nan

Methods of producing nanoparticle reinforced metal matrix nanocomposites from master nanocomposites

Methods of forming metal matrix nanocomposites are provided. The methods include the steps of introducing a master metal matrix nanocomposite into a molten metal at a temperature above the melting temperature of the master metal matrix nanocomposite, allowing at least a portion of the master metal matrix nanocomposite to mix with the molten metal and, then, solidifying the molten metal to provide a second metal matrix nanocomposite.




nan

Method for making metal-based nano-composite material

A method for making a metal-based nano-composite material is disclosed. In the method, a semi-solid state metal-based material is provided. The semi-solid state metal-based material is stirred and nano-sized reinforcements are added into the semi-solid state metal-based material to obtain a semi-solid state mixture. The semi-solid state mixture is heated to a temperature above a liquidus temperature of the metal-based material, to achieve a liquid-metal-nano-sized reinforcement mixture. The liquid-metal-nano-sized reinforcement mixture is ultrasonically processed at a temperature above the liquidus temperature by conducting ultrasonic vibrations to the liquid-metal-nano-sized reinforcement mixture along different directions at the same time.




nan

Methods of manufacturing high aspect ratio silver nanowires

A process for manufacturing high aspect ratio silver nanowires is provided, wherein the recovered silver nanowires exhibit an average diameter of 25 to 80 nm and an average length of 10 to 100 μm; and, wherein the total glycol concentration is




nan

Nanowire preparation methods, compositions, and articles

Nanomaterial preparation methods, compositions, and articles are disclosed and claimed. Such methods can provide nanomaterials with improved morphologies and reduced nitric oxide co-production relative to previous methods. Such materials are useful in electronic applications.




nan

Preparation method of nanocrystalline titanium alloy at low strain

Provided is a method of preparing a nanocrystalline titanium alloy at low strain to have better strength. The present invention is characterized in that an initial microstructure is induced as martensites having a fine layered structure, and then a nanocrystalline titanium alloy is prepared at low strain by optimizing process variables through observation of the effects of strain, strain rate, and deformation temperature on the changes in the microstructure.




nan

Popup displays for financial transaction cards

Foldable financial transaction card displays that include at least one popup member, methods of making such displays, and methods of promoting such displays. Some of the displays include folding members that are unitary with the popup members.




nan

Apparatus for removing a contaminant from a solvent separation process

The invention is a process and apparatus for removing a contaminant from an aromatic selective solvent. A feed stream comprising an aromatic hydrocarbon and a non-aromatic hydrocarbon is contacted with the aromatic selective solvent in an extractive distillation zone to produce a raffinate stream comprising the non-aromatic hydrocarbon, and a rich solvent stream comprising the aromatic hydrocarbon and the solvent. The rich solvent stream is separated in a second distillation zone to produce an extract stream comprising the aromatic hydrocarbon, and a lean solvent stream comprising the contaminant and the aromatic selective solvent. At least a portion of the lean solvent stream is washed with a non-aromatic hydrocarbon to produce a clean solvent stream, at least a portion of which is passed to at least one of the extractive distillation zone and the second distillation zone.




nan

Hydrocarbon resource processing apparatus including a load resonance tracking circuit and related methods

A device for processing a hydrocarbon resource may include a hydrocarbon processing container configured to receive the hydrocarbon resource therein and having a pair of opposing ends with an enlarged width medial portion therebetween. The device may also a spirally wound electrical conductor surrounding the hydrocarbon processing container, and a radio frequency (RF) circuit coupled to the spirally wound electrical conductor and configured to supply RF power to the hydrocarbon resource while tracking a load resonance of the RF circuit. The RF circuit may be configured to generate magnetic fields within the hydrocarbon processing container parallel with an axis thereof.




nan

Method and apparatus for excitation of resonances in molecules

A method is described to excite molecules at their natural resonance frequencies with sufficient energy to break or form chemical bonds using electromagnetic radiation in the radio frequency (RF) and microwave frequency range. Liquid, solid, or gaseous materials are prepared and injected into a resonant structure where they are bombarded with electromagnetic energy in the RF or microwave range at resonant frequencies of the molecules of the materials. Alternatively, electromagnetic energy tuned to dielectric particles prepared from the materials may also be supplied to further enhance the reaction.




