x

Cruz gets his hair cut at salon whose owner was jailed for defying Texas coronavirus restrictions

After his haircut, Sen. Ted Cruz said, "It was ridiculous to see somebody sentenced to seven days in jail for cutting hair."





x

Meet the Ohio health expert who has a fan club — and Republicans trying to stop her

Some Buckeyes are not comfortable being told by a "woman in power" to quarantine, one expert said.





x

The McMichaels can't be charged with a hate crime by the state in the shooting death of Ahmaud Arbery because the law doesn't exist in Georgia

Georgia is one of four states that doesn't have a hate crime law. Arbery's killing has reignited calls for legislation.





x

CNN legal analysts say Barr dropping the Flynn case shows 'the fix was in.' Barr says winners write history.

The Justice Department announced Thursday that it is dropping its criminal case against President Trump's first national security adviser Michael Flynn. Flynn twice admitted in court he lied to the FBI about his conversations with Russia's U.S. ambassador, and then cooperated in Special Counsel Robert Mueller's investigation. It was an unusual move by the Justice Department, and CNN's legal and political analysts smelled a rat."Attorney General [William] Barr is already being accused of creating a special justice system just for President Trump's friends," and this will only feed that perception, CNN's Jake Tapper suggested. Political correspondent Sara Murray agreed, noting that the prosecutor in the case, Brandon Van Grack, withdrew right before the Justice Department submitted its filing, just like when Barr intervened to request a reduced sentence for Roger Stone.National security correspondent Jim Sciutto laid out several reason why the substance of Flynn's admitted lie was a big deal, and chief legal analyst Jeffrey Toobin was appalled. "It is one of the most incredible legal documents I have read, and certainly something that I never expected to see from the United States Department of Justice," Toobin said. "The idea that the Justice Department would invent an argument -- an argument that the judge in this case has already rejected -- and say that's a basis for dropping a case where a defendant admitted his guilt shows that this is a case where the fix was in."Barr told CBS News' Cathrine Herridge on Thursday that dropping Flynn's case actually "sends the message that there is one standard of justice in this country." Herridge told Barr he would take flak for this, asking: "When history looks back on this decision, how do you think it will be written?" Barr laughed: "Well, history's written by the winners. So it largely depends on who's writing the history." Watch below. More stories from theweek.com Outed CIA agent Valerie Plame is running for Congress, and her launch video looks like a spy movie trailer 7 scathing cartoons about America's rush to reopen Trump says he couldn't have exposed WWII vets to COVID-19 because the wind was blowing the wrong way





x

Nearly one-third of Americans believe a coronavirus vaccine exists and is being withheld, survey finds

The Democracy Fund + UCLA Nationscape Project found some misinformation about the coronavirus is more widespread that you might think.





x

Bayesian Quantile Regression with Mixed Discrete and Nonignorable Missing Covariates

Zhi-Qiang Wang, Nian-Sheng Tang.

Source: Bayesian Analysis, Volume 15, Number 2, 579--604.

Abstract:
Bayesian inference on quantile regression (QR) model with mixed discrete and non-ignorable missing covariates is conducted by reformulating QR model as a hierarchical structure model. A probit regression model is adopted to specify missing covariate mechanism. A hybrid algorithm combining the Gibbs sampler and the Metropolis-Hastings algorithm is developed to simultaneously produce Bayesian estimates of unknown parameters and latent variables as well as their corresponding standard errors. Bayesian variable selection method is proposed to recognize significant covariates. A Bayesian local influence procedure is presented to assess the effect of minor perturbations to the data, priors and sampling distributions on posterior quantities of interest. Several simulation studies and an example are presented to illustrate the proposed methodologies.




x

Function-Specific Mixing Times and Concentration Away from Equilibrium

Maxim Rabinovich, Aaditya Ramdas, Michael I. Jordan, Martin J. Wainwright.

Source: Bayesian Analysis, Volume 15, Number 2, 505--532.

