gene Genetics of "high-risk" chronic lymphocytic leukemia in the times of chemoimmunotherapy By www.haematologica.org Published On :: 2020-05-01T00:05:41-07:00 Full Article
gene Revisiting the link between platelets and depression through genetic epidemiology: new insights from platelet distribution width By www.haematologica.org Published On :: 2020-05-01T00:05:42-07:00 Full Article
gene CRISPR/Cas9-mediated gene deletion efficiently retards the progression of Philadelphia-positive acute lymphoblastic leukemia in a p210 BCR-ABL1T315I mutation mouse model By www.haematologica.org Published On :: 2020-05-01T00:05:42-07:00 Full Article
gene Systematic Genetic Study of Youth With Diabetes in a Single Country Reveals the Prevalence of Diabetes Subtypes, Novel Candidate Genes, and Response to Precision Therapy By diabetes.diabetesjournals.org Published On :: 2020-04-20T12:00:34-07:00 Identifying gene variants causing monogenic diabetes (MD) increases understanding of disease etiology and allows for implementation of precision therapy to improve metabolic control and quality of life. Here, we aimed to assess the prevalence of MD in youth with diabetes in Lithuania, uncover potential diabetes-related gene variants, and prospectively introduce precision treatment. First, we assessed all pediatric and most young-adult patients with diabetes in Lithuania (n = 1,209) for diabetes-related autoimmune antibodies. We then screened all antibody-negative patients (n = 153) using targeted high-throughput sequencing of >300 potential candidate genes. In this group, 40.7% had MD, with the highest percentage (100%) in infants (diagnosis at ages 0–12 months), followed by those diagnosed at ages >1–18 years (40.3%) and >18–25 years (22.2%). The overall prevalence of MD in youth with diabetes in Lithuania was 3.5% (1.9% for GCK diabetes, 0.7% for HNF1A, 0.2% for HNF4A and ABCC8, 0.3% for KCNJ11, and 0.1% for INS). Furthermore, we identified likely pathogenic variants in 11 additional genes. Microvascular complications were present in 26% of those with MD. Prospective treatment change was successful in >50% of eligible candidates, with C-peptide >252 pmol/L emerging as the best prognostic factor. Full Article
gene Activation of Retinal Angiogenesis in Hyperglycemic pdx1-/- Zebrafish Mutants By diabetes.diabetesjournals.org Published On :: 2020-04-20T12:00:34-07:00 Progression from the initial vascular response upon hyperglycemia to a proliferative stage with neovacularizations is the hallmark of proliferative diabetic retinopathy. Here, we report on the novel diabetic pdx1–/– zebrafish mutant as a model for diabetic retinopathy that lacks the transcription factor pdx1 through CRISPR-Cas9–mediated gene knockout leading to disturbed pancreatic development and hyperglycemia. Larval pdx1–/– mutants prominently show vasodilation of blood vessels through increased vascular thickness in the hyaloid network as direct developmental precursor of the adult retinal vasculature in zebrafish. In adult pdx1–/– mutants, impaired glucose homeostasis induces increased hyperbranching and hypersprouting with new vessel formation in the retina and aggravation of the vascular alterations from the larval to the adult stage. Both vascular aspects respond to antiangiogenic and antihyperglycemic pharmacological interventions in the larval stage and are accompanied by alterations in the nitric oxide metabolism. Thus, the pdx1–/– mutant represents a novel model to study mechanisms of hyperglycemia-induced retinopathy wherein extensive proangiogenic alterations in blood vessel morphology and metabolic alterations underlie the vascular phenotype. Full Article
gene Role of Proinsulin Self-Association in Mutant INS Gene-Induced Diabetes of Youth By diabetes.diabetesjournals.org Published On :: 2020-04-20T12:00:34-07:00 Abnormal interactions between misfolded mutant and wild-type (WT) proinsulin (PI) in the endoplasmic reticulum (ER) drive the molecular pathogenesis of mutant INS gene–induced diabetes of youth (MIDY). How these abnormal interactions are initiated remains unknown. Normally, PI-WT dimerizes in the ER. Here, we suggest that the normal PI-PI contact surface, involving the B-chain, contributes to dominant-negative effects of misfolded MIDY mutants. Specifically, we find that PI B-chain tyrosine-16 (Tyr-B16), which is a key residue in normal PI dimerization, helps confer dominant-negative behavior of MIDY mutant PI-C(A7)Y. Substitutions of Tyr-B16 with either Ala, Asp, or Pro in PI-C(A7)Y decrease the abnormal interactions between the MIDY mutant and PI-WT, rescuing PI-WT export, limiting ER stress, and increasing insulin production in β-cells and human islets. This study reveals the first evidence indicating that noncovalent PI-PI contact initiates dominant-negative behavior of misfolded PI, pointing to a novel therapeutic target to enhance PI-WT export and increase insulin production. Full Article
gene Interindividual Heterogeneity of SGLT2 Expression and Function in Human Pancreatic Islets By diabetes.diabetesjournals.org Published On :: 2020-04-20T12:00:34-07:00 Studies implicating sodium–glucose cotransporter 2 (SGLT2) inhibitors in glucagon secretion by pancreatic α-cells reported controversial results. We hypothesized that interindividual heterogeneity in SGLT2 expression and regulation may affect glucagon secretion by human α-cells in response to SGLT2 inhibitors. An unbiased RNA-sequencing analysis of 207 donors revealed an unprecedented level of heterogeneity of SLC5A2 expression. To determine heterogeneity of SGLT2 expression at the protein level, the anti-SGLT2 antibody was first rigorously evaluated for specificity, followed by Western blot and immunofluorescence analysis on islets from 10 and 12 donors, respectively. The results revealed a high interdonor variability of SGLT2 protein expression. Quantitative analysis of 665 human islets showed a significant SGLT2 protein colocalization with glucagon but not with insulin or somatostatin. Moreover, glucagon secretion by islets from 31 donors at low glucose (1 mmol/L) was also heterogeneous and correlated with dapagliflozin-induced glucagon secretion at 6 mmol/L glucose. Intriguingly, islets from three donors did not secrete glucagon in response to either 1 mmol/L glucose or dapagliflozin, indicating a functional impairment of the islets of these donors to glucose sensing and SGLT2 inhibition. Collectively, these data suggest that heterogeneous expression of SGLT2 protein and variability in glucagon secretory responses contribute to interindividual differences in response to SGLT2 inhibitors. Full Article
gene The Limited Role of Glucagon for Ketogenesis During Fasting or in Response to SGLT2 Inhibition By diabetes.diabetesjournals.org Published On :: 2020-04-20T12:00:34-07:00 Glucagon is classically described as a counterregulatory hormone that plays an essential role in the protection against hypoglycemia. In addition to its role in the regulation of glucose metabolism, glucagon has been described to promote ketosis in the fasted state. Sodium–glucose cotransporter 2 inhibitors (SGLT2i) are a new class of glucose-lowering drugs that act primarily in the kidney, but some reports have described direct effects of SGLT2i on α-cells to stimulate glucagon secretion. Interestingly, SGLT2 inhibition also results in increased endogenous glucose production and ketone production, features common to glucagon action. Here, we directly test the ketogenic role of glucagon in mice, demonstrating that neither fasting- nor SGLT2i-induced ketosis is altered by interruption of glucagon signaling. Moreover, any effect of glucagon to stimulate ketogenesis is severely limited by its insulinotropic actions