sensor

Method and apparatus for determining linear position using multiple magnetic field sensors

The linear position of an object is estimated using multiple magnetic field sensors and a magnet. The multiple magnetic field sensors are held in fixed relation to one another and in moving relation with respect to the magnet. Readings of the first and second magnetic field sensors and the fixed distance between the first and second magnetic field sensors may be used to estimate the linear position. In some embodiments, an estimated frequency of an approximately sinusoidal field versus position characteristic is also used as part of the estimation.




sensor

Scanning circuit, solid-state image sensor, and camera

A scanning circuit, comprising first signal lines, second signal lines, third signal lines, a drive unit configured to drive the first signal lines, first buffers configured to drive the second signal lines in accordance with signals of the first signal lines, second buffers configured to drive the third signal lines in accordance with the signals of the first signal lines, and a shift register having a first part to be driven by signals of the second signal lines and a second part to be driven by signals of the third signal lines, wherein the first to third signal lines include two signal lines arranged in parallel to each other and configured to transmit the in-phase signals.




sensor

Multiple data rate counter, data converter including the same, and image sensor including the same

A counter includes a buffer unit and a ripple counter. The buffer unit generates at least one least significant signal of a count by buffering at least one clock signal until a termination time point. The ripple counter generates at least one most significant signal of the count by sequentially toggling in response to at least one of the least significant signal. The counter performs multiple data rate counting with enhance operation speed and reduced power consumption.




sensor

Variability and aging sensor for integrated circuits

A ring-oscillator-based on-chip sensor (OCS) includes a substrate having a semiconductor surface upon which the OCS is formed. The OCS includes an odd number of digital logic stages formed in and on the semiconductor surface including a first stage and a last stage each including at least one NOR gate including a first gate stack and/or a NAND gate including a second gate stack. A feedback connection is from an output of the last stage to an input of the first stage. At least one discharge path including at least a first p-channel metal-oxide semiconductor (PMOS) device is coupled between the first gate stack and a ground pad, and/or at least one charge path including at least a first n-channel metal-oxide semiconductor (NMOS) device is coupled between the second gate stack a power supply pad.




sensor

Thickness shear mode resonator sensors and methods of forming a plurality of resonator sensors

Arrays of resonator sensors include an active wafer array comprising a plurality of active wafers, a first end cap array coupled to a first side of the active wafer array, and a second end cap array coupled to a second side of the active wafer array. Thickness shear mode resonator sensors may include an active wafer coupled to a first end cap and a second end cap. Methods of forming a plurality of resonator sensors include forming a plurality of active wafer locations and separating the active wafer locations to form a plurality of discrete resonator sensors. Thickness shear mode resonator sensors may be produced by such methods.




sensor

Method for fabricating sensor

A method for fabricating a sensor includes: forming, on a base substrate, a pattern of a source electrode and a drain electrode, a pattern of a data line, a pattern of a receiving electrode, a pattern of a photodiode, and a pattern of a transparent electrode disposed by using a first patterning process; forming a pattern of an ohmic layer by using a second patterning process; forming a pattern of an active layer by using a third patterning process; forming a pattern of a gate insulating layer by using a fourth patterning process, wherein the gate insulating layer has a via hole above the transparent electrode; and forming a pattern of a gate electrode, a pattern of a gate line, and a pattern of a bias line connected to the transparent electrode via the via hole above the transparent electrode by using a fifth patterning process.




sensor

Sensor substrate, method of manufacturing the same and sensing display panel having the same

A sensor substrate includes a blocking pattern disposed on a base substrate, a first electrode disposed on the base substrate and overlapping the blocking pattern, the first electrode including a plurality of first unit parts arranged in a first direction, each of the first unit parts including a plurality of lines connected to each other in a mesh-type arrangement, a color filter layer disposed on the base substrate, a plurality of contact holes defined in the color filter layer and exposing the first unit parts, and a bridge line between and connected to first unit parts adjacent to each other in the first direction, through the contact holes.




sensor

Physiological data acquisition and management system for use with an implanted wireless sensor