Abstract:
Slow mixing is the central hurdle is applications of Markov chains, especially those used for Monte Carlo approximations (MCMC). In the setting of Bayesian inference, it is often only of interest to estimate the stationary expectations of a small set of functions, and so the usual definition of mixing based on total variation convergence may be too conservative. Accordingly, we introduce function-specific analogs of mixing times and spectral gaps, and use them to prove Hoeffding-like function-specific concentration inequalities. These results show that it is possible for empirical expectations of functions to concentrate long before the underlying chain has mixed in the classical sense, and we show that the concentration rates we achieve are optimal up to constants. We use our techniques to derive confidence intervals that are sharper than those implied by both classical Markov-chain Hoeffding bounds and Berry-Esseen-corrected central limit theorem (CLT) bounds. For applications that require testing, rather than point estimation, we show similar improvements over recent sequential testing results for MCMC. We conclude by applying our framework to real-data examples of MCMC, providing evidence that our theory is both accurate and relevant to practice.




x

Joint Modeling of Longitudinal Relational Data and Exogenous Variables

Rajarshi Guhaniyogi, Abel Rodriguez.

Source: Bayesian Analysis, Volume 15, Number 2, 477--503.

Abstract:
This article proposes a framework based on shared, time varying stochastic latent factor models for modeling relational data in which network and node-attributes co-evolve over time. Our proposed framework is flexible enough to handle both categorical and continuous attributes, allows us to estimate the dimension of the latent social space, and automatically yields Bayesian hypothesis tests for the association between network structure and nodal attributes. Additionally, the model is easy to compute and readily yields inference and prediction for missing link between nodes. We employ our model framework to study co-evolution of international relations between 22 countries and the country specific indicators over a period of 11 years.




x

Determinantal Point Process Mixtures Via Spectral Density Approach

Ilaria Bianchini, Alessandra Guglielmi, Fernando A. Quintana.

Source: Bayesian Analysis, Volume 15, Number 1, 187--214.

Abstract:
We consider mixture models where location parameters are a priori encouraged to be well separated. We explore a class of determinantal point process (DPP) mixture models, which provide the desired notion of separation or repulsion. Instead of using the rather restrictive case where analytical results are partially available, we adopt a spectral representation from which approximations to the DPP density functions can be readily computed. For the sake of concreteness the presentation focuses on a power exponential spectral density, but the proposed approach is in fact quite general. We later extend our model to incorporate covariate information in the likelihood and also in the assignment to mixture components, yielding a trade-off between repulsiveness of locations in the mixtures and attraction among subjects with similar covariates. We develop full Bayesian inference, and explore model properties and posterior behavior using several simulation scenarios and data illustrations. Supplementary materials for this article are available online (Bianchini et al., 2019).




x

Adaptive Bayesian Nonparametric Regression Using a Kernel Mixture of Polynomials with Application to Partial Linear Models

Fangzheng Xie, Yanxun Xu.

Source: Bayesian Analysis, Volume 15, Number 1, 159--186.

Abstract:
We propose a kernel mixture of polynomials prior for Bayesian nonparametric regression. The regression function is modeled by local averages of polynomials with kernel mixture weights. We obtain the minimax-optimal contraction rate of the full posterior distribution up to a logarithmic factor by estimating metric entropies of certain function classes. Under the assumption that the degree of the polynomials is larger than the unknown smoothness level of the true function, the posterior contraction behavior can adapt to this smoothness level provided an upper bound is known. We also provide a frequentist sieve maximum likelihood estimator with a near-optimal convergence rate. We further investigate the application of the kernel mixture of polynomials to partial linear models and obtain both the near-optimal rate of contraction for the nonparametric component and the Bernstein-von Mises limit (i.e., asymptotic normality) of the parametric component. The proposed method is illustrated with numerical examples and shows superior performance in terms of computational efficiency, accuracy, and uncertainty quantification compared to the local polynomial regression, DiceKriging, and the robust Gaussian stochastic process.




x

Bayesian Design of Experiments for Intractable Likelihood Models Using Coupled Auxiliary Models and Multivariate Emulation

Antony Overstall, James McGree.

Source: Bayesian Analysis, Volume 15, Number 1, 103--131.

