hi

Method and apparatus for manufacturing stator coil for electric rotating machine

A method of manufacturing a stator coil for an electric rotating machine includes the steps of: (1) forming substantially planar electric wires each of which includes in-slot portions to be received in slots of a stator core and turn portions to be located outside the slots to connect adjacent pairs of the in-slot portions; (2) rolling each of the planar electric wires through plastic deformation into a spiral or circular-arc shape; and (3) assembling the rolled electric wires together to form the stator coil. Further, in the rolling step, each of the planar electric wires is rolled by deforming each of the turn portions of the electric wire while restricting movement of at least one of the in-slot portions of the electric wire which is located closer to a rolling start end of the electric wire than the turn portion is.




hi

Machine for binding reinforcement bars

A machine for forming a two-stage wire tie around a pair of bars to bind the bars together. The machine comprises an arrangement for passing the wire in a loop around the bars and a twisting head for twisting the ends of the loop together. The twisting head comprises an arrangement for gripping the ends of the wire and a tie plate through which the ends of the wire pass, and the head is resiliently mounted relative to the bars so as to allow the tie plate to move through a predetermined amount of travel towards the bars, to thereby define the length of a first stage of the tie. The machine is adapted thereafter to release the ends of the wire and continue twisting these to form a second stage of the tie.




hi

Method and apparatus for rolling electric wire for stator coil of electric rotating machine

Disclosed is an apparatus for rolling a substantially planar electric wire by more than one turn into a spiral shape. The apparatus includes an inner pressing member having an outer surface, an intermediate pressing member having radially inner and outer surfaces, and an outer pressing member having an inner surface. The inner and intermediate pressing members together press a first part of the electric wire between the outer surface of the inner pressing member and the inner surface of the intermediate pressing member, thereby plastically deforming the first part to extend along the outer surface of the inner pressing member. The intermediate and outer pressing members together press a second part of the electric wire between the outer surface of the intermediate pressing member and the inner surface of the outer pressing member, thereby plastically deforming the second part to extend along the outer surface of the intermediate pressing member.




hi

Reinforcing bar binding machine

A reinforcing bar binding machine is provided with a device for detecting a power supply voltage during a binding wire twisting step subjected to the heaviest load and comparing the power supply voltage with a predetermined CPU operation voltage, and a control device for driving a motor in a reverse direction when the voltage has dropped below the predetermined CPU operation voltage. The power supply voltage during operation is monitored, and twisting operation is suspended before the voltage drops below the CPU operation voltage, whereby the binding wire twisting mechanism is returned to the initial position. Therefore, it is possible to prevent the binding wire twisting mechanism from being stopped while grasping the binding wire, when the CPU stops.




hi

Protective metal netting with interwoven wires, and a machine and a method for its manufacture

A protective metal netting comprises a plurality of longitudinal metal wires or cables (10) side by side, each interwoven with at least one adjacent longitudinal wire or cable (10) in an interweave portion (24), in which at least one of the metal wires or cables (20) has an almost rectilinear development, or in any case with loops that are less pronounced than the lower-strength neighboring cables. A machine for manufacturing interwoven metal nettings comprises a cylindrical drum (50), on the outer surface of which a plurality of pins (52) protruding radially and arranged in axial rows at equal angular intervals is fixed, with an equal pitch in all the rows. Some pins (54) present on the cylindrical drum (50) are fitted out-of-alignment with respect to the above-mentioned pitch.




hi

Vehicle crane

A vehicle crane—in particular an articulated-arm crane—includes a lifting arm and one or more articulated arms, and the geometry of the crane arms can be changed with respect to one another. A load cable can be guided or is guided on the crane arms. A compensation device allows the tension in the load cable to be controlled or regulated upon a change in the geometry of the crane arms with respect to one another.




hi

Service apparatus for turbomachine

Various embodiments include a service apparatus for a turbomachine. The service apparatus can include: a frame for coupling to an opening in the turbomachine; a bridge member operably coupled to the frame and spanning a width of the frame, the bridge member being substantially movable along a length of the frame; and a crane member operably coupled to the bridge member, the crane member being substantially movable along the width of the frame, wherein the crane member includes at least one attachment device for attaching to an object within the turbomachine.