Aspects and embodiments of the present invention provide a system for obtaining, processing and managing data from an implanted sensor. In some embodiments, a patient or other persons can use a flexible antenna to obtain data from the implanted sensor. The flexible antenna includes at least one transmit loop and at least one receive loop. The transmit loop is adapted to propagate energizing signals to the implanted sensor. The receive loop is adapted to detect a response signal from the implanted sensor. The transmit loop includes a capacitor formed by a discontinuous area. The capacitor is adapted to allow the loop to be tuned. The flexible antenna can communicate with a patient device that collects the data from the implanted sensor, creates a data file and transmits the data file to a remote server over a network. A physician or other authorized person may access the remote server using an access device.




sensor

Apparatus and method of simulating a somatosensory experience in space

A method of providing a user with an extra-terrestrial somatosensory experience includes equipping the user with an underwater breathing apparatus, having the user occupy an underwater environment, such environment providing buoyancy to the user, and while the user occupies the underwater environment, using a computer-implemented virtual reality system to present to the user a virtual reality environment modeling an extra-terrestrial setting. The virtual reality system inhibits visual perception by the user of items outside of the virtual reality environment so that the user experiences the virtual reality environment under a buoyancy condition provided by the underwater environment. The buoyancy condition enhances the experience of the virtual reality environment.




sensor

Virtual RF sensor

A radio frequency (RF) generation system includes an impedance determination module that receives an RF voltage and an RF current. The impedance determination module further determines an RF generator impedance based on the RF voltage and the RF current. The RF generation system also includes a control module that determines a plurality of electrical values based on the RF generator impedance. The matching module further matches an impedance of a load based on the RF generator impedance and the plurality of electrical components. The matching module also determines a 2 port transfer function based on the plurality of electrical values. The RF generation system also includes a virtual sensor module that estimates a load voltage, a load current, and a load impedance based on the RF voltage, the RF generator, the RF generator impedance, and the 2 port transfer function.




sensor

Group of reflection optic sensors in a weft feeder for weaving looms

Group of optic sensors (S) in a weft feeder, in particular for weaving looms, comprising one or more pairs of emitting sensors (E) and receiving sensors (R) arranged on a portion of the weft feeder (C) which extends laterally to the drum (T) of the weft feeder whereon the coils of the weft thread are wound, so as to form optic radiation going-paths from each of said emitting sensors (E) to a reflecting surface (9) provided on said drum (T) and optic radiation back-paths, from said reflecting surface (9) to corresponding receiving sensors (R), for detecting the presence/absence of a thread which crosses said paths. The optic sensors (E, R) are of the SMT type and are wired on a printed-circuit board (8) with an optic axis parallel to the plane of said board (8). A first group of total-reflection mirrors (V), one for each pair of emitting/receiving sensors (E, R), is inclined so as to deviate the optic radiation from the plane of the board (8) to a plane perpendicular to or inclined with respect to the same. A second group of partial-reflection mirrors (H), one for each pair of emitting/receiving sensors (E, R), is inclined so as to deviate the optic radiation in the same plane as board 8.




sensor

Electromechanical drop sensor for a vending machine

An electro-mechanical vend-sensing system includes at least one biased member mounted on a side of the vend space having a first potential voltage. A contact strip with a second potential voltage is positioned beneath the biased member. A controller circuit senses when the biased member contacts the contact strip, which indicates that a article has been appropriately vended to the customer.




sensor

Unitary plastic conductivity sensor

A contacting-type conductivity sensor includes an electrically-insulative plastic body and a plurality of electrodes. The plurality of conductive electrodes is disposed in the plastic body. Each electrode is constructed of plastic and fused with the electrically-insulative plastic body. A method of manufacturing the conductivity sensor is provided along with a single-use bioreactor employing the sensor.




sensor

Analyte sensors and methods of use

An analyte sensor system including a substrate, a first electrode disposed on a first surface of the substrate, a second electrode disposed on a second surface of the substrate, a third electrode provided in electrical contact with at least one of the first or second electrodes, where at least a portion of the first electrode and the second electrode are subcutaneously positioned in a patient, and where the third electrode is substantially entirely positioned external to the patient, and corresponding methods are provided.