nan

Novel method for preparing pH dependent Ultra Small Polymeric Nanoparticles for topical and/or Transdermal delivery

The invention provides a new method for preparing ultra-small polymeric-lipidic delivery nanoparticles (USDNs) that were synthesized by a nanoprecipitation method followed by a layer-by-layer nanodeposition. The USDNs particle size can be controlled between 5-25 mn and provides loading capacities of 22.12% to 72.08%. Moreover, the USDNs platform provides pH controlled drug release, within a terminal release ratio of 68% at pH 5.0 and almost no release to pH of 7.5. Furthermore, based on their small sizes (5-25 nm) and unique composition, the USDNs penetrates the skin strata efficiently, release the payload at the target site as topical or transdermal treatment of a variety of skin disorders. Additionally the USDNs system can be used to treat and diagnoses other crucial diseases (Cancer, Alzheimer, etc) can be combined with various micro-needles or needles free array technologies for special application.




nan

RECOMBINANT THRAUSTOCHYTRIDS THAT GROW ON SUCROSE, AND COMPOSITIONS, METHODS OF MAKING, AND USES THEREOF

The present invention is directed to recombinant thraustochytrids that grow on sucrose and cell cultures comprising the recombinant thraustochytrids as well as methods of producing cell cultures, biomasses, microbial oils, compositions, and biofuels using the recombinant thraustochytrids.




nan

Nano-leucite for slow release nitrogen fertilizer and green environment

To compete with the increasing global food demand, it is necessary to increase the food production. Fertilizers which are in practice now a days has major disadvantage that 50% of nutrient contents loss due to leaching and also leads to ground water contamination. Slow release nitrogenous fertilizers are good in this regard in that they have minimum nutrient loss due to leaching. Potassium aluminum silicate (Leucite) nanoparticles occluded by calcium ammonium nitrates are slow release fertilizers and are synthesized by hydrothermal method. Its application as slow released nitrates fertilizers was determined by observing nitrate release for 16 days.




nan

Composition comprising oligogalacturonans and polycationic saccharides

A ‘bioactive’ composition that has one or more oligogalacturonans ((1→4)-α-D-galacturonan) or any other oligosaccharides (oligoguluronans) that may present an ‘egg box’ conformation, this conformation being further stabilized by one or more polycationic saccharide(s), preferably either a chitosan oligosaccharide or a chitosan polysaccharide. A method prepares this composition and it is used, in medical, pharmaceutical, agricultural, nutraceutical, food, feed, textile, cosmetic, industrial and/or environmental applications.




nan

SYSTEM AND METHOD FOR IMPROVED HEALTH MANAGEMENT AND MAINTENANCE DECISION SUPPORT

A method of health management of a monitored system includes collecting component condition indicator data used to calculate a plurality of component health indicators. Component fault severity and potential failure modes are determined utilizing the component condition indicator data. The potential failure modes are ranked in order of likelihood to isolate the failure mode. A system of health management for monitored apparatus includes a fault severity module to derive a plurality of component health indicators from collected component condition indicator data, the plurality of component health indicators indicative of fault severity of a plurality of components. A fault isolation module separately derives a ranked listing of potential fault/failure modes utilizing the component condition indicator data. The system further includes a communication portion to which the plurality of component health indicators and the ranked listing of fault/failure modes are transmitted for review and/or action by cognizant personnel.




nan

Production of conductive nanodiamond by dynamic synthesis approaches

In certain implementations, a method of manufacturing electrically conductive nanodiamond particles involves providing at least one type of carbon-containing explosive material and at least one type of non-explosive material; wherein the non-explosive material contains at least one or more than one element or species other than nitrogen that serve as a nanodiamond dopant; mixing the carbon containing explosive material with the non-explosive material; detonating the mixture under conditions of negative oxygen balance in the presence of a cooling medium; purifying the product of detonation from incombustible impurities; and carrying out additional processing for activation or enhancement of electrical conductance. This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract.