hi

Monitoring and alarm device for construction machinery

The invention relates to a monitoring and alarm device for construction machinery having long and heavy booms, such as cranes, in particular mobile cranes, is characterized in that a monitor system is provided, which monitors parameters that may change in case of an undesired lowering of the boom or of boom sections in a non-operating condition, and triggers an optical and/acoustic and/or wireless alarm system if the parameters change.




hi

Operation pattern switching device

To improve operability of a switching operation and locking operation of an operation pattern switching valve for switching the operation pattern of controlling devices for actuator control valves. An operation pattern switching device has a rotating operation member that rotates around a shaft center of a rotating support shaft, and thereby performs a switching operation of the operation pattern switching valve; and an operation lever that is provided rotatably integrally with the rotating operation member and performs a rotating operation of the rotating operation member. The rotating support shaft is, at each pattern switching position of the operation pattern switching valve, in a circumferential direction, provided with a plurality of lock engagement parts each with which the operation lever engages. The operation lever moves in a direction orthogonal to the shaft center of the rotating support shaft, and be thereby made engageable/removable with/from each of the lock engagement parts.




hi

Valve for lab-on-a-chip systems, method for actuating and for producing valve

A substrate of a lab-on-a-chip system has two adjacent recesses, one serving as a flow channel and the other one being filled with an elastomer compound. In a first state, the elastomer compound and the substrate delimit the flow channel in a section. In a second state, the elastomer compound takes up the space in the recess in the substrate along a cross-section of the flow channel, thereby completely closing the flow channel. The substrate and the elastomer compound may be produced by injection molding techniques.




hi

Switching valve

A switching valve contains a sleeve member, a plug member, and a damping spring. The sleeve member includes a watering segment, a spraying segment, a peripheral fence, a side fence, a channel, a first watering chamber, and a second watering chamber. The peripheral fence has a first valve seat, a second valve seat, and at least one set of inlet. The first valve seat has a conical first closing face and a plurality of stop blocks. The second valve seat has a conical second closing face. The plug member includes a first sealing portion, a second sealing portion, and guiding ribs. The first sealing portion has a first ring, and the second sealing portion has a second ring. Each guiding rib has a guide face, and between any two adjacent guiding ribs is defined a slot. The damping spring is mounted between the side fence and the plug member.




hi

High pressure relief valve spring assembly

In one featured embodiment, a spring assembly for a valve comprises a spring, a spring seat including a cup-shaped portion for seating one end of the spring, and a ball received within a recess formed within the cup-shaped portion of the spring seat. The ball is defined by a ball diameter. A disc prevents the ball from contacting a piston. The disc is defined by an outer diameter and includes a center opening defined by an inner diameter. A ratio of the inner diameter to the ball diameter is between 0.60 and 0.65.




hi

Vehicle mountable arm for valve operating machine

A valve operating device includes a mounting for attachment to a vehicle and an elongate arm, the free end of which is only moveable across the underlying ground. The joints of the arm pivot around vertical axes and the arm is locked into a desired orientation by a brake at each joint. A valve turning machine is at the free end of the arm. The brakes are engaged and released by a control on the valve turning machine.




hi

Plastic composite spring for vehicle suspension and apparatus and method for manufacturing the same

Disclosed is a corrugated plastic composite spring for a vehicle suspension and an apparatus and method for manufacturing the same. The apparatus includes a corrugated extrusion part, a braiding part, and a pultrusion part. The corrugated extrusion part forms a preform having a hollow corrugated structure. The braiding part weaves a three-dimensional woven fabric on the preform. The pultrusion part impregnates the three-dimensional woven fabric with thermosetting resin.




hi

Colored yarn object, process for producing the same, and fishing line

A yarn object which, even though made of ultra-high-molecular-weight polyethylene, can be satisfactorily prevented from color fading caused by contact with other objects or the like, can be produced easily at low cast, and can maintain high strength. The yarn object is colored with a colorant. The yarn object includes a core yarn 2 colored with a predetermined colorant and an outer-layer yarn 3 disposed on the periphery of the core yarn. The outer-layer yarn 3 is disposed in such a manner that the core yarn 2 is prevented from contacting with other objects. The outer-layer yarn 3 includes a transparent filament and a space 4 is formed between the outer-layer yarns 3. The color applied to the core yarn 2 is externally visible through the transparent outer-layer yarn 3 and the space therebetween 4.