sensor

Diagnostic testing sensors for resonant detectors

Biosensor apparatus and associated method for detecting a target material using a vibrating resonator having a surface that operably interacts with the target material. A detector is in electrical communication with a sensor, the sensor comprising a first paddle assembly connected to a second paddle assembly, the first paddle assembly having at least one microbalance sensing resonator proximate a proximal end and at least one sensing electrical contact proximate a distal end in electrical communication with the sensing resonator. The at least one sensing resonator has a target coating for operably interacting with the target material, and the second paddle assembly has a microbalance reference resonator proximate the proximal end and at least one reference electrical contact proximate the distal end in electrical communication with the reference resonator.




sensor

Method for fabricating a high coercivity hard bias structure for magnetoresistive sensor

A hard bias (HB) structure for longitudinally biasing a free layer in a MR sensor is disclosed that includes a mildly etched seed layer and a hard bias (HB) layer on the etched seed layer. The HB layer may contain one or more HB sub-layers stacked on a lower sub-layer which contacts the etched seed layer. Each HB sub-layer is mildly etched before depositing another HB sub-layer thereon. The etch may be performed in an IBD chamber and creates a higher concentration of nucleation sites on the etched surface thereby promoting a smaller HB average grain size than would be realized with no etch treatments. A smaller HB average grain size is responsible for increasing Hcr in a CoPt HB layer to as high as 2500 to 3000 Oe. Higher Hcr is achieved without changing the seed layer or HB material and without changing the thickness of the aforementioned layers.




sensor

Sensor cartridge and measuring device

A sensor cartridge for supplying a sensor is used. The sensor cartridge includes a casing within which the plurality of sensors can be arranged, and that allows a sample to be introduced to a sensor located at a preset location, and a connection structure. The connection structure electrically connects an external device and a sensor electrode of the sensor located at the preset location. The casing is formed so as to be held by the external device when the external device and the sensor electrode of the sensor are electrically connected via the connection structure.




sensor

Electrochemical test sensor

An electrochemical test sensor for detecting the concentration of an analyte in a fluid sample. The electrochemical test sensor includes a housing that has a first end and a second opposing end. The housing includes an opening at the first end to receive a fluid test sample. An electrode assembly includes a substrate, a working electrode, a counter electrode and a reagent. The substrate has a first surface and an opposing second surface. The working electrode is disposed on the first surface of the substrate, and the counter electrode is disposed on the second surface of the substrate. The electrode assembly is positioned within the housing to define a reaction channel. The electrochemical test sensor may be used with a removable lancet mechanism or integrated within a lancet mechanism to form one integral unit.




sensor

Electrode strip and sensor strip and manufacture method thereof and system thereof

The present disclosure relates to an electrode strip, a sensor strip, a system thereof and a manufacturing method thereof. The sensor strip includes a first reactive film, a second reactive film and a vent hole. The first reactive film includes a substrate, a first electrode layer and a first insulation layer. The first end of the first insulation layer is concaved to a first depth to form a first reactive area. The second reactive film includes a second electrode layer and a second insulation layer. The first end of the second insulation layer is concaved to a second depth to form a second reactive area. The vent hole penetrates the second insulation layer, the second electrode layer and the first insulation layer so as to connect the first reactive area and the second reactive area.




sensor

Mediator for test sensor

A method of forming a 3-phenylimino-3H-phenothiazine or a 3-phenylimino-3H-phenoxazine mediator includes providing a first reactant including phenothiazine or phenoxazine, providing a first solvent, providing a second reactant and providing a second solvent. The first reactant, first solvent, second reactant and second solvent are combined to form a reactants solution. Sodium persulfate is added to the reactants solution to couple the first and second reactants resulting in a reaction solution including the 3-phenylimino-3H-phenothiazine or the 3-phenylimino-3H-phenoxazine mediator.




sensor

Gas sensor and method of manufacturing thereof

In a gas sensor sensing a specific gas component contained in gas to be measured, oxygen ion conductive solid electrolyte is used in a sensing element for sensing the specific gas component. A terminal unit is used, which comprises a pair of insulators, each having an inner side surface, disposed to pinch and hold the base end portion of the sensing element on the pair of electrode-mounted surfaces of the sensing element. The terminal unit comprises two pairs of metal terminals and a spring member. The metal terminals electrically contact electrode pads of the sensing element, pair by pair, respectively, and are disposed on the inner side surfaces of the insulators. The spring members press the pair of insulators at one or more positions of electrode-mounted surfaces of the sensing element in a width direction so that the insulators are pressed to be opposed to each other.