nan

Carbon nanotubes containing confined copper azide

The invention concerns copper azide containing carbon nanotubes. The invention also concerns methods of producing such nanotubes by placing CuO nanoparticles within carbon nanotubes to produce CuO-containing carbon nanotubes, contacting CuO-containing carbon nanotubes with hydrogen to produce reduced nanotubes; and contacting the reduced nanotubes with hydrazoic acid to produce copper azide containing carbon nanotubes.




nan

Apparatus for growing carbon nanotube forests, and generating nanotube structures therefrom, and method

The present invention provides apparatus and methods for growing fullerene nanotube forests, and forming nanotube films, threads and composite structures therefrom. In some embodiments, an interior-flow substrate includes a porous surface and one or more interior passages that provide reactant gas to an interior portion of a densely packed nanotube forest as it is growing. In some embodiments, a continuous-growth furnace is provided that includes an access port for removing nanotube forests without cooling the furnace substantially. In other embodiments, a nanotube film can be pulled from the nanotube forest without removing the forest from the furnace. A nanotube film loom is described. An apparatus for building layers of nanotube films on a continuous web is described.




nan

LUMINANCE CONTROLLER AND ORGANIC LIGHT EMITTING DISPLAY DEVICE HAVING THE SAME

A luminance controller according to example embodiments includes a gamma set selector to select a reference gamma set from among first through N-th gamma sets respectively corresponding to first through N-th reference luminances, based on a target luminance of a display panel; an initialization voltage selector to select an initialization voltage corresponding to the reference gamma set, from among first through N-th initialization voltage offsets respectively corresponding to the first through N-th gamma sets; a common voltage selector to select a common voltage corresponding to the reference gamma set from among first through N-th common voltage offsets respectively corresponding to the first through N-th gamma sets; and a determiner to determine a target initialization voltage based on the target luminance and the initialization voltage, and to determine a target common voltage based on the target luminance and the common voltage.




nan

Aircraft turbojet engine nacelle air intake maintenance trolley

This maintenance trolley (17) for the air intake (9) of the nacelle of an aircraft turbojet engine is notable in that it comprises a base (19) and a platform (23) cantilever-mounted on this base (19) and designed to enter said air intake (9) without contact therewith.




nan

REMOTE MAINTENANCE SYSTEM

A remote maintenance system includes a maintenance management apparatus connected to a user apparatus and a communication relay apparatus connected to a remote-controlled apparatus. The maintenance management apparatus transmits, to the communication relay apparatus, message data whose destination is unique identification information of a mobile communication network assigned in advance to the communication relay apparatus. The communication relay apparatus notifies the maintenance management apparatus of an IP address that is dynamically assigned to itself upon reception of the message data. The maintenance management apparatus transmits, to the communication relay apparatus, information on remote operation received from the user apparatus whose destination is the notified IP address. The communication relay apparatus relays, to the remote-controlled apparatus, the information on the remote control received from the maintenance management apparatus.




nan

Process of preparing nanocrystalline powders of an electroactive alloy

There are described powders comprising agglomerated nanocrystals of an electroactive alloy and oxygen. The main component of the alloy can be of nickel, cobalt, iron or mixtures thereof while the alloying element is one or more transition metals such as Mo, W, V, the alloy also including oxygen. Preferably the nanocrystals will be made of an alloy of nickel, molybdenum and oxygen. An electrode which is used by compacting the powders is also disclosed. Also disclosed, is a process for producing the powders by providing particles of nickel, cobalt and iron or oxides thereof with particles of at least one transition metal, (Mo, W, V) or oxides thereof and subjecting the particles to high energy mechanical alloying such as ball milling under conditions which include oxygen and for a sufficient period of time to produce a nanocrystalline alloy. Electrodes produced from these powders have an electrocatalytic activity for the hydrogen evolution which is comparable or higher than the electrodes which are presently used in the electrochemical industry. Moreover, these materials present an excellent chemical, electrochemical and mechanical stability. When use as a cathode the powders are useful in water electrolyzers, in chlor-alkali or the like cells.




