hi

Semiconductor Device and Method of Forming Ultra High Density Embedded Semiconductor Die Package

A semiconductor device has a plurality of semiconductor die. A first prefabricated insulating film is disposed over the semiconductor die. A conductive layer is formed over the first prefabricated insulating film. An interconnect structure is formed over the semiconductor die and first prefabricated insulating film. The first prefabricated insulating film is laminated over the semiconductor die. The first prefabricated insulating film includes glass cloth, glass fiber, or glass fillers. The semiconductor die is embedded within the first prefabricated insulating film with the first prefabricated insulating film covering first and side surfaces of the semiconductor die. The interconnect structure is formed over a second surface of the semiconductor die opposite the first surface. A portion of the first prefabricated insulating film is removed after disposing the first prefabricated insulating film over the semiconductor die. A second prefabricated insulating film is disposed over the first prefabricated insulating film.




hi

MANUFACTURING METHOD OF CHIP PACKAGE AND PACKAGE SUBSTRATE

A manufacturing method of a package substrate is provided. The method includes forming a first circuit layer on a carrier. A passive component is disposed on the first circuit layer and the carrier. A dielectric layer is formed on the carrier to embed the passive component and the first circuit layer in the dielectric layer. A second circuit layer is formed on the dielectric layer. The carrier is removed from the dielectric layer. A manufacturing method of a chip package is also provided.




hi

SEMICONDUCTOR MOUNTING APPARATUS, HEAD THEREOF, AND METHOD FOR MANUFACTURING LAMINATED CHIP

A semiconductor mounting apparatus includes a storing unit that stores a liquid or a gas, a contact unit that comes into contact with a semiconductor chip when the storing unit is filled with the liquid or the gas, and a sucking unit that sucks up the semiconductor chip to bring the semiconductor chip into close contact with the contact unit.




hi

SYSTEMS AND PROCESSES FOR MEASURING THICKNESS VALUES OF SEMICONDUCTOR SUBSTRATES

A system for determining thickness variation values of a semiconductor substrate comprises a substrate vacuumed to a pedestal that defines a reference plane for measuring the substrate. A measurement probe assembly determines substrate CTV and BTV values, and defines a substrate slope angle. A thermal bonding assembly attaches a die to the substrate at a bonding angle congruent with the substrate slope angle. A plurality of substrates are measured using the same reference plane on the pedestal. Associated methods and processes are disclosed.




hi

METHODS OF MANUFACTURING THIN FILM TRANSISTOR AND ARRAY SUBSTRATE

A method of manufacturing a thin film transistor is disclosed. The method of manufacturing the thin film transistor includes: manufacturing a substrate; forming an oxide semiconductor layer on the substrate; forming a pattern including an active layer through a patterning process; forming a source and drain metal layer on the active layer; and forming a pattern including a source electrode and a drain electrode through a patterning process, an opening being formed between the source electrode and the drain electrode at a position corresponding to a region of the active layer used as a channel, wherein the step of forming the pattern including the source electrode and the drain electrode through a patterning process includes: removing a portion of the source and drain metal layer corresponding to the position of the opening through dry etching. The method may also be used to manufacturing a thin film transistor.




hi

EXTREMELY THIN SILICON-ON-INSULATOR SILICON GERMANIUM DEVICE WITHOUT EDGE STRAIN RELAXATION

A method for forming a semiconductor structure includes forming a strained silicon germanium layer on top of a substrate. At least one patterned hard mask layer is formed on and in contact with at least a first portion of the strained silicon germanium layer. At least a first exposed portion and a second exposed portion of the strained silicon germanium layer are oxidized. The oxidizing process forms a first oxide region and a second oxide region within the first and second exposed portions, respectively, of the strained silicon germanium.