hi

Closed tubular fibrous architecture and manufacturing method

A tubular fibrous architecture is disclosed. According to one aspect, the tubular fibrous architecture includes a closed tubular part in at least one of its ends or bottom. The closed tubular part includes an architecture in which a textile material, such as a thread, roving, ribbon or bundle of threads, is continuously output from the bottom. Each textile material that is output from the bottom is continuously wound about the tubular part. All of the textile materials at the junction between the bottom and the remainder of the tubular part are continuous and there is a continuous geometric transition between the bottom architecture and the architecture of the remainder of the tubular part such that the textile materials in the tubular part cross over. A method of making such a tubular fibrous architecture is also disclosed.




hi

Machine for alternating tubular and flat braid sections and method of using the machine

A braider comprises a plurality of horngears. The horngears can be arranged for forming at least two closed paths for braiding. Each horngear has a driving gear and a hornplate. Each horngear can be selectably operated in a first mode, to rotate with the driving gear, and in a second mode, in which the driving gear rotates, but the hornplate does not. Bobbin carriers are positioned on some of the horngears. A track is configurable in: a first flat braiding mode with the carriers arranged on the horngears, so that there is one or more separate closed path for forming a first flat braid configuration; and a second flat braiding mode for forming a second flat braid configuration different from the first flat braid configuration. A switch is provided for changing a configuration of the track between the first and second flat braiding modes.




hi

Method for operating a machine for plaiting reinforcing fibers

The invention relates to a method for the operation of a plaiting machine (1) that comprises a ring (2) carrying fiber spools (3) for plaiting layers (16, 22) of fibers (3) about a mandrel (13, 17) carried by a carrier (12) capable of movement along the axis (AX) of the ring (2), wherein after plaiting the fibers (3) are cut in order to withdraw the mandrel (13, 17), and that comprises: a hub (5, 6; 18) carried by the carrier (12) and secured to the mandrel (13; 17) while being mounted upstream therefrom; an operation for tightening the fibers (3) around the hub (5, 6; IS) with a link (11, 14) surrounding said fibers (3) after the mandrel (13, 17) has passed through the ring (2); and in which the fibers (3) are cut between the mandrel (13, 17) and the hub (5, 6; 18) before withdrawing the mandrel (13, 17).




hi

Energy-absorbing textile structure, in particular for use in vehicle construction and method for producing said structure

Energy-absorbing textile structure, in particular for use in vehicle construction, which has high-tensile yarns for absorbing force, is formed by a braided fabric (2) with standing ends (3) in the force input direction and in that the textile structure has at least one region (4) with local modification of the fiber structure (2, 3).




hi

System and method for vehicle communication, vehicle control, and/or route inspection

In a system and method for communicating data in a locomotive consist or other vehicle consist (comprising at least first and second linked vehicles), a first electronic component in the first vehicle of the vehicle consist is monitored to determine if the component is in (or enters) a failure state. In the failure state, the first electronic component is unable to perform a designated function. Upon determining the failure state, data is transmitted from the first vehicle to a second electronic component on the second vehicle, over a communication channel linking the first vehicle and the second vehicle. The second electronic component is operated based on the transmitted data, with the second electronic component performing the designated function that the first electronic component is unable to perform.




hi

Vehicle coupling fault detecting system

A vehicle coupling fault detecting system is disclosed. The system may include first and second selectively-pressurized fluid conduits containing first and second communication cables that are communicatively coupled when the first and second fluid conduits are connected together. A pressure sensor may detect a pressure within the fluid conduits when the conduits are connected together, and communicate a signal indicative of the pressure through at least one of the first and second communication cables. A controller may receive the signal and determine from the signal whether there is a fault in the connection between the first and second selectively-pressurized fluid conduits.




hi

Graduated vehicle braking

A method for automatically controlling braking of a powered system or consist includes automatically applying a first degree of braking to a consist during a first time period when a powered unit of the consist is being locally or remotely controlled via an onboard control system in an absence of control inputs from an onboard operator. The first degree of braking is based on a first deceleration force selected so that the consist is slowed in a manner effective to limit a peak deceleration rate experienced by the consist sufficient for reducing unintended movement of at least one of one or more riders or cargo onboard the consist. The method also includes automatically applying a second degree of braking to the consist during a second time period following the first time period.




hi

Method and apparatus for positioning a rail vehicle or rail vehicle consist

A tower control system, under an indexing mode of operation, receives a first signal from rail yard equipment. In response to the first signal, the tower control system establishes a positioning mode of operation. Under the positioning mode of operation, and in response to actuation of an interface of the tower control system, the tower control system sends a second signal to a lead powered rail vehicle of a consist. The second signal includes a first command to adjust a throttle setting of the lead powered rail vehicle, along with a second command to idle a throttle of any remote powered rail vehicle of the consist.