nan

Process of using metal-coated nanofibres

The present invention relates to metal coated nano-fibres obtained by a process that includes electrospinning and to the use of said metal coated nano-fibres. The process is characterised in that a polymer nano-fibre with functional groups providing the binding ability to a reducing reagent is prepared by electrospinning at ambient conditions. Then this is contacted with a reducing agent, thereby opening the epoxy ring on the surface of polymer nano-fibre and replacing with the reducing agent and the reducing agent modified film is reacted with metal solution in alkaline media. Finally the electrospun mat is treated with water to open the epoxy rings in the structure and crosslinking the chains to provide integrity.




nan

Cellulose nanofiber, production method of same and cellulose nanofiber dispersion

The cellulose nanofiber production method of the present invention comprises an oxidation treatment step for oxidizing native cellulose in a neutral or acidic reaction solution containing an N-oxyl compound and an oxidizing agent that oxidizes aldehyde groups, and a dispersion step for dispersing the native cellulose in a medium following the oxidation treatment step. According to the production method of the present invention, a cellulose nanofiber is provided that has long fibers and demonstrates high strength.




nan

Carbon nanotube yarn, method and apparatus for making the same

An apparatus for making a carbon nanotube yarn includes a tube and a bobbin. The tube has an opening capable of introducing organic solvent into the tube. The tube further has an inlet and an outlet defined through lateral walls thereof. The inlet is capable of accepting one or more carbon nanotube yarn strings and the outlet is capable of accepting the carbon nanotube yarn. The bobbin is positioned around the tube for collecting the carbon nanotube yarn as it comes out of the outlet.




nan

Maintenance Decision Support System and Method for Vehicular and Roadside Applications

A method and system are provided in which maintenance vehicles collect information from sensors and operators, forward the collected information to a server, and, is response, receive maps and operator instructions.




nan

COMBUSTION RESONANCE SUPPRESSION

Methods, devices, and systems for combustion resonance suppression are described herein. One device includes a memory, and a processor configured to execute executable instructions stored in the memory to receive a number of operating conditions of a burner, determine whether resonance characteristics are present in a combustion chamber housing the burner based on the number of operating conditions of the burner, and modify at least one of an air supply and a fuel supply to the burner upon determining resonance characteristics are present in the combustion chamber.




nan

PREDICTION OF COMPONENT MAINTENANCE

One or more processors determine wear for a robotic device. The one or more processors divide a direction of travel of a robotic device into zones. Each zone has an associated counter that counts how many times the robotic device has entered a given zone. The one or more processors update a count for a zone in response to the robotic device entering that zone. The one or more processors determine a level of wear for a component associated with the robotic device. The level of wear is based, at least in part, on a total of counts for the zones.




nan

SYSTEMS AND METHODS FOR GROWTH OF NANOSTRUCTURES ON SUBSTRATES, INCLUDING SUBSTRATES COMPRISING FIBERS

Systems and methods for the formation of nanostructures, including carbon-based nanostructures, are generally described. In certain embodiments, substrate configurations and associated methods are described.




nan

Hand for Nanocoated Fabric

A method includes coating a substrate to provide a flame resistant substrate. In an embodiment, the method includes exposing the substrate to a cationic solution to produce a cationic layer deposited on the substrate. The cationic solution comprises cationic materials. The cationic materials comprise a polymer, a colloidal particle, a nanoparticle, a nitrogen-rich molecule, a geopolymer, a carbon-based filler, or any combinations thereof. The method also includes agitating the substrate. The method further includes exposing the cationic layer to an anionic solution to produce an anionic layer deposited on the cationic layer to produce a layer comprising the anionic layer and the cationic layer. The anionic solution comprises a layerable material.




nan

ATOMIC LAYER DEPOSITION OF III-V COMPOUNDS TO FORM V-NAND DEVICES

A method for forming a V-NAND device is disclosed. Specifically, the method involves deposition of at least one of semiconductive material, conductive material, or dielectric material to form a channel for the V-NAND device. In addition, the method may involve a pretreatment step where ALD, CVD, or other cyclical deposition processes may be used to improve adhesion of the material in the channel.