hi

Vehicle floor mat

Provided is a vehicle floor mat reducing a load on a mat main body. The vehicle floor mat includes at least one fastening device for fastening the mat main body to a vehicle. The fastening device includes a first fastening member fixed to the vehicle and a second fastening member fixed to the mat main body. The first fastening member includes a vertical rotating knob, and the second fastening member includes: an insertion receiving section for the rotating knob to be inserted thereinto and engaged therewith; and upper and lower half bodies sandwiching the mat main body and being connected to each other through a half body connecting portion for the rotating knob to be inserted thereinto and at least one outer connecting portion disposed outside the half body connecting portion provided around the insertion receiving section, thus improving a connecting strength between the upper and lower half bodies.




hi

Hinge mechanism for a vehicle hood

A hinge including a first hinge half rotatably connected to a second hinge half is described. A support mechanism selectively supports the first hinge half at one or more rotated positions relative to the second hinge half. The support mechanism includes a support which is selectively biased toward a support position in which the support is capable of supporting the first hinge half at a rotated position relative to the second hinge half. The support can further be selectively biased into a disengaged position in which the support is not capable of supporting the first hinge half relative to the second hinge half. With the support in a disengaged position, the first hinge half is freely pivotable relative to the second hinge half. An automatic reset mechanism may be utilized in connection with the hinge to reposition the support from the disengaged position to the support position as the hinge approaches a predefined position.




hi

Trigger hinge

A trigger hinge used in a mobile flip-up electronic device is disclosed to include a female shaft, a male shaft set mounted in the female shaft, and a trigger device mounted at the male shaft set. When the user opens or closes the mobile flip-up electronic device to rotate the male shaft set relative to the female shaft, a pushing and moving piece of the trigger device is moved forward or backward to switching on/off switch, and thereby booting up or shutting down the mobile flip-up electronic device. Thus, the invention enhances the application and convenience of use of mobile flip-up electronic devices.




hi

Hinge structure

A hinge structure includes a first shaft, a second shaft, a pivot base and a position-limiting mechanism. The first and second shafts are pivoted on the pivot base. The position-limiting mechanism includes a first position-limiting portion, a second position-limiting portion and a position-limiting component. The first position-limiting portion is fixed to the first shaft. The second position-limiting portion is fixed to the second shaft. The position-limiting component is slidably disposed on the pivot base and has first and second ends opposite to each other. When the position-limiting component moves to a first position, the first end and the first position-limiting portion interfere with each other to stop the first shaft and the pivot base from rotating relatively. When the position-limiting component moves to a second position, the second end and the second position-limiting portion interfere with each other to stop the second shaft and the pivot base from rotating relatively.




hi

Gear cam mounting device in dual-hinge device for a portable terminal

A gear cam mounting device in a dual-hinge device for a portable terminal is provided, in which first and second hinge shafts provide first and second parallel hinge axes, respectively, first and second gear cams are fixed around the first and second hinge shafts, in engagement with each other, and first and second locking units penetrate respectively through the first and second gear cams in a direction that is perpendicular to the first and second hinge axes, for locking the first and second gear cams to surround the first and second hinge shafts.




hi

Retaining device for vehicle door

A vehicle door locking apparatus is equipped with a movable wedge, a fixed wedge, and an elastic member. The movable wedge is movable in the open/close direction of the vehicle door towards the vehicle body opening. The elastic member impels the movable wedge toward the fixed wedge. A slanted surface on the movable wedge and a slanted surface on the fixed wedge are configured to come into contact when the door is closed. The movable wedge is assembled on the end surface on the vehicle body opening side along with the base plate of a door lock striker that is assembled on the end surface on the vehicle body opening side. The fixed wedge is immovably assembled on the mounting section of the end surface on the vehicle door side, which is involved in a door lock assembly that is assembled on the end surface on the vehicle door side.




hi

Multi-piece bushing, support assembly and method of supporting a shaft

A bushing is for supporting a movable cylindrical body within a housing, the housing having a central axis, an inner circumferential surface and an annular groove formed in the surface. The bushing includes a plurality of generally arcuate tube segments disposable within the groove and alignable circumferentially about the housing axis so as to form a generally tubular body configured to slidably support the cylindrical body. Preferably, each tube segment is formed of a generally rigid metallic material.