hi

Method for improving operation density of rail vehicles and preventing head-on collision and rear-ending collision

The present invention provides a method for improving operation density of rail vehicles and for preventing head-on collision and rear-ending collision. Said method divides a rail line into equidistant electronic zones, the length of a zone being greater than the shortest safe distance between two running vehicles. Said method installs a locomotive passing detection alarm device in each zone, when a locomotive travels at high speed on the rail, the locomotive passing detection alarm device corresponding to the zone occupied by the locomotive itself will simultaneously access adjacent front and back zones, and determine whether the two adjacent zones are simultaneously occupied by locomotives. If the two adjacent. zones are simultaneously occupied by locomotives, the locomotive passing alarm device will send an alarm signal to the locomotives to warn or otherwise take measures. The aforesaid method can avoid locomotive head-on collision and rear-end collision and increase transportation density according to the vehicle speed and distance at the same time, thus improving the transportation efficiency.




hi

System and method for determining a slack condition of a vehicle system

A method for determining a slack condition of a vehicle system includes determining when each of first and second vehicles reaches a designated location along a route. The method also includes communicating a response message from the second vehicle to the first vehicle responsive to the second vehicle reaching the designated location, calculating a separation distance between the first vehicle and the second vehicle based on a time delay between a first time when the first vehicle reached the designated location and a second time when the second vehicle reached the designated location, and determining a slack condition of the vehicle system based on the separation distance. The slack condition is representative of an amount of slack in the vehicle system between the first and second vehicles.




hi

System and method for determining dynamically changing distributions of vehicles in a vehicle system

A system and method for determining dynamically changing distributions of vehicles in a vehicle system are disclosed. The system and method determine handling parameters of the vehicle system. The handling parameters are determined for different distributions of the vehicles among different groups at different potential change points along a route. The system and method also determine whether to change the distributions at potential change points based on the handling parameters. Based on determining that the distributions are to change, a selected sequence of changes to the distributions is determined at one or more of the potential change points along the route. Change indices are generated based on the selected sequence. The change indices designate times and/or the one or more potential change points at which the distributions changes. The vehicles included in a common group have common designated operational settings while the vehicles are in the common group.




hi

Replication of patterned thin-film structures for use in plasmonics and metamaterials

The present invention provides templating methods for replicating patterned metal films from a template substrate such as for use in plasmonic devices and metamaterials. Advantageously, the template substrate is reusable and can provide plural copies of the structure of the template substrate. Because high-quality substrates that are inherently smooth and flat are available, patterned metal films in accordance with the present invention can advantageously provide surfaces that replicate the surface characteristics of the template substrate both in the patterned regions and in the unpatterned regions.




hi

Thixotropic concrete forming system

The present invention discloses a method and a forming system that reduces the hydrostatic pressure caused by casting freshly mixed concrete or other cementicious material into vertical forms. Reducing the hydrostatic pressure in forms enables relatively weak materials to be used as form boards and minimizes the amount of bracing necessary to support the form boards—both of which lead to lower construction costs. The method uses the highly thixotropic properties of no-slump or low-slump concrete which enable the concrete to be quickly changed from a semi-solid state to a liquid and back to a semi-solid state numerous times before it hardens and without affecting the concrete's quality. Since hydrostatic pressure is only present when a liquid state exists, minimizing the amount of liquid concrete in vertical forms will also minimize the hydrostatic pressure present.




hi

Device for regulating deformations of the bed of a geometrically aerodynamic mold and molding method with this device

The invention describes a regulating device that adapts to the aerodynamic profile of a mold bed made of composite material offsetting the geometrical deviations occurring in the mold bed. The device comprises some stiffening ribs (20) supported on a surface of the bed (10) of the mold and is equipped with actuators (21) that modify the curvature of the bed (10) of the mold.