Abstract:
A Bayesian design is given by maximising an expected utility over a design space. The utility is chosen to represent the aim of the experiment and its expectation is taken with respect to all unknowns: responses, parameters and/or models. Although straightforward in principle, there are several challenges to finding Bayesian designs in practice. Firstly, the utility and expected utility are rarely available in closed form and require approximation. Secondly, the design space can be of high-dimensionality. In the case of intractable likelihood models, these problems are compounded by the fact that the likelihood function, whose evaluation is required to approximate the expected utility, is not available in closed form. A strategy is proposed to find Bayesian designs for intractable likelihood models. It relies on the development of an automatic, auxiliary modelling approach, using multivariate Gaussian process emulators, to approximate the likelihood function. This is then combined with a copula-based approach to approximate the marginal likelihood (a quantity commonly required to evaluate many utility functions). These approximations are demonstrated on examples of stochastic process models involving experimental aims of both parameter estimation and model comparison.




x

Calibration Procedures for Approximate Bayesian Credible Sets

Jeong Eun Lee, Geoff K. Nicholls, Robin J. Ryder.

Source: Bayesian Analysis, Volume 14, Number 4, 1245--1269.

Abstract:
We develop and apply two calibration procedures for checking the coverage of approximate Bayesian credible sets, including intervals estimated using Monte Carlo methods. The user has an ideal prior and likelihood, but generates a credible set for an approximate posterior based on some approximate prior and likelihood. We estimate the realised posterior coverage achieved by the approximate credible set. This is the coverage of the unknown “true” parameter if the data are a realisation of the user’s ideal observation model conditioned on the parameter, and the parameter is a draw from the user’s ideal prior. In one approach we estimate the posterior coverage at the data by making a semi-parametric logistic regression of binary coverage outcomes on simulated data against summary statistics evaluated on simulated data. In another we use Importance Sampling from the approximate posterior, windowing simulated data to fall close to the observed data. We illustrate our methods on four examples.




x

Extrinsic Gaussian Processes for Regression and Classification on Manifolds

Lizhen Lin, Niu Mu, Pokman Cheung, David Dunson.

Source: Bayesian Analysis, Volume 14, Number 3, 907--926.

Abstract:
Gaussian processes (GPs) are very widely used for modeling of unknown functions or surfaces in applications ranging from regression to classification to spatial processes. Although there is an increasingly vast literature on applications, methods, theory and algorithms related to GPs, the overwhelming majority of this literature focuses on the case in which the input domain corresponds to a Euclidean space. However, particularly in recent years with the increasing collection of complex data, it is commonly the case that the input domain does not have such a simple form. For example, it is common for the inputs to be restricted to a non-Euclidean manifold, a case which forms the motivation for this article. In particular, we propose a general extrinsic framework for GP modeling on manifolds, which relies on embedding of the manifold into a Euclidean space and then constructing extrinsic kernels for GPs on their images. These extrinsic Gaussian processes (eGPs) are used as prior distributions for unknown functions in Bayesian inferences. Our approach is simple and general, and we show that the eGPs inherit fine theoretical properties from GP models in Euclidean spaces. We consider applications of our models to regression and classification problems with predictors lying in a large class of manifolds, including spheres, planar shape spaces, a space of positive definite matrices, and Grassmannians. Our models can be readily used by practitioners in biological sciences for various regression and classification problems, such as disease diagnosis or detection. Our work is also likely to have impact in spatial statistics when spatial locations are on the sphere or other geometric spaces.




x

Bayesian Zero-Inflated Negative Binomial Regression Based on Pólya-Gamma Mixtures

Brian Neelon.

Source: Bayesian Analysis, Volume 14, Number 3, 849--875.