hi

Hinge in composite material and process for its manufacture

Disclosed is a hinge having a rigid portion integral with a flexible portion suitable to be bent with respect to the rigid portion, wherein the rigid portion has a substrate in a rigid composite material and the flexible portion has a first flexible sheet, wherein a first portion of the first flexible sheet is joined at least partially to the substrate by means of at least one first layer of resin for composite materials, wherein the flexible portion also has a second flexible sheet joined at least partially by means of at least one second layer of resin for composite materials both to the first portion of the first flexible sheet and to at least one second portion of the first flexible sheet which is not joined to the substrate.




hi

Vertical adjustable hinge

A vertically adjustable hinge includes a first leaf rotatably connected to a leaf assembly. The leaf assembly defines an opening with at least a first inclined surface and includes a block received in the opening. The block defines a threaded hole and at least a second inclined surface abutting the first inclined surface. A leaf assembly housing receives the leaf assembly and the block. The leaf assembly housing defines screw holes for receiving a screw that passes through the threaded hole. A rotation of a screw in the threaded hole causes a horizontal translation of the block, which in turn causes a vertical translation of the leaf assembly.




hi

Hinge for transport cases, trunks, suitcases and the like

A hinge for transport cases, trunks, suitcases and the like, comprising two elements which are mutually articulated about a common axis and are both able to rotate with respect to the common axis. Each element is delimited by two parallel walls and has a total width that is equal to the width of the channel delimited between the stiffening ribs of the transport case, suitcase or trunk on which it will be installed. Each element is associable with the stiffening ribs of the respective transport case, once it is inserted between the ribs, without requiring any mechanical machining of the surfaces of the case.




hi

Brake Disc for a Motor Vehicle, Brake System

A brake disk for a motor vehicle includes a friction ring and at least one insert portion. The insert portion is located within and arranged coaxially with the friction ring, and is configured so as to possess an annular disk shape and define a plurality of openings. The friction ring is configured such that material of the friction ring fills the plurality of openings.




hi

VEHICLE BRAKE PAD

A vehicle brake pad includes a back plate layer, an underlayer, an adhesive layer that mediates between the back plate layer and the underlayer, and a friction material layer, wherein the vehicle brake pad does not include a shim and wherein at least one of the back plate layer, the adhesive layer, and the underlayer has a loss factor of 0.2 or higher, calculated according to the following Equation 1, at temperatures from −100 to 300° to damp noise of a frequency range of 200 to 20,000 Hz at temperatures from −100 to 300°: (Equation 1) Loss factor η=(f2−f1)/f0, where η is a loss factor, f0 is a noise frequency, f1 is a minimum value of amplitude of a noise frequency when a noise level is reduced by 3 dB, and f2 a maximum value of amplitude when the noise level is reduced by 3 dB.




hi

RAIL VEHICLE BRAKE DISK

A one-piece rail vehicle brake disk is made of steel or cast iron, comprises at least one effective surface with which a friction element comes in contact during a braking maneuver, and is designed in such a way that the effective surface has a plurality of blind holes.




hi

ATTACHABLE HIGH-Mn STEEL BRAKE DISK

An attachable high-manganese steel brake disk includes a first disk member including air vents disposed radially therein to be spaced apart from each other, and a pair of second disk members installed to be attached to two surfaces of the first disk member and having a braking surface in contact with a brake pad. Between the first disk member and the second disk members, at least the second disk members are provided as high manganese steel members.




hi

Vehicle Disk Brake

The invention relates to a vehicle disk brake having a brake-application device which provides the braking force and which is composed of a force element, preferably a pressure medium cylinder, and of a pressure-boosting lever arrangement, and having a readjustment device for compensatory readjustment of the wear-induced air clearance of the brake. The readjustment device comprises, as constituent parts, a rotatably arranged drive element (25) which can be actuated by the brake-application device, a readjustment element (26) arranged rotatably on the same axis, and a transmission device arranged in the movement path between drive element (25) and readjustment element (26). To provide a vehicle brake which is equipped with a readjustment device for compensatory readjustment of the wear-induced air clearance and in which the readjustment means is of structurally simple design and has a small number of parts, the transmission device is in the form of a helical wrap spring (30) which, along a first helix section (31), is supported radially with respect to the drive element (25) and, along a second helix section (32), is supported radially with respect to the readjustment element (26), wherein the former radial support is realized at the inner side, and the latter radial support is realized at the outer side, of the wrap spring (30).