hi

Vibrating machine for producing molded bodies by means of compacting

A vibrating machine for producing a molded body by compacting a granular raw mixture includes an oscillatable vibrating table configured to receive a molding box. A clamping device is produced by at least two clamping closures, each including: a pivot bracket having a lower end being pivotally mounted on the vibrating table and an upper end including a cranking which is directed outward; a double-acting hydraulic pivot cylinder pivotally mounted on the vibrating table; a two-armed rocker arm pivotally connected to the pivot bracket and including an inner part that cooperates with the molding box and an outer part that cooperates with the hydraulic pivot cylinder; and a compression spring disposed between the cranking and the outer part of the rocker arm such that the rocker arm releases from a position closing the respective clamping closure upon a pressure in the hydraulic pivot cylinder being relieved.




hi

Bucket feeder for a ball projecting machine

A ball feeder assembly for a ball projecting machine includes a stand, an upper frame, a ball delivery element coupled to the frame, and a ball feeder member coupled to the ball delivery element. The assembly is configured for supporting a cylindrical ball bucket. The frame is movably coupled to the stand between at least a first position in which the frame is configured to support the bucket in a position with a top end at a higher elevation than a bottom end such that the longitudinal axis of the bucket is at angle within 0 and 80 degrees from a vertical plane, and a second position in which the frame is configured to support the bucket in a downward position with the bottom end at a higher elevation than the upper end such that the axis is within 5 to 90 degrees with respect to a horizontal plane.




hi

Ball throwing machine and method

A ball throwing machine can include a hopper for receiving one or more balls and a ball delivery device. The ball delivery device can be used to throw or pitch a ball from the hopper to a user of the machine. The ball delivery device can include wheels to impart speed to the ball and a direction system to control the projection angle of the ball. The direction system can control at least one of the up and down angle and the side to side angle of the ball as it is thrown, among possibly other throwing parameters. A controller may be provided for controlling operation of the ball throwing machine.




hi

Pressurized gas propelled line launching device

A line launching device is provided with a tube for receiving a projectile and including an externally threaded bottom and a cap put on the tube; a cylinder including a first externally threaded extension at one end, an internally threaded cup secured to the first externally threaded extension, a second externally threaded extension at an other end, and an internally threaded ring securing to both the second externally threaded extension and the externally threaded bottom; a hollow anchor fastened in one end of the tube; a hollow fin assembly in a bottom of the projectile and including slits on a housing, pivotal fins, and an internal biasing member biasing against the fins; and a rope having one end attached to the nose and an other end fastened in the anchor. The fins project out of the slits after the projectile being propelled out of the tube by pressurized gas.




hi

Football throwing machine

A football passing machine is configured to eject a prolate-spheroid-shaped football. The football passing machine includes a frame member, an adjustable launch surface mounted to the frame member, a ball magazine positioned above the adjustable launch surface that is configured to contain a plurality of footballs, a moveable escapement arm that is configured to successively dispense footballs that are contained within the ball magazine onto the launch surface, a moveable ball carriage configured to move a football between a first point on the launch surface that is located directly beneath the ball magazine and a second point on the launch surface that is adjacent a football launch mechanism that is configured to eject a football from the football passing machine. An orientation of the adjustable launch surface is configured to be adjusted to change a launch angle of a football while the frame member and the ball magazine remain stationary.




hi

Toy launcher for launching projectiles and methods thereof

According to an exemplary embodiment, a toy dart launcher comprises a housing defining an interior recess and a launch assembly. The launch assembly is at least partially disposed within the interior recess and comprises: a projectile feed, a slidable frame, and a launch mechanism. The projectile feed is rotatably disposed within the interior recess and comprises a plurality of receiving chambers each adapted to receive one or more projectiles. The slidable frame has at least one engagement finger rotatably disposed thereon, and is movable with respect to the projectile feed so that the at least one engagement finger can engage and move at least one projectile through at least one receiving chamber. The launch mechanism is disposed rearwardly of the projectile feed and is configured to create a pressure differential about the at least one projectile so that the at least one projectile can be launched from the housing.




hi

Electromagnetic rail launchers and associated projectile-launching method

The present invention relates to the field of electromagnetic rail launchers, and particularly to a rail launcher and an associated projectile-launching process including at least two longitudinal rails connected to a power supply circuit of these two rails, these rails being at least partially surrounded by superconductor elements able to generate a magnetic induction of a direction perpendicular to the plane formed by the rails and located therebetween during the flow of a current therein, launcher wherein the supply circuit includes the superconductor elements.