Abstract:
Motivated by a study examining spatiotemporal patterns in inpatient hospitalizations, we propose an efficient Bayesian approach for fitting zero-inflated negative binomial models. To facilitate posterior sampling, we introduce a set of latent variables that are represented as scale mixtures of normals, where the precision terms follow independent Pólya-Gamma distributions. Conditional on the latent variables, inference proceeds via straightforward Gibbs sampling. For fixed-effects models, our approach is comparable to existing methods. However, our model can accommodate more complex data structures, including multivariate and spatiotemporal data, settings in which current approaches often fail due to computational challenges. Using simulation studies, we highlight key features of the method and compare its performance to other estimation procedures. We apply the approach to a spatiotemporal analysis examining the number of annual inpatient admissions among United States veterans with type 2 diabetes.




x

Stochastic Approximations to the Pitman–Yor Process

Julyan Arbel, Pierpaolo De Blasi, Igor Prünster.

Source: Bayesian Analysis, Volume 14, Number 3, 753--771.

Abstract:
In this paper we consider approximations to the popular Pitman–Yor process obtained by truncating the stick-breaking representation. The truncation is determined by a random stopping rule that achieves an almost sure control on the approximation error in total variation distance. We derive the asymptotic distribution of the random truncation point as the approximation error $epsilon$ goes to zero in terms of a polynomially tilted positive stable random variable. The practical usefulness and effectiveness of this theoretical result is demonstrated by devising a sampling algorithm to approximate functionals of the $epsilon$ -version of the Pitman–Yor process.




x

Low Information Omnibus (LIO) Priors for Dirichlet Process Mixture Models

Yushu Shi, Michael Martens, Anjishnu Banerjee, Purushottam Laud.

Source: Bayesian Analysis, Volume 14, Number 3, 677--702.

Abstract:
Dirichlet process mixture (DPM) models provide flexible modeling for distributions of data as an infinite mixture of distributions from a chosen collection. Specifying priors for these models in individual data contexts can be challenging. In this paper, we introduce a scheme which requires the investigator to specify only simple scaling information. This is used to transform the data to a fixed scale on which a low information prior is constructed. Samples from the posterior with the rescaled data are transformed back for inference on the original scale. The low information prior is selected to provide a wide variety of components for the DPM to generate flexible distributions for the data on the fixed scale. The method can be applied to all DPM models with kernel functions closed under a suitable scaling transformation. Construction of the low information prior, however, is kernel dependent. Using DPM-of-Gaussians and DPM-of-Weibulls models as examples, we show that the method provides accurate estimates of a diverse collection of distributions that includes skewed, multimodal, and highly dispersed members. With the recommended priors, repeated data simulations show performance comparable to that of standard empirical estimates. Finally, we show weak convergence of posteriors with the proposed priors for both kernels considered.




x

Efficient Acquisition Rules for Model-Based Approximate Bayesian Computation

Marko Järvenpää, Michael U. Gutmann, Arijus Pleska, Aki Vehtari, Pekka Marttinen.

Source: Bayesian Analysis, Volume 14, Number 2, 595--622.

Abstract:
Approximate Bayesian computation (ABC) is a method for Bayesian inference when the likelihood is unavailable but simulating from the model is possible. However, many ABC algorithms require a large number of simulations, which can be costly. To reduce the computational cost, Bayesian optimisation (BO) and surrogate models such as Gaussian processes have been proposed. Bayesian optimisation enables one to intelligently decide where to evaluate the model next but common BO strategies are not designed for the goal of estimating the posterior distribution. Our paper addresses this gap in the literature. We propose to compute the uncertainty in the ABC posterior density, which is due to a lack of simulations to estimate this quantity accurately, and define a loss function that measures this uncertainty. We then propose to select the next evaluation location to minimise the expected loss. Experiments show that the proposed method often produces the most accurate approximations as compared to common BO strategies.




x

Fast Model-Fitting of Bayesian Variable Selection Regression Using the Iterative Complex Factorization Algorithm

Quan Zhou, Yongtao Guan.

Source: Bayesian Analysis, Volume 14, Number 2, 573--594.