sensor

Vibratory ripper having pressure sensor for selectively controlling activation of vibration mechanism

A ripping mechanism for a vehicle has a support frame. A ripping member has an engagement head that is configured for plowing a groove in the ground. The ripping member is preferably positionable in a selected working position and working orientation by adjustment of the support frame. The ripping member is preferably movable relative to the support frame to cause reciprocating movement of the engagement head at least partially longitudinally. A tilt adjustment cylinder is preferably operable to orient the ripping member in the selected orientation. A vibrator mechanism is preferably operatively connected to the ripping member and activatable to cause reciprocating movement of the engagement head at least partially longitudinally.




sensor

Vibration detection in a drill string based on multi-positioned sensors

In some example embodiments, a system includes a drill string having a drill bit. The drill string extends through at least part of a well bore. The system also includes a first vibrational sensor, positioned on the drill bit to measure, at a first location on the drill string, an amplitude of one or more of an axial vibration and a lateral vibration. The system also includes a second vibrational sensor, positioned above the drill bit and on the drill string. The second vibration sensor is to measure, at a second location on the drill string, one or more of an axial vibration and a lateral vibration. The system includes a processor unit to determine a type of vibration based on a comparison of the amplitude at the first location to the amplitude at the second location, wherein the type of vibration is at least one of bit whirl of the drill bit and a while of a bottom hole assembly that is part of the drill string.




sensor

Charge sensors using inverted lateral bipolar junction transistors

A sensor includes a collector, an emitter and a base-region barrier formed as an inverted bipolar junction transistor having a base substrate forming a base electrode to activate the inverted bipolar junction transistor. A level surface is formed by the collector, the emitter and the base-region barrier opposite the base substrate such that when the level surface is exposed to charge, the charge is measured during operation of the bipolar junction transistor.




sensor

Image sensors having variable voltage-current characteristics and methods of operating the same

Image sensors and methods of operating the same. An image sensor includes a pixel array including a plurality of pixels. Each of the plurality of pixels includes a photo sensor, the voltage-current characteristics of which vary according to energy of incident light, and that generates a sense current determined by the energy of the incident light; a reset unit that is activated to generate a reference current, according to a reset signal for resetting at least one of the plurality of pixels; and a conversion unit that converts the sense current and the reference current into a sense voltage and a reference voltage, respectively.




sensor

Photoelectric conversion material, film containing the material, photoelectric conversion device, production method thereof, photosensor, imaging device and their use methods

An organic compound and a photoelectric conversion device containing the organic compound are disclosed. The organic compound and device realize high photoelectric conversion efficiency, low dark current and high-speed responsivity. It has been found that when this organic compound and an n-type semiconductor are used in combination, high-speed responsivity can be realized while maintaining high heat resistance, an aspect of which has not been seen when the connection part between a donor part and an acceptor part is a phenylene group.




sensor

Sensor coupler for piston-cylinder assembly

A sensor coupler adapted to operatively connect a sensor to a piston-cylinder assembly. The sensor coupler includes a first end member and a second end member. The first end member is disposed on a port of the piston-cylinder assembly, in communication with the sensor, and the second end member is disposed in a cylinder chamber of the piston-cylinder assembly. Further, one or more cables are extending between the first end member and the second end member. The one or more cables are configured to transmit signals indicative of a position of a piston in the piston-cylinder assembly to the sensor. The sensor coupler further includes a biasing member to connect the first end member and the second end member.




sensor

Bumper energy absorber with sensor and configured lobes

A vehicle bumper system comprises a bumper reinforcement beam and an energy absorber with top and bottom rows of similarly-shaped spaced-apart crush lobes in alternating relation for uniform impact resistance across the bumper system. The illustrated top row of crush lobes provides a high first force-deflection curve for high impact forces, and the bottom row of crush lobes provides a lower second force-deflection curve, for pedestrian reduced injury. An elongated sensor is positioned under shear walls of the top and bottom crush lobes, and is retained by tabs on the energy absorber. This positively retains the sensor in position on the bumper system, with few (or zero) separate fasteners, while facilitating quick assembly and reliable operation of the sensor tube.




