate the expression of multiple genes including not only mRNA, but also lncRNA, which provides new insights into the understanding of colorectal cancer etiology.Significance:This study provides an oncogenic regulatory circuit among several oncogenes including E2F1, FADS2, and AP002754.2 underlying the association of rs174575 with colorectal cancer risk, which is driven by long-range enhancer–promoter interaction loops.Graphical Abstract:http://cancerres.aacrjournals.org/content/canres/80/9/1804/F1.large.jpg.




mo

Immunotherapeutic Response in Tumors Is Affected by Microenvironmental ROS

Carcinoma-associated fibroblasts (CAF) are a potential therapeutic target for both direct and indirect regulation of cancer progression and therapy response. In this issue of Cancer Research, Ford and colleagues investigate the influence of CAF on the immune environment of tumors, specifically focusing on the regulation of CD8+ T cells, required for immune therapy response. Their work suggests a role for stromally expressed NADPH oxidase 4 (NOX4) as a modulator of reactive oxygen species that in turn can reduce the number of CD8+ T cells locally. Inhibition of NOX4 increased CD8+ T cells and restored responsiveness to immune therapy, suggesting an indirect stromally targeted avenue for therapy resensitization.See related article by Ford et al., p. 1846




mo

[TECHNIQUE] Animal Models of Hepatitis C Virus Infection

Hepatitis C virus (HCV) is an important and underreported infectious disease, causing chronic infection in ~71 million people worldwide. The limited host range of HCV, which robustly infects only humans and chimpanzees, has made studying this virus in vivo challenging and hampered the development of a desperately needed vaccine. The restrictions and ethical concerns surrounding biomedical research in chimpanzees has made the search for an animal model all the more important. In this review, we discuss different approaches that are being pursued toward creating small animal models for HCV infection. Although efforts to use a nonhuman primate species besides chimpanzees have proven challenging, important advances have been achieved in a variety of humanized mouse models. However, such models still fall short of the overarching goal to have an immunocompetent, inheritably susceptible in vivo platform in which the immunopathology of HCV could be studied and putative vaccines development. Alternatives to overcome this include virus adaptation, such as murine-tropic HCV strains, or the use of related hepaciviruses, of which many have been recently identified. Of the latter, the rodent/rat hepacivirus from Rattus norvegicus species-1 (RHV-rn1) holds promise as a surrogate virus in fully immunocompetent rats that can inform our understanding of the interaction between the immune response and viral outcomes (i.e., clearance vs. persistence). However, further characterization of these animal models is necessary before their use for gaining new insights into the immunopathogenesis of HCV and for conceptualizing HCV vaccines.




mo

Advanced ADC Histogram, Perfusion, and Permeability Metrics Show an Association with Survival and Pseudoprogression in Newly Diagnosed Diffuse Intrinsic Pontine Glioma: A Report from the Pediatric Brain Tumor Consortium [FUNCTIONAL]

BACKGROUND AND PURPOSE:

Diffuse intrinsic pontine glioma is a lethal childhood brain cancer with dismal prognosis and MR imaging is the primary methodology used for diagnosis and monitoring. Our aim was to determine whether advanced diffusion, perfusion, and permeability MR imaging metrics predict survival and pseudoprogression in children with newly diagnosed diffuse intrinsic pontine glioma.

MATERIALS AND METHODS:

A clinical trial using the poly (adenosine diphosphate ribose) polymerase (PARP) inhibitor veliparib concurrently with radiation therapy, followed by maintenance therapy with veliparib + temozolomide, in children with diffuse intrinsic pontine glioma was conducted by the Pediatric Brain Tumor Consortium. Standard MR imaging, DWI, dynamic contrast-enhanced perfusion, and DSC perfusion were performed at baseline and approximately every 2 months throughout treatment. ADC histogram metrics of T2-weighted FLAIR and enhancing tumor volume, dynamic contrast-enhanced permeability metrics for enhancing tumors, and tumor relative CBV from DSC perfusion MR imaging were calculated. Baseline values, post-radiation therapy changes, and longitudinal trends for all metrics were evaluated for associations with survival and pseudoprogression.

RESULTS:

Fifty children were evaluable for survival analyses. Higher baseline relative CBV was associated with shorter progression-free survival (P = .02, Q = 0.089) and overall survival (P = .006, Q = 0.055). Associations of higher baseline mean transfer constant from the blood plasma into the extravascular extracellular space with shorter progression-free survival (P = .03, Q = 0.105) and overall survival (P = .03, Q = 0.102) trended toward significance. An increase in relative CBV with time was associated with shorter progression-free survival (P < .001, Q < 0.001) and overall survival (P = .004, Q = 0.043). Associations of longitudinal mean extravascular extracellular volume fraction with progression-free survival (P = .03, Q = 0.104) and overall survival (P = .03, Q = 0.105) and maximum transfer constant from the blood plasma into the extravascular extracellular space with progression-free survival (P = .03, Q = 0.102) trended toward significance. Greater increases with time were associated with worse outcomes. True radiologic progression showed greater post-radiation therapy decreases in mode_ADC_FLAIR compared with pseudoprogression (means, –268.15 versus –26.11, P = .01.)

CONCLUSIONS:

ADC histogram, perfusion, and permeability MR imaging metrics in diffuse intrinsic pontine glioma are useful in predicting survival and pseudoprogression.




mo

Brain Metastases: Insights from Statistical Modeling of Size Distribution [ADULT BRAIN]

BACKGROUND AND PURPOSE:

Brain metastases are a common finding on brain MRI. However, the factors that dictate their size and distribution are incompletely understood. Our aim was to discover a statistical model that can account for the size distribution of parenchymal metastases in the brain as measured on contrast-enhanced MR imaging.

MATERIALS AND METHODS:

Tumor volumes were calculated on the basis of measured tumor diameters from contrast-enhanced T1-weighted spoiled gradient-echo images in 68 patients with untreated parenchymal metastatic disease. Tumor volumes were then placed in rank-order distributions and compared with 11 different statistical curve types. The resultant R2 values to assess goodness of fit were calculated. The top 2 distributions were then compared using the likelihood ratio test, with resultant R values demonstrating the relative likelihood of these distributions accounting for the observed data.

RESULTS:

Thirty-nine of 68 cases best fit a power distribution (mean R2 = 0.938 ± 0.050), 20 cases best fit an exponential distribution (mean R2 = 0.957 ± 0.050), and the remaining cases were scattered among the remaining distributions. Likelihood ratio analysis revealed that 66 of 68 cases had a positive mean R value (1.596 ± 1.316), skewing toward a power law distribution.

CONCLUSIONS:

The size distributions of untreated brain metastases favor a power law distribution. This finding suggests that metastases do not exist in isolation, but rather as part of a complex system. Furthermore, these results suggest that there may be a relatively small number of underlying variables that substantially influence the behavior of these systems. The identification of these variables could have a profound effect on our understanding of these lesions and our ability to treat them.