hi

Interdigitated Cellular Cushioning

An interdigitated cellular cushioning system includes an array of void cells protruding from each of two sheet layers interdigitated between the two sheet layers. Peaks of each of the void cells are attached to the opposite sheet layer forming the interdigitated cellular cushioning system. The interdigitated cellular cushioning system may be used to absorb and distribute a source of kinetic energy incident on the interdigitated cellular cushioning system (e.g., an impact or explosion) so that the amount of force transmitted through the interdigitated cellular cushioning system is low enough that it does not cause injury to personnel or damage to personnel and/or equipment adjacent the interdigitated cellular cushioning system.




hi

Gas generator with starter mechanism and catalyst shield

The present application is directed to gas generators comprising a fuel mixture and a catalyst. The catalyst is contained in a self-regulated reactor or buoy, and selectively opens and closes to produce a gas in accordance with the demand for gas. This fuel mixture is generally a solution formed by dissolving a solid fuel component in a liquid fuel component. The mixing preferably occurs before the first use, and more preferably occurs immediately prior to the first use. The inventive gas generators preferably further comprises a starting mechanism that isolates the solid fuel from the liquid fuel or vice versa before the first use. In one embodiment, the starting mechanism further comprises a catalyst shield mechanism that isolates the catalyst in the reactor or buoy from the liquid and/or the solid fuel prior to the first use.




hi

Various methods and apparatuses for an ultra-high heat flux chemical reactor

Various processes and apparatus are discussed for an ultra-high heat flux chemical reactor. A thermal receiver and the reactor tubes are aligned to 1) absorb and re-emit radiant energy, 2) highly reflect radiant energy, and 3) any combination of these, to maintain an operational temperature of the enclosed ultra-high heat flux chemical reactor. Particles of biomass are gasified in the presence of a steam carrier gas and methane in a simultaneous steam reformation and steam biomass gasification reaction to produce reaction products that include hydrogen and carbon monoxide gas using the ultra-high heat flux thermal energy radiated from the inner wall and then into the multiple reactor tubes. The multiple reactor tubes and cavity walls of the receiver transfer energy primarily by radiation absorption and re-radiation, rather than by convection or conduction, to the reactants in the chemical reaction to drive the endothermic chemical reaction flowing in the reactor tubes.




hi

Reformer tube apparatus having variable wall thickness and associated method of manufacture

The present invention provides a reformer tube apparatus, including: an axially aligned tubular structure including a flange section, a top section, a middle section, and a bottom section; wherein the top section of the axially aligned tubular structure includes a first portion having a first wall thickness; wherein the top section of the axially aligned tubular structure includes a second portion having a second wall thickness; and wherein the top section of the axially aligned tubular structure includes a third portion having a transitioning wall thickness that joins the first portion to the second portion. The flange section includes a concentric flange disposed about a top portion thereof. The bottom section of the tubular structure includes a plurality of concentric wedge structures disposed about the interior thereof. The bottom section of the tubular structure also includes a recess disposed about the exterior thereof. The axially aligned tubular structure further includes a secondary flange section coupled to the flange section, wherein the secondary flange section includes a concentric flange disposed about a top portion thereof. Optionally, the reformer tube apparatus is disposed within a reformer used in a direct reduction process.




hi

High Speed Socket Connector

A high speed socket connector is disclosed in this invention, including a case, a terminal mould, an upper shield and a lower shield. The terminal mould includes an insulative body, a row of upper terminals and a row of lower terminals. The insulative body forms multiple first openings and second openings. The upper terminals and the lower terminals both include multiple differential pairs of signal terminals and multiple grounding terminals. Each signal terminal has a serpentine retaining section exposed in the corresponding first opening. Each grounding terminal has a straight retaining section exposed in the corresponding second opening. The upper shield and the lower shield are respectively mounted on the top and the bottom of the terminal mould. The high speed socket connector can realize a good shielding effect by the connection of the upper and lower shields and the grounding terminals.