hi

Hinged arm safety mechanism for foam dart launcher

A dart launcher comprises a housing, a safety arm, and a trigger. The housing includes a launching section configured to receive a dart having a minimum threshold length. The safety arm is movably attached to the housing and extends at least partially across the launching section. The safety arm is positioned so that the dart having the minimum threshold length engages at least a portion of the safety arm upon insertion into the launching section. The trigger is movable with respect to the housing and is operable to cause the dart having the minimum threshold length to launch from the launching section.




hi

Water balloon launching cannon and associated methods

A water balloon launching cannon is disclosed. The water balloon launching cannon includes a slotted barrel for rapid and easy loading and uses compressed air as the propelling force for firing the water balloon. Namely, the water balloon launching cannon includes an I-beam support upon which is mounted an air delivery system and the slotted barrel. For ease of disassembly, (1) the air delivery system includes quick-release mechanisms and (2) a plunger assembly inside the barrel is held by an easily removable pin. Further, a method of operating and a method using the water balloon launching cannon are disclosed.




hi

High-precision revolving center

The invention relates to a high-precision revolving center (10) for machine tools. Prestressed bearings 40 and 45 are brought into abutment on the one hand against internal 33 and external 25 cylindrical surfaces whose deviation, at any point on the surface, with respect to the theoretical surfaces centered on the axis, is less than 1 μm, and on the other hand against reference surfaces 26 and 34 perpendicular to the axis. Threaded elements 50, 55 enable the bearings 40, 45 to be stressed. Once the center 10 has been assembled and the bearings stressed, the revolving center is mounted on a grinder in order to give a precision finish to the tip 90, the concentricity reference surface 91 and the perpendicularity reference surface 92.




hi

Carving blank and mandrel for mounting same in a carving machine

An improved carving blank and mandrel for mounting the blank in a carving machine enables accurate carving of prosthetic and orthotic positive shapes. The blanks are simple to mount and dismount and means are provided enabling a repeatable mounting position in one angular orientation only to be achieved. The blanks are firmly fixed in place on the mandrel during the carving operation, and they are simple and inexpensive to manufacture thus reducing manufacturing costs while achieving high shape accuracy.




hi

Workpiece retaining means for carving machine

A machine for carving workpieces having substantially similar configurations generally including a base member, means disposed on the base member for retaining at least one workpiece thereon, means for rotationally indexing the workpiece disposed on the retaining means, about an axis, a working tool operatively engageable with a workpiece disposed between the retaining means, supported on the base member and displaceable along x, y and z axes pursuant to a programmed sequence of motions coordinated with the workpiece indexing means for shaping the workpiece in a selected configuration, and at least one means for successively positioning a plurality of similarly configured workpieces in a selected orientation including a support member, a jointed linkage supported on the base member, supporting the support member and manipulatable to position the support member into a support relationship with an initial one of the workpieces disposed in the selected orientation and held by the retaining means, means for fixing the interrelationship of the components of the linkage when the support member is positioned in the support relationship with the initial workpiece to place the positioning means in an operative condition and means for displacing the positioning means when in the operative condition between an operative position for supporting a sequential one of the workpieces in the selected orientation and an inoperative position.




hi

Machine for shaping curved molding

A machine for shaping curved wooden molding includes an arbor mounted on a housing for receiving a cylindrical workpiece formed from four lengths of curved molding blanks, a drive for rotating the arbor, and a pivot arm carrying a blade at the top end thereof for movement towards and away from a workpiece mounted on the arbor, whereby, when the top end of the pivot arm is rotated towards the arbor, the blade engages the rapidly rotating workpiece to shape the latter.




hi

Tailstock assembly mountable on a machine

A tailstock assembly mountable on a machine tool and cooperable with a headstock assembly for retaining a workpiece inbetween.




hi

Lathe cutter and chip fan

A lathe cutter and chip fan is described in which an annular frame includes a rotary portion that is driven to rotate about an axis. The rotary portion is annular, forming a workpiece receiving opening. A cutter is mounted on the rotary portion and projects into the workpiece receiving opening. The cutter rotates with the rotary portion to cut material from a workpiece positioned within the workpiece opening. A housing forms a compartment about the rotary portion and cutter, with a central housing opening substantially aligned with the workpiece receiving opening. A chip discharge openly communicates with the compartment and is situated substantially tangentially with respect to a rotational path of the cutter. A plurality of impellers are mounted to the rotary portion for rotation therewith. The impellers are configured to produce an airflow through the housing with intake air entering through the central housing opening and discharging through the chip discharge, whereby chips of workpiece material removed from the workpiece by the cutter may be discharged in the airflow through the chip discharge.