Abstract:
Bayesian variable selection regression (BVSR) is able to jointly analyze genome-wide genetic datasets, but the slow computation via Markov chain Monte Carlo (MCMC) hampered its wide-spread usage. Here we present a novel iterative method to solve a special class of linear systems, which can increase the speed of the BVSR model-fitting tenfold. The iterative method hinges on the complex factorization of the sum of two matrices and the solution path resides in the complex domain (instead of the real domain). Compared to the Gauss-Seidel method, the complex factorization converges almost instantaneously and its error is several magnitude smaller than that of the Gauss-Seidel method. More importantly, the error is always within the pre-specified precision while the Gauss-Seidel method is not. For large problems with thousands of covariates, the complex factorization is 10–100 times faster than either the Gauss-Seidel method or the direct method via the Cholesky decomposition. In BVSR, one needs to repetitively solve large penalized regression systems whose design matrices only change slightly between adjacent MCMC steps. This slight change in design matrix enables the adaptation of the iterative complex factorization method. The computational innovation will facilitate the wide-spread use of BVSR in reanalyzing genome-wide association datasets.




x

Constrained Bayesian Optimization with Noisy Experiments

Benjamin Letham, Brian Karrer, Guilherme Ottoni, Eytan Bakshy.

Source: Bayesian Analysis, Volume 14, Number 2, 495--519.

Abstract:
Randomized experiments are the gold standard for evaluating the effects of changes to real-world systems. Data in these tests may be difficult to collect and outcomes may have high variance, resulting in potentially large measurement error. Bayesian optimization is a promising technique for efficiently optimizing multiple continuous parameters, but existing approaches degrade in performance when the noise level is high, limiting its applicability to many randomized experiments. We derive an expression for expected improvement under greedy batch optimization with noisy observations and noisy constraints, and develop a quasi-Monte Carlo approximation that allows it to be efficiently optimized. Simulations with synthetic functions show that optimization performance on noisy, constrained problems outperforms existing methods. We further demonstrate the effectiveness of the method with two real-world experiments conducted at Facebook: optimizing a ranking system, and optimizing server compiler flags.




x

Analysis of the Maximal a Posteriori Partition in the Gaussian Dirichlet Process Mixture Model

Łukasz Rajkowski.

Source: Bayesian Analysis, Volume 14, Number 2, 477--494.

Abstract:
Mixture models are a natural choice in many applications, but it can be difficult to place an a priori upper bound on the number of components. To circumvent this, investigators are turning increasingly to Dirichlet process mixture models (DPMMs). It is therefore important to develop an understanding of the strengths and weaknesses of this approach. This work considers the MAP (maximum a posteriori) clustering for the Gaussian DPMM (where the cluster means have Gaussian distribution and, for each cluster, the observations within the cluster have Gaussian distribution). Some desirable properties of the MAP partition are proved: ‘almost disjointness’ of the convex hulls of clusters (they may have at most one point in common) and (with natural assumptions) the comparability of sizes of those clusters that intersect any fixed ball with the number of observations (as the latter goes to infinity). Consequently, the number of such clusters remains bounded. Furthermore, if the data arises from independent identically distributed sampling from a given distribution with bounded support then the asymptotic MAP partition of the observation space maximises a function which has a straightforward expression, which depends only on the within-group covariance parameter. As the operator norm of this covariance parameter decreases, the number of clusters in the MAP partition becomes arbitrarily large, which may lead to the overestimation of the number of mixture components.




x

Maximum Independent Component Analysis with Application to EEG Data

Ruosi Guo, Chunming Zhang, Zhengjun Zhang.

Source: Statistical Science, Volume 35, Number 1, 145--157.

Abstract:
In many scientific disciplines, finding hidden influential factors behind observational data is essential but challenging. The majority of existing approaches, such as the independent component analysis (${mathrm{ICA}}$), rely on linear transformation, that is, true signals are linear combinations of hidden components. Motivated from analyzing nonlinear temporal signals in neuroscience, genetics, and finance, this paper proposes the “maximum independent component analysis” (${mathrm{MaxICA}}$), based on max-linear combinations of components. In contrast to existing methods, ${mathrm{MaxICA}}$ benefits from focusing on significant major components while filtering out ignorable components. A major tool for parameter learning of ${mathrm{MaxICA}}$ is an augmented genetic algorithm, consisting of three schemes for the elite weighted sum selection, randomly combined crossover, and dynamic mutation. Extensive empirical evaluations demonstrate the effectiveness of ${mathrm{MaxICA}}$ in either extracting max-linearly combined essential sources in many applications or supplying a better approximation for nonlinearly combined source signals, such as $mathrm{EEG}$ recordings analyzed in this paper.




x

Statistical Methodology in Single-Molecule Experiments

Chao Du, S. C. Kou.