hi

HIGH DENSITY ELECTRICAL CONNECTOR WITH SHIELD PLATE LOUVERS

An electrical assembly has a lead frame with a plurality of elongated conductor sets and an insulative housing. Each conductor set has two differential signal pair conductors between a first ground conductor and a second ground conductor. A slot extends through the insulative housing and at least partially exposes the first ground conductor of a first conductor set and the second ground conductor of a second conductor set. A first ground shield has a first tab bent inward that extends into the slot from a first side of the lead frame. A second ground shield has second tab bent inward that extends into the slot from a second side of the lead frame. A conductive medium is provided in the slot to electrically connect the first tab, the second tab, the first ground conductor and the second ground conductor.




hi

PRINTED CIRCUIT BOARD HAVING HIGH-SPEED OR HIGH-FREQUENCY SIGNAL CONNECTOR

A printed circuit board includes a substrate including a surface layer and a first ground layer; a high-frequency signal generation part provided in the surface layer of the substrate; at least one high-frequency signal connector mounting portion formed in the surface layer of the substrate; at least one high-frequency signal line formed in the surface layer of the substrate, and extend from the high-frequency signal generation part to the at least one high-frequency signal connector mounting portion; and at least one high-frequency signal connector disposed in the at least one high-frequency signal connector mounting portion, wherein an end of the first ground layer is exposed to a side surface of the substrate, and when the high-frequency signal connector is disposed in the at least one high-frequency signal connector mounting portion, a ground of the high-frequency signal connector is in contact with the end of the first ground layer.




hi

HIGH OUTLET DENSITY POWER DISTRIBUTION UNIT

Systems and apparatuses are provided in which outlets are coupled to a power distribution unit (PDU) or PDU module in various configurations. The outlets may be coupled to a recessed surface within a PDU housing. The outlets and recessed surface may be formed as part of a single mold. The outlets may be coupled to a printed circuit board that is at least partially disposed within the PDU housing. The outlets may extend away from the recessed surface or printed circuit board towards or beyond a front face of the PDU housing.




hi

TERMINAL ATTACHING/DETACHING DEVICE

A terminal attaching/detaching device includes a housing, an engaging member, and a movable member. The engaging member is configured to move in a first direction toward a terminal inserted in the housing to engage with the terminal, and is configured to move from the terminal inserted in the housing in a second direction to disengage from the terminal. The movable member is configured to move in concert with the engaging member in the moving process thereof in the first direction, and is configured to move the engaging member from the terminal inserted in the housing in the second direction, so that the engaging member is disengaged from the terminal.




hi

SUBSEA HIGH VOLTAGE CONNECTION ASSEMBLY

Subsea high voltage connection assembly (10) comprising a first section (100) having a first section body (104) to which a set of first connector(s) (111) is arranged and a second section (200) having second section body (204) to which a set of second connector(s) (211) is arranged. The assembly (10) further has a section body movement arrangement (103, 400, 9, 123) adapted to move one of the section bodies (104, 204) towards and away from the other section body, between a disengaged position and an engaged position. Further, the assembly (10) has a connector movement arrangement (105, 400). Also disclosed are a method and a subsea high voltage wet mate connector assembly.




hi

SHIELDED ELECTRICAL CONNENCTOR AND PRODUCTION METHOD THEREOF

The invention relates to a shielded connector for a motor vehicle. The connector comprises at least one casing shielding element. The shielding element includes a cable outlet portion provided with a plurality of resilient tabs that are integral with the shielding element. The tabs include a contact zone in electrical contact with a ferrule crimped to a shielding braid of a cable. The contact zone is maintained pressed against the shielding braid by means of a removable clamping ring.




hi

High porosity abrasive articles and methods of manufacturing same

An abrasive article includes a polymer matrix and abrasive grains dispersed in the polymer matrix, wherein the abrasive article has a void volume of at least 50%. The polymer matrix is polymerized from a monomer including at least one double bond.




hi

Methods of fabricating polycrystalline diamond products using a selected amount of graphite particles