sensor

Compressive sensor packaging techniques

A sensor assembly for a motor vehicle adapted for sensing impacts including pedestrian impacts. The sensor assembly includes first and second energy absorbing elements formed of differing materials which couple an applied force to the vehicle to a compressive force acting on a compressive sensor element. The first and second energy absorbers are combined in a manner to tune the response between the applied force and forces acting on the compressive sensor to provide desired response characteristics. The first and second energy absorbers can be configured to produce force flow paths which further aid in response tuning. Another embodiment utilizes an energy absorber having a shaped cross section which focuses and balances impact force is applied to the compressive sensor.




sensor

Variable length light shield for an electro-optical sensor within a nose cone

A variable length light shield is disclosed for an electro-optical sensor within a nose cone. The light shield includes a base, a telescopic shade supported by the base, and a ring rotatably supported about the base. The light shield also includes a guide tube disposed proximate the ring with an end extending away from the ring about a side of the telescopic shade. The light shield further includes an extension spring supported by the guide tube with an end coupled to the telescopic shade. Additionally, the light shield includes a cable extending through the guide tube and the extension spring, with one end of the cable coupled to the ring and another end of the cable coupled to the telescopic shade. The extension spring is configured to exert a force on the telescopic shade to extend the telescopic shade. Rotation of the ring causes retraction of the telescopic shade.




sensor

Railroad signaling and communication system using a fail-safe voltage sensor to verify trackside conditions in safety-critical railroad applications

A method and system for verifying trackside conditions in safety critical railroad applications by reporting the status of trackside signals and switches to a remote train control system. The system comprises at least one sensor for providing trackside conditions electrically connected to a circuit for providing trackside conditions to a railroad, said sensor being powered by voltage applied to the circuit such that the sensor is energized only when said electrical component is engaged. The system and method further comprises a method and system which is failsafe and which enables the control system to independently verify signals from each sensor.




sensor

Sensor device in a bank note processing machine

A sensor device in a banknote processing machine comprising a transport device by means of which banknotes to be processed are transported past the sensor device, a cleaning device that cleans the sensor device or a transparent region of the sensor device, and a control device that controls the components of the banknote processing machine. The sensor device includes means for enlarging the spacing between the transport device and the sensor device. The control device controls the means and the cleaning device in such a way that the spacing between the transport device and the sensor device is enlarged by the means while the cleaning device cleans the sensor device.




sensor

Deghosting using measurement data from seismic sensors

Measurement data is received from first and second seismic sensors, where the first and second seismic sensors are oriented in opposite directions. Each of the first and second seismic sensors has a sensing element responsive to pressure and particle motion. The signals can be combined to remove the particle motion component of the measurement data and obtain pressure-only data. Alternatively, the signals can be combined to deghost the received measurement data.




sensor

Acoustic sensor assembly

An acoustic sensor is configured to provide accurate and robust measurement of bodily sounds under a variety of conditions, such as in noisy environments or in situations in which stress, strain, or movement may be imparted onto a sensor with respect to a patient. Embodiments of the sensor provide a conformable electrical shielding, as well as improved acoustic and mechanical coupling between the sensor and the measurement site.




sensor

SENSOR ARRANGEMENT WITH VARIABLE CARRIER FREQUENCY AND GOERTZEL FILTERING

A method for processing a signal modulated with a variable carrier frequency includes calculating a coefficient for demodulation of the signal. The method also includes demodulating the signal by calculating discrete intermediate values utilizing the coefficient for a predefined maximum number of steps and calculating the signal with the aid of the intermediate values of the coefficient. The value of the coefficient is respectively calculated on the basis of carrier frequencies for each step.




sensor

OBSERVER BASED SENSORLESS CONTROL FOR U-SHAPE SINGLE PHASE SYNCHRONOUS PERMANENT MAGNET MOTORS

A method for controlling a U-shape single phase synchronous permanent magnetic motor having a rotor and a stator and coupled to a single phase alternating current (AC) power source through a switch includes estimating back-electromotive force and the position of the rotor based on a voltage feedback signal, a current feedback signal, and a phase feedback signal indicative of a zero-crossing of the single phase AC power source. Once the speed and position of the rotor are determined, a controller can trigger a switch to supply power to the motor.