Source: Statistical Science, Volume 35, Number 1, 75--91.

Abstract:
Toward the last quarter of the 20th century, the emergence of single-molecule experiments enabled scientists to track and study individual molecules’ dynamic properties in real time. Unlike macroscopic systems’ dynamics, those of single molecules can only be properly described by stochastic models even in the absence of external noise. Consequently, statistical methods have played a key role in extracting hidden information about molecular dynamics from data obtained through single-molecule experiments. In this article, we survey the major statistical methodologies used to analyze single-molecule experimental data. Our discussion is organized according to the types of stochastic models used to describe single-molecule systems as well as major experimental data collection techniques. We also highlight challenges and future directions in the application of statistical methodologies to single-molecule experiments.




x

Model-Based Approach to the Joint Analysis of Single-Cell Data on Chromatin Accessibility and Gene Expression

Zhixiang Lin, Mahdi Zamanighomi, Timothy Daley, Shining Ma, Wing Hung Wong.

Source: Statistical Science, Volume 35, Number 1, 2--13.

Abstract:
Unsupervised methods, including clustering methods, are essential to the analysis of single-cell genomic data. Model-based clustering methods are under-explored in the area of single-cell genomics, and have the advantage of quantifying the uncertainty of the clustering result. Here we develop a model-based approach for the integrative analysis of single-cell chromatin accessibility and gene expression data. We show that combining these two types of data, we can achieve a better separation of the underlying cell types. An efficient Markov chain Monte Carlo algorithm is also developed.




x

Models as Approximations—Rejoinder

Andreas Buja, Arun Kumar Kuchibhotla, Richard Berk, Edward George, Eric Tchetgen Tchetgen, Linda Zhao.

Source: Statistical Science, Volume 34, Number 4, 606--620.

Abstract:
We respond to the discussants of our articles emphasizing the importance of inference under misspecification in the context of the reproducibility/replicability crisis. Along the way, we discuss the roles of diagnostics and model building in regression as well as connections between our well-specification framework and semiparametric theory.




x

Discussion: Models as Approximations

Dalia Ghanem, Todd A. Kuffner.

Source: Statistical Science, Volume 34, Number 4, 604--605.




x

Comment: Models as (Deliberate) Approximations

David Whitney, Ali Shojaie, Marco Carone.

Source: Statistical Science, Volume 34, Number 4, 591--598.




x

Comment: Models Are Approximations!

Anthony C. Davison, Erwan Koch, Jonathan Koh.

Source: Statistical Science, Volume 34, Number 4, 584--590.

Abstract:
This discussion focuses on areas of disagreement with the papers, particularly the target of inference and the case for using the robust ‘sandwich’ variance estimator in the presence of moderate mis-specification. We also suggest that existing procedures may be appreciably more powerful for detecting mis-specification than the authors’ RAV statistic, and comment on the use of the pairs bootstrap in balanced situations.




x

Comment: “Models as Approximations I: Consequences Illustrated with Linear Regression” by A. Buja, R. Berk, L. Brown, E. George, E. Pitkin, L. Zhan and K. Zhang

Roderick J. Little.

Source: Statistical Science, Volume 34, Number 4, 580--583.




x

Discussion of Models as Approximations I & II

Dag Tjøstheim.

Source: Statistical Science, Volume 34, Number 4, 575--579.




x

Comment: Models as Approximations

Nikki L. B. Freeman, Xiaotong Jiang, Owen E. Leete, Daniel J. Luckett, Teeranan Pokaprakarn, Michael R. Kosorok.

Source: Statistical Science, Volume 34, Number 4, 572--574.




x

Comment on Models as Approximations, Parts I and II, by Buja et al.

Jerald F. Lawless.

Source: Statistical Science, Volume 34, Number 4, 569--571.