Embodiments of the invention relate to polycrystalline diamond (“PCD”) fabricated by sintering a mixture including diamond particles and a selected amount of graphite particles, polycrystalline diamond compacts (“PDCs”) having a PCD table comprising such PCD, and methods of fabricating such PCD and PDCs. In an embodiment, a method includes providing a mixture including graphite particles present in an amount of about 0.1 weight percent (“wt %”) to about 20 wt % and diamond particles. The method further includes subjecting the mixture to a high-pressure/high-temperature process sufficient to form PCD.




hi

Plastic soft composition for polishing and for surface protective material application

A plastic soft composition is formed of soft base material constantly provided with plasticity, porous fine particles for polishing contained in the base material, and the like, and a polishing process and a coating process are performed to a painted surface and the like using the plastic soft composition. The fine particles for polishing are impregnated with a coating agent (a surface protective agent) added with an activator which is emulsified by contact with water, and the coating agent is held in concave portions formed in the fine particles. Both polishing work and coating work are achieved by sliding the plastic soft composition on a painted surface by a palm pressure of a user.




hi

Superabrasive cutting element and manufacturing method with high degree of control of distribution and crystallographic orientation of the micro cutting edges

An abrasive element comprises a body of crystalline abrasive material. The body has an array of cutting elements formed of crystalline abrasive material which projects from a surface of the body. The shape, size and form of the projections is controlled in the production process. The body may be a natural or synthetic crystal. The body may be a film formed by deposition. The body may be diamond or cubic boron nitride. The body may be monocrystalline or polycrystalline. The projections may be aligned along a crystallographic plane or planes.




hi

Polishing pad and manufacturing method therefor

Provided are a polishing pad which remedies the problem of scratches occurring when a conventional hard (dry) polishing pad is used, which is excellent in polishing rate and polishing uniformity, and which can be used for not only primary polishing but also finish polishing, and a manufacturing method therefor. The polishing pad is a polishing pad for polishing a semiconductor device, comprising a polishing layer having a polyurethane-polyurea resin foam containing substantially spherical cells, wherein the polyurethane-polyurea resin foam has a Young's modulus E in a range from 450 to 30000 kPa, and a density D in a range from 0.30 to 0.60 g/cm3.




hi

Low defect chemical mechanical polishing composition

A low defect chemical mechanical polishing composition for polishing silicon oxide containing substrates is provided comprising, as initial components: water, a colloidal silica abrasive; and, an additive according to formula I.




hi

Polishing pad

An object of the present invention is to provide a polishing pad that is prevented from causing an end-point detection error due to a reduction in light transmittance from the early stage to the final stage of the process, and to provide a method of producing a semiconductor device with the polishing pad. The present invention is directed to a polishing pad, comprising a polishing layer comprising a polishing region and a light-transmitting region, wherein a polishing side surface of the light-transmitting region is subjected to a surface roughness treatment, and the light-transmitting region has a light transmittance of 40% to 60% at a wavelength of 600 nm before use.




hi

Polishing pad for eddy current end-point detection

Polishing pads for polishing semiconductor substrates using eddy current end-point detection are described. Methods of fabricating polishing pads for polishing semiconductor substrates using eddy current end-point detection are also described.




hi

Polishing composition and method utilizing abrasive particles treated with an aminosilane

The inventive method comprises chemically-mechanically polishing a substrate with an inventive polishing composition comprising a liquid carrier and abrasive particles that have been treated with a compound.




hi

EDM cuttable, high cBN content solid PCBN compact

The present disclosure relates to cubic boron nitride (cBN) cutting elements that have high cBN content and that are cuttable by electric discharge machining (EDM). A cutting element according to an embodiment includes a self-sintered polycrystalline cubic boron nitride (PCBN) compact, having a first phase of cubic boron nitride (cBN) particles and a ceramic binder phase with titanium compounds. The first phase occupies greater than 80% by volume of the self-sintered PCBN compact. The self-sintered PCBN compact has an electrical conductivity sufficient to be cuttable by electrical discharge machining.