nan

SEMICONDUCTOR DEVICE INCLUDING NANOWIRE TRANSISTORS WITH HYBRID CHANNELS

A semiconductor device is provided that includes an n-type field effect transistor including a plurality of vertically stacked silicon-containing nanowires located in one region of a semiconductor substrate, and a p-type field effect transistor including a plurality of vertically stacked silicon germanium alloy nanowires located in another region of a semiconductor substrate. Each vertically stacked silicon-containing nanowire of the n-type field effect transistor has a different shape than the shape of each vertically stacked silicon germanium alloy nanowire of the p-type field effect transistor.




nan

CARBON NANOSTRUCTURE DEVICE FABRICATION UTILIZING PROTECT LAYERS

Hall effect devices and field effect transistors are formed incorporating a carbon-based nanostructure layer such as carbon nanotubes and/or graphene with a sacrificial metal layer formed there over to protect the carbon-based nanostructure layer during processing.




nan

Nano-fabricated structured diamond abrasive article

The present invention describes a microfabricated or nanofabricated structured diamond abrasive with a high surface density array of geometrical protrusions of pyramidal, truncated pyramidal or other shape, of designed shapes, sizes and placements, which provides for improved conditioning of CMP polishing pads, or other abrasive roles. Three methods of fabricating the structured diamond abrasive are described: molding of diamond into an array of grooves of various shapes and sizes etched into Si or another substrate material, with subsequent transferal onto another substrate and removal of the Si; etching of an array of geometrical protrusions into a thick diamond layer, and depositing a thick diamond layer over a substrate pre-patterned (or pre-structured) with an array of geometrical protrusions of designed sizes, shapes and placements on the surface.




nan

Multifunctional tool for automotive air conditioning system testing and maintenance

An automotive tool for servicing air-conditioning (AC) systems equipped with quick-connect adaptors. May be used to service modern refrigerant R132A-compatible systems or retrofitted older systems. The tool is adapted for attaching, detaching, opening, and closing valved T-adaptors used to attach gas lines and pressure gauges such as required for adjusting pressure in AC systems at full operational pressure and temperature, and particularly finds use when the “hi-tap” and “lo-tap” fittings are in hard to reach places around the engine block or chassis. The tool includes swappable extension arms so that length and angular geometry may be adjusted as needed. The tool aids in avoiding injury on dangerously hot surfaces and moving fan blades or belts. Surprisingly, using two such tools, one for the high tap and one for the low tap, a mechanic may work each tool singlehandedly to complete any necessary pressure adjustments.




nan

ADHESION LAYER COMPOSITION, METHOD FOR FORMING FILM BY NANOIMPRINTING, METHODS FOR MANUFACTURING OPTICAL COMPONENT, CIRCUIT BOARD AND ELECTRONIC APPARATUS

In nanoimprinting processes, photo-cured products often separate from the substrate and stick to the mold due to insufficient adhesion between the photo-cured product and the substrate. This causes a defect of pattern separation. An adhesion layer composition used for forming an adhesion layer between a substrate and a photocurable composition includes a compound (A) having at least two functional groups, and a solvent (B). The functional groups include at least one functional group capable of being bound to the substrate, selected from the group consisting of hydroxy, carboxy, thiol, amino, epoxy, and (blocked) isocyanate, and at least one hydrogen donating group as a functional group capable of being bound to the photocurable composition.




nan

ELECTRODE HAVING NANO MESH MULTI-LAYER STRUCTURE, USING SINGLE CRYSTAL COPPER, AND MANUFACTURING METHOD THEREFOR

The present invention relates to an electrode having a multilayer nanomesh structure using single-crystalline copper and a method for manufacturing same, the electrode comprising: a substrate; a single-crystalline copper electrode layer formed on the substrate and having a hive-shaped pattern with a nano-sized line width; and a metal oxide layer formed on the single-crystalline copper electrode layer, this providing an electrode having excellent optical transmittance, low electrical sheet resistance, and excellent mechanical stability. The present invention is technically characterized by an electrode having a multilayer nanomesh structure using single-crystalline copper, the electrode comprising: a substrate; a single-crystalline copper electrode layer formed on the substrate and having a hive-shaped pattern with a nano-sized line width; and a metal oxide layer formed on the single-crystalline copper electrode layer.