sensor

ENVIRONMENTAL SENSOR AND METHOD OF OPERATING THE SAME

A gaseous-fluid environmental sensor having a gaseous-fluid flow system that defines a flow path coupling an intake port to an exhaust port. The gaseous-fluid flow system includes a blower and a flow sensor. The blower includes a motor and the flow sensor is for sensing a flow parameter. The gaseous-fluid environmental sensor further includes a controller electrically coupled to the flow sensor and the motor. The controller is configured to drive the motor with a first commutation sequence and to drive the motor with a second commutation sequence different than the first commutation sequence. The controller is further configured to select the first commutation sequence and the second commutation sequence based on the sensed flow parameter. Also discloses is a method for controlling the gaseous-fluid environmental sensor.




sensor

Smartphones app-controlled configuration of footwear soles using sensors in the smartphone and the soles

A smartphone app that causes a smartphone device to actively control a configuration of footwear structural elements located in a footwear sole or removable inner sole insert of a user of the smartphone device, and one or more sensors located in either one or both of the sole or the removable inner sole insert the user's footwear and a sensor including a gyroscope and/or an accelerometer in the smartphone device; and the footwear structural elements being configured for computer control by the smartphone device when the smartphone app is operating on the smartphone device; and wherein instructions of the smartphone app, when executed, cause the smartphone device to, first, process measurement data received from the footwear and smartphone sensors and, second, use the processed measurement data to alter a configuration of the footwear structural elements based on the output from processing measurement data.




sensor

Liquid level sensor

A quartz glass liquid level sensor includes a support frame, a light masking plate, a quartz glass tube, and a sensor module. The light masking plate is movably mounted on the support frame. The quartz glass tube is movably mounted to the support frame. One end of the quartz glass tube is securely fixed to the light masking plate. The sensor module is mounted on the support frame, for sensing a position of the light masking plate relative to the support frame.




sensor

Display ads for door handles providing multisensory stimuli

A display ad system for door handles may include electronics that provide multisensory stimuli. In one embodiment, an end cap includes light and sound triggered by a motion detector. In another embodiment, an end cap includes fan-directed aromas triggered by a motion detector. In a third embodiment, a flexible grid of LED lights backlights the display ad in any time sequence desired, and may be motion-triggered as well. A door handle embodiment may also provide a note board surface as an alternative to showing display ads.




sensor

Headband for use with medical sensor

Headbands configured to provide pressure against a medical sensor secured to a patient's forehead are provided. The headbands may include one or more low friction materials to enable an elastic band of a tensioning mechanism to evenly stretch. Additionally or alternatively, the headbands may include two or more bands adapted to secure the headband to various portions of a patient's head. Still further, the headbands may be configured to independently vary the pressure created between two or more sensors and the patient's head.




sensor

Gyro sensor and electronic device

A gyro sensor according to the invention includes a first mass portion including a first detection portion, a second mass portion including a second detection portion, first drive portions vibrating the first mass portion in a direction of a first axis, and a force conversion portion fixed to an anchor portion. The first mass portion and the second mass portion are connected with the force conversion portion. The force conversion portion is displaced with the anchor portion as an axis, and vibrates the second mass portion in a direction of a second axis crossing the first axis in a plane view.




sensor

Inertial sensor control module and method for controlling inertial sensor control module

Disclosed herein is an inertial sensor control module. The inertial sensor control module according to a preferred embodiment of the present invention includes: an inertial sensor including a driving mass, a driving unit driving the driving mass of the inertial sensor according to a control signal to the inertial sensor, a control unit connected to the driving unit and generating the control signal to transfer the generated control signal to the driving unit, and a sensing unit connected between the inertial sensor and the control unit and detecting information about whether the driving mass of the inertial sensor is in a stabilized state or information about an inertial force of the inertial sensor to transfer the detected information to the outside or the control unit.




sensor

Angular velocity sensor

Disclosed herein is an angular velocity sensor including: first and second mass bodies; a first frame provided at an outer side of the first and second mass bodies; a first flexible part connecting the first and second mass bodies to the first frame in a Y axis direction, respectively; a second flexible part connecting the first and second mass bodies to the first frame in an X axis direction, respectively; a second frame provided at an outer side of the first frame; a third flexible part connecting the first and second frames to each other in the X axis direction; and a fourth flexible part connecting the first and second frames to each other in the Y axis direction, wherein the first frame has a thickness in a Z axis direction thinner than that of the second frame.