hi

Cutting tool and method of use for catching chips and debris during turning operations

A cutting tool for cutting a work piece and catching debris during turning operations is described herein. The cutting tool comprises a tubular cutting member having first and second ends, the first end having a sharpened edge, and a debris receiving means connected to the second end. The tubular cutting member may have a number of different cross-sections providing a number of different cutting tool configurations for use in turning operations. The debris receiving means may further include a flexible hose having a first hose end and a second hose end, wherein the first hose end is connected to the second end of said tubular cutting member. The hose may be connected to a vacuum source to more effectively collect debris generated during turning operations. The tubular cutting member could be made in a range of sizes from one quarter inch to two inches in diameter, with a nominal tube length of from three inches to twenty inches, or even larger where needed. Both ends of the tubular cutting member could be sharpened, and reversed in the holder when one end is dull.




hi

Multi-purpose machining apparatus

A precision multi-purpose machining apparatus for facilitating lathing, milling, drilling, sawing or routing operations typically using a rotary-type cutting tool. In a preferred embodiment the multi-purpose machining apparatus of this invention is characterized by an elongated support frame and a cutting tool mount cradle which is adjustably mounted on the support frame for receiving a cutting tool, such as an electric-powered DREMEL (trademark) rotary cutting tool. The support frame is capable of resting in a horizontal position, in which the cutting tool can be fitted with a cutting tool bit and the frame fitted with alternative workstock mounting attachments, to facilitate various lathing operations on a wooden or aluminum workstock. Alternatively, a saw table and saw blade can be removably mounted on the horizontal support frame and the cutting tool becomes a saw motor, the rotating shaft of which is connected to the saw blade by means of a drive belt, to facilitate various sawing operations. In another application, the frame can be disposed in a vertical configuration, in which a rotary table is removably mounted on the support frame and the cutting tool fitted with a milling blade or drill bit to facilitate milling and drilling operations, respectively. Alternatively, a router table can be removably mounted on the vertical support frame or on the rotary table, and a router bit mounted in the cutting tool to facilitate router operations.




hi

Visual system for programming of simultaneous and synchronous machining operations on lathes

A system and method allows visual programming of simultaneous and synchronous machining operations on multi-axis lathes. The system and method accounts for different combinations of simultaneous and synchronized lathe operations on the spindles which can utilize multiple tools. A graphic synchronization icon is assigned to each mode that preferably represents the lathe operation. Appropriate synchronous operations are grouped together in synchronization groups. The system and method are universal since a postprocessor processes the synchronization modes and synchronization groups, and translates them for use with computer programs understood by a particular CNC lathe.




hi

Spinning reel for fishing

An outer-side holding member (5) of a braking device (A) is fitted to the inner side of a large-diameter recessed portion (2g) in a rear portion of the inner side of a fishing-line winding barrel portion (2h) of a spool (2) in such a manner as to be prevented from rotating, and is prevented from coming off. An adjusting member 8 is provided at a distal end portion of the spool shaft for adjusting braking force of the braking device by relatively displacing an outer-side holding member (5) and the inner-side holding member (7) of the braking device in an axial direction.




hi

Coaxial and concentric cutting machine and a method for use thereof

A concentric coaxial cutting machine which cuts cylinders, cylindroids or cones using a chain saw from a single larger object such as a wood tree trunk, a block of ice or a block of plastic. An embodiment of the invention comprises a transverse support member having directly or indirectly mounted thereon; a headstock member including; a headstock spindle member mounted to said headstock member including; a drive spindle rotationally mounted to said headstock spindle member and adapted to rotationally retain one end of an object to be centrically cut; a tailstock member including; a tailstock spindle member mounted to said tailstock member including; a tailstock spindle rotationally mounted to said tailstock spindle member and adapted to retain an opposite end of the object; a drive assembly in rotational communication with the drive spindle and adapted to rotate said drive spindle around a common axis with said tailstock spindle; and, a first chain saw variably aligned at an angle to said common axis and adapted to concentrically cut the object from at least the opposite end.




hi

Vehicle

Described herein are devices and methods for controlling inclination in a vehicle. In certain aspects, inclination of the vehicle can be controlled with an inclination control processing section that includes a first control value limiting processing section which calculates a moving amount of the centroid, calculates a maximum angular acceleration, and limits a variation of the control value for inclination control on the basis of the maximum angular acceleration.