nan

CRYOGENIC HEAT TRANSFER BY A NANOPOROUS SURFACE

Various methods and systems are provided for cryogenic heat transfer by nanoporous surfaces. In one embodiment, among others, a system includes a cryogenic fluid in a flow path of the system; and a system component in the flow path that includes a nanoporous surface layer in contact with the cryogenic fluid. In another embodiment, a method includes providing a cryogenic fluid; and initiating chilldown of a cryogenic system by directing the cryogenic fluid across a nanoporous surface layer disposed on a surface of a system component.




nan

Purification of carbon nanotubes using agarose column and density gradient ultracentrifugation

A method of processing bundles of carbon nanotubes (CNTs). Bundles of CNTs are put into a solution and unbundled using sonication and one or more surfactants that break apart and disperse at least some of the bundles into the solution such that it contains individual semiconducting CNTs, individual metallic CNTs, and remaining CNT bundles. The individual CNTs are separated from each other using agarose bead column separation using sodium dodecyl sulfate as a surfactant. Remaining CNT bundles are then separated out by performing density-gradient ultracentrifugation.




nan

Application of carbon nanotubes on agglomerates of ore fines to increase the mechanical strength thereof

An application of carbon nanotubes on agglomerates of ore fines to increase the mechanical strength is provided. A process for the preparation of ore agglomerates having enhanced mechanical strength by the application of the carbon nanotubes is also provided.




nan

ENERGY HARVESTING DEVICE USING ELECTROACTIVE POLYMER NANOCOMPOSITES

An energy harvesting device includes: a first nanoporous electrode and a second nanoporous electrode, each of which is configured to which store electrical charge; a first current collector connected to the first nanoporous electrode and a second current collector connected to the second nanoporous electrode; and an enclosure that contains the first and second nanoporous electrodes and the first and second current collectors and transfers a force applied from the outside to the first nanoporous electrode and the second nanoporous electrode, wherein at least one of the first nanoporous electrode and the second nanoporous electrode comprises an ion conductive polymer.




nan

RESONATOR AND RESONANCE DEVICE

A resonator is provided that suppresses frequency variations with etching without decreasing the strength of vibration arms. The resonator includes a base portion, a first vibration portion extending from the base portion in a first direction and having a first width, and a second vibration portion extending from the base portion in the first direction with a first gap between the first and second vibration portions and having the first width. The first and second vibration portions perform out-of-plane bending vibration with opposite phases at a predetermined frequency. The predetermined frequency varies in accordance with the first width and the first gap. The ratio of the first gap to the first width is within a range that causes an absolute value of rates of variations in the predetermined frequency with respect to variations in the first width and in the first gap to be not more than about 100 ppm.




nan

Triboelectric Nanogenerator for Powering Portable Electronics

A triboelectric generator includes a first contact charging member and a second contact charging member. The first contact charging member includes a first contact layer and a conductive electrode layer. The first contact layer includes a material that has a triboelectric series rating indicating a propensity to gain electrons due to a contacting event. The conductive electrode layer is disposed along the back side of the contact layer. The second contact charging member is spaced apart from and disposed oppositely from the first contact charging member. It includes an electrically conductive material layer that has a triboelectric series rating indicating a propensity to lose electrons when contacted by the first contact layer during the contacting event. The electrically conductive material acts as an electrode. A mechanism maintains a space between the first contact charging member and the second contact charging member except when a force is applied thereto.




nan

RESONANCE DEVICE

A resonance device is provided with a reduced size and also suppresses the occurrence of deformation and breakage during operation. The resonance device includes a lower substrate, an upper substrate that defines a vibration space between the lower substrate and the upper substrate, a protruding portion that is formed on an inner surface of the lower or upper substrates. Moreover, a resonator is disposed in the vibration space and includes a base portion and vibration arms that extend in parallel to one another from the base portion along the inner surface of the lower substrate or the inner surface of the upper substrate and that vibrate in a vertical direction toward the inner surface of the lower substrate or the inner surface of the upper substrate.