sensor

Method of setting valid output sections of 2-axis acceleration sensor or 3-axis acceleration sensor

Disclosed herein is a method of setting valid output sections of a 3-axis acceleration sensor mounted within a tire of a vehicle, including setting an output signal of the 3-axis acceleration sensor in the z-axis direction as a reference signal, setting a specific section of the output signal in the z-axis direction as a valid section where a part of the tire where the 3-axis acceleration sensor is mounted contacts a road surface, and setting sections of output signals of the 3-axis acceleration sensor in the x-axis and y-axis directions corresponding to the valid section in the z-axis direction as valid sections in the x-axis and y-axis directions. The method sets precise valid sections applied to detect information between the tire and a ground surface so as to minimize a component of a noise section by connecting output signals in the x-axis, y-axis and z-axis directions.




sensor

Wireless passive radio-frequency strain and displacement sensors

Wireless strain and displacement sensors wirelessly monitor structural health and integrity, and are made by printing inductor-interdigital capacitor sensing circuits on a variety of substrates, including ceramic substrates, with thermally processable conductive inks. Sensors of the invention can be employed to detect strain and displacement of civil structures, such as bridges and buildings. The sensors include sensing elements that are mounted or printed on stiff, inflexible substrates, which prevent the sensing elements from bending, stretching, or otherwise warping when the sensor is strained. An interlayer between the sensing elements allows the sensing elements to move with respect to each other during application of strain. Thus, strain causes the sensing elements to move but not to deform, causing changes in sensor resonance that can be detected through wireless radio-frequency interrogation. Because the sensing elements do not change shape when under strain, the sensor can undergo millions of measurement cycles before breaking.




sensor

Force/moment sensor for measurement of forces and moments

A force/moment sensor for measurement of three orthogonal forces and three orthogonal moments, comprises an inner holding element which is surrounded by an outer holding element. The two holding elements are connected to each other by deformation elements. For each deformation element, at least one deformation transducer is provided. The force/moment sensor is preferably monolithic, and the deformation transducers, formed as strain gauges, are preferably arranged in one plane or in two preferably parallel planes.




sensor

Torque sensor bearing arrangement and method

A torque sensor bearing arrangement for a shaft having first and second bearings, each with respective inner ring and outer rings with rolling elements therebetween. The bearings are located at first and second ends of the shaft. First and second sensing rings are connected to the outer rings of the bearings. First and second marking rings are connected to the inner rings, spaced apart from and aligned with the respective first and second sensing rings. The marking rings each have a wavy surface facing the respective sensing ring to form respective first and second sensors from the respective sensing ring—marking ring pairs. The sensors detect a rotational angle position of the shaft and provide a signal. A controller receives signals from the first and second sensors and calculates at least one of torque or an angular speed of the shaft based on signals from the first and second sensors.




sensor

Support structure for load measurement sensor

A support structure for a load measurement sensor has sufficient durability without adding a large load to a portion transmitting a load to the load measurement sensor. In a support structure for a load measurement sensor, including a sensor body detecting a load generated from a seat having a seat frame and an extension shaft portion extending from the sensor body, by way of attachment brackets in the state where the extension shaft portion follows the horizontal direction, the support structure includes a load input portion which comes into contact with the sensor body and inputs a load to the sensor body, the sensor body includes a load receiving surface which contacts the load input portion and receives the load, and the load input portion is formed to be movable in the axial direction of the extension shaft portion with respect to the load receiving surface.




sensor

Temperature sensor, manufacturing process and corresponding method of assembly

The invention relates to a temperature sensor comprising: a temperature-sensitive element (3); and a peripheral casing (7) accommodating the temperature-sensitive element (3) and having a closed end (9), the peripheral casing (7) being able to be inserted into a corresponding cavity (11), characterized in that the closed end (9) of the peripheral casing (7) has a peripheral portion (21) revealing, butted against the closed end, a flexible assembly stop (23) after said peripheral portion (21), said stop (23) being able to deform towards the peripheral portion (21) by shape cooperation with the bottom (15) of the corresponding cavity (11). The subject of the invention is also a process for manufacturing a temperature sensor as described above and a method of assembling said sensor.