hi

Polishing composition

A polishing composition contains colloidal silica particles having protrusions on the surfaces thereof. The average of values respectively obtained by dividing the height of a protrusion on the surface of each particle belonging to the part of the colloidal silica particles that has larger particle diameters than the volume average particle diameter of the colloidal silica particles by the width of a base portion of the same protrusion is no less than 0.245. Preferably, the part of the colloidal silica particles that has larger particle diameter than the volume average particle diameter of the colloidal silica particles has an average aspect ratio of no less than 1.15. Preferably, the protrusions on the surfaces of particles belonging to the part of the colloidal silica particles that has larger particle diameters than the volume average particle diameter of the colloidal silica particles have an average height of no less than 3.5 nm.




hi

EDM cuttable, high CBN content solid PCBN compact

The present disclosure relates to cubic boron nitride (cBN) cutting elements that have high cBN content and that are cuttable by electric discharge machining (EDM). A cutting element according to an embodiment includes a self-sintered polycrystalline cubic boron nitride (PCBN) compact, having a first phase of cubic boron nitride (cBN) particles and a ceramic binder phase with titanium compounds. The first phase occupies greater than 80% by volume of the self-sintered PCBN compact. The self-sintered PCBN compact has an electrical conductivity sufficient to be cuttable by electrical discharge machining.




hi

Method of manufacturing grooved chemical mechanical polishing layers

A method of manufacturing grooved polishing layers for use in chemical mechanical polishing pads is provided, wherein the formation of defects in the polishing layers are minimized.




hi

Method for producing abrasive grains, method for producing slurry, and method for producing polishing liquid

In the production method for abrasive grains according to the invention, an aqueous solution of a salt of a tetravalent metal element is mixed with an alkali solution, under conditions such that a prescribed parameter is 5.00 or greater, to obtain abrasive grains including a hydroxide of the tetravalent metal element.




hi

SYSTEM FOR USE IN A VEHICLE

A system for use in a vehicle determining the type of terrain ahead of the vehicle, the system comprising; a processor configured to receive sensor output data from a plurality of vehicle-mounted sensors, including at least one radar sensor and at least one acoustic sensor, each for receiving a reflected signal from the terrain ahead of the vehicle; and a data memory configured to store pre-determined data relating sensor output data, for the or each acoustic sensor and the or each radar sensor, to a terrain type; wherein the processor is configured to compare the sensor output data with the pre-determined data to determine an indication of the terrain type corresponding to the sensor output data.




hi

MIXED LEFT/RIGHT CHIRAL LIQUID CRYSTAL FOR IMPROVED SWITCHING SPEED AND TUNABILITY FOR RF DEVICES

A method and apparatus is disclosed herein for improved switching speed and/or tunability for radio-frequency (RF) devices are described. In one embodiment, a liquid crystal (LC) component comprises an LC structure in a mixture with right-handed (R) and left-handed (S) chiral dopants.




hi

CIRCUITS AND METHODS FOR DETERMINING CHIRP SIGNAL LINEARITY AND PHASE NOISE OF A FMCW RADAR

A testing device for FMCW radar includes an input for receiving a chirp signal generated by the radar. An IQ down-converter coupled to the input down-converts the chirp signal. A digitizer extracts digitized IQ signals from the down-converted chirp signal. A processor coupled to the digitizer determines at least one of frequency linearity and phase noise of the chirp signal.




hi

RADAR SENSOR, CORRESPONDING OPERATING METHOD AND VEHICLE

A radar sensor for detecting at least one object, having a control device to receive a control input signal; a signal generator to generate a transmit signal having a multitude of signal cycles, each signal cycle having a multitude of signal sequences, and a series of blocks being formed, each block having precisely one frequency ramp of each signal sequence, and the signal generator furthermore being designed to select a predefined quantity of blocks from the transmit signal based on the control input signal and to output them as output signal; an antenna device to transmit the output signal that is output by the signal generator and to receive a receive signal; and an evaluation device which is designed to ascertain, by superpositioning the transmit signal and the receive signal, a quantity with regard to an angle and/or a distance and/or a relative speed of the at least one object.