nan

RESONANT FREQUENCY TUNABLE ANTENNA

The present invention relates to a resonant frequency tunable antenna, and may provide a resonant frequency tunable antenna which comprises: a first ground part; a power supply part connected in the longitudinal direction of the antenna from the first power supply part; and a second ground part connected in the longitudinal direction of the antenna from the power supply part, wherein the second ground part is a variable ground part, the second ground part and the power supply part are connected by a switch, and the switch is connected to a common terminal which is grounded, so that the second ground part and the power supply part are linked and controlled.




nan

Nanomotor Propulsion

Self-propelling, programmable nanoscopic motors capable of harvesting energy from absorbed photons and undergoing subsequent photoeletrochemical (PEC) reactions are provided. A nanomotor can have a three-dimensional Janus configuration and can sense the direction of a light source. By controlling the zeta potential of different parts of the nanomotor with chemical modifications, the nanomotor can be programmed to show either positive phototaxis or negative phototaxis.




nan

DETERMINING POSITION OF RADIO FREQUENCY COIL IN MAGNETIC RESONANCE IMAGING SYSTEM

A method for determining a position of an RF coil in a magnetic resonance imaging (MRI) system is disclosed. As an example, a center of a field of view (FOV) to be scanned may be adjusted to a magnetic field center of an MRI system, and coordinate values in a coordinate system for shape-characteristic points of the FOV may be determined, where an origin of the coordinate system is located at the magnetic field center of the MRI system. A preset gradient magnetic field may be applied to the FOV, and coil units respectively covering the shape-characteristic points may be determined. An effective region may be obtained by connecting the determined coil units according to the shape of the FOV, and a coil unit located in the effective region may be determined as an effective coil unit for imaging the FOV by the MRI system.




nan

MAGNETIC RESONANCE IMAGING APPARATUS AND RF COIL APPARATUS

According to one embodiment, magnetic resonance imaging apparatus includes a transmission coil, a plurality of reception channels, transmission/reception circuitry, and processing circuitry. The transmission coil transmits an RF wave to a subject. The reception channels receive MR signals generated from the subject. The transmission/reception circuitry controls the transmission coil to change the flip angle of a nucleus contained in the subject and excited by the transmitted RF wave. The processing circuitry determines whether the reception channels include an impaired channel, based on the comparison between the distributions of the signal values of the received MR signals with respect to the changing flip angles among the reception channels.




nan

SYSTEM AND METHOD FOR MAGNETIC RESONANCE IMAGING

A system and method for magnetic resonance imaging is provided. The method includes dividing k-space into a plurality of regions along a dividing direction; scanning an object using a plurality of sampling sequences; acquiring a plurality of groups of data lines; filling the plurality of groups of data lines into the plurality of regions of the k-space; and reconstructing an image based on the filled k-space.




nan

VACUUM-ASSISTED IN-NEEDLE CAPPLICARY ADSORPTION TRAP WITH MULTIWALLED POLYANILINE/CARBON NANOTUBE NANOCOMPOSITE SORBENT

A vacuum-assisted in-needle capillary adsorption trap (VA-INCAT) device for sampling and delivering materials to an analytical device is disclosed. A sorbent is multiwall carbon nanotube/polyaniline (PANI/MWCNT) nanocomposite and is coated within an interior space of the needle between the second end and the side aperture to entrap an analyte within a sample. The VA-INCAT device also includes a vacuum device configured to vacuum the vacuum flask to improve the extraction of the analytes vapors from the sample matrix to the sorbent bed.




nan

LINEAR-RESPONSE NANOCRYSTAL SCINTILLATORS AND METHODS OF USING THE SAME

Systems and devices incorporating radiation detection, and techniques and materials for improved radiation detection are provided that involve a nano-scintillator exhibiting a linear luminescent emission response to stimulating electromagnetic radiation. The nano-scintillator can include at least one nanocrystal comprising a rare earth element, a lanthanide dopant, and a spectator dopant, wherein the nanocrystal exhibits a linear luminescent emission response to stimulating electromagnetic radiation of wavelengths less than 100 nm. As one example, the nanocrystal is [Y2-xO3; Eux, Liy], where x is 0.05 to 0.1 and y is 0.1 to 0.16, and has an average nanoparticle size of 40 to 70 nm. These nanocrystals can be fabricated through a glycine combustion method.