Abstract:
I comment on the papers Models as Approximations I and II, by A. Buja, R. Berk, L. Brown, E. George, E. Pitkin, M. Traskin, L. Zhao and K. Zhang.




x

Discussion of Models as Approximations I & II

Sara van de Geer.

Source: Statistical Science, Volume 34, Number 4, 566--568.

Abstract:
We discuss the papers “Models as Approximations” I & II, by A. Buja, R. Berk, L. Brown, E. George, E. Pitkin, M. Traskin, L. Zao and K. Zhang (Part I) and A. Buja, L. Brown, A. K. Kuchibhota, R. Berk, E. George and L. Zhao (Part II). We present a summary with some details for the generalized linear model.




x

Models as Approximations II: A Model-Free Theory of Parametric Regression

Andreas Buja, Lawrence Brown, Arun Kumar Kuchibhotla, Richard Berk, Edward George, Linda Zhao.

Source: Statistical Science, Volume 34, Number 4, 545--565.

Abstract:
We develop a model-free theory of general types of parametric regression for i.i.d. observations. The theory replaces the parameters of parametric models with statistical functionals, to be called “regression functionals,” defined on large nonparametric classes of joint ${x extrm{-}y}$ distributions, without assuming a correct model. Parametric models are reduced to heuristics to suggest plausible objective functions. An example of a regression functional is the vector of slopes of linear equations fitted by OLS to largely arbitrary ${x extrm{-}y}$ distributions, without assuming a linear model (see Part I). More generally, regression functionals can be defined by minimizing objective functions, solving estimating equations, or with ad hoc constructions. In this framework, it is possible to achieve the following: (1) define a notion of “well-specification” for regression functionals that replaces the notion of correct specification of models, (2) propose a well-specification diagnostic for regression functionals based on reweighting distributions and data, (3) decompose sampling variability of regression functionals into two sources, one due to the conditional response distribution and another due to the regressor distribution interacting with misspecification, both of order $N^{-1/2}$, (4) exhibit plug-in/sandwich estimators of standard error as limit cases of ${x extrm{-}y}$ bootstrap estimators, and (5) provide theoretical heuristics to indicate that ${x extrm{-}y}$ bootstrap standard errors may generally be preferred over sandwich estimators.




x

Models as Approximations I: Consequences Illustrated with Linear Regression

Andreas Buja, Lawrence Brown, Richard Berk, Edward George, Emil Pitkin, Mikhail Traskin, Kai Zhang, Linda Zhao.

Source: Statistical Science, Volume 34, Number 4, 523--544.

Abstract:
In the early 1980s, Halbert White inaugurated a “model-robust” form of statistical inference based on the “sandwich estimator” of standard error. This estimator is known to be “heteroskedasticity-consistent,” but it is less well known to be “nonlinearity-consistent” as well. Nonlinearity, however, raises fundamental issues because in its presence regressors are not ancillary, hence cannot be treated as fixed. The consequences are deep: (1) population slopes need to be reinterpreted as statistical functionals obtained from OLS fits to largely arbitrary joint ${x extrm{-}y}$ distributions; (2) the meaning of slope parameters needs to be rethought; (3) the regressor distribution affects the slope parameters; (4) randomness of the regressors becomes a source of sampling variability in slope estimates of order $1/sqrt{N}$; (5) inference needs to be based on model-robust standard errors, including sandwich estimators or the ${x extrm{-}y}$ bootstrap. In theory, model-robust and model-trusting standard errors can deviate by arbitrary magnitudes either way. In practice, significant deviations between them can be detected with a diagnostic test.




x

An Overview of Semiparametric Extensions of Finite Mixture Models

Sijia Xiang, Weixin Yao, Guangren Yang.

Source: Statistical Science, Volume 34, Number 3, 391--404.

Abstract:
Finite mixture models have offered a very important tool for exploring complex data structures in many scientific areas, such as economics, epidemiology and finance. Semiparametric mixture models, which were introduced into traditional finite mixture models in the past decade, have brought forth exciting developments in their methodologies, theories, and applications. In this article, we not only provide a selective overview of the newly-developed semiparametric mixture models, but also discuss their estimation methodologies, theoretical properties if applicable, and some open questions. Recent developments are also discussed.




x

Comment: Empirical Bayes, Compound Decisions and Exchangeability

Eitan Greenshtein, Ya’acov Ritov.

Source: Statistical Science, Volume 34, Number 2, 224--228.

Abstract:
We present some personal reflections on empirical Bayes/ compound decision (EB/CD) theory following Efron (2019). In particular, we consider the role of exchangeability in the EB/CD theory and how it can be achieved when there are covariates. We also discuss the interpretation of EB/CD confidence interval, the theoretical efficiency of the CD procedure, and the impact of sparsity assumptions.




x

Gaussian Integrals and Rice Series in Crossing Distributions—to Compute the Distribution of Maxima and Other Features of Gaussian Processes

Georg Lindgren.

Source: Statistical Science, Volume 34, Number 1, 100--128.

Abstract:
We describe and compare how methods based on the classical Rice’s formula for the expected number, and higher moments, of level crossings by a Gaussian process stand up to contemporary numerical methods to accurately deal with crossing related characteristics of the sample paths. We illustrate the relative merits in accuracy and computing time of the Rice moment methods and the exact numerical method, developed since the late 1990s, on three groups of distribution problems, the maximum over a finite interval and the waiting time to first crossing, the length of excursions over a level, and the joint period/amplitude of oscillations. We also treat the notoriously difficult problem of dependence between successive zero crossing distances. The exact solution has been known since at least 2000, but it has remained largely unnoticed outside the ocean science community. Extensive simulation studies illustrate the accuracy of the numerical methods. As a historical introduction an attempt is made to illustrate the relation between Rice’s original formulation and arguments and the exact numerical methods.




x

If you must smoke don't exhale / design : Biman Mullick.

London (33 Stillness Rd, London, SE23 1NG) : Cleanair, Campaign for a Smoke-free Environment, [198-?]




x

If you must smoke don't exhale / Biman Mullick.

London : Cleanair, [1988?]




x

Amazon Just Launched an Exclusive Clothing Collection Full of Warm and Comfy Basics Under $45

The womenswear line is new, and there’s already a variety of items to shop.




x

The Axon Initial Segment: An Updated Viewpoint

Christophe Leterrier
Feb 28, 2018; 38:2135-2145
Viewpoints




x

Allometric Analysis Detects Brain Size-Independent Effects of Sex and Sex Chromosome Complement on Human Cerebellar Organization

Catherine Mankiw
May 24, 2017; 37:5221-5231
Development Plasticity Repair




x

The Next 50 Years of Neuroscience

Cara M. Altimus
Jan 2, 2020; 40:101-106
Viewpoints




x

Physical Exercise Prevents Stress-Induced Activation of Granule Neurons and Enhances Local Inhibitory Mechanisms in the Dentate Gyrus

Timothy J. Schoenfeld
May 1, 2013; 33:7770-7777
BehavioralSystemsCognitive




x

Readiness Potential and Neuronal Determinism: New Insights on Libet Experiment

Karim Fifel
Jan 24, 2018; 38:784-786
Journal Club




x

Axonal ramifications of hippocampal Ca1 pyramidal cells

WD Knowles
Nov 1, 1981; 1:1236-1241
Articles




x

Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control

William W. Seeley
Feb 28, 2007; 27:2349-2356
BehavioralSystemsCognitive




x

Nurture versus Nature: Long-Term Impact of Forced Right-Handedness on Structure of Pericentral Cortex and Basal Ganglia

Stefan Klöppel
Mar 3, 2010; 30:3271-3275
BRIEF COMMUNICATION




x

The Representation of Semantic Information Across Human Cerebral Cortex During Listening Versus Reading Is Invariant to Stimulus Modality

Fatma Deniz
Sep 25, 2019; 39:7722-7736
BehavioralSystemsCognitive




x

Astrocytes Modulate Baroreflex Sensitivity at the Level of the Nucleus of the Solitary Tract

Svetlana Mastitskaya
Apr 8, 2020; 40:3052-3062
Systems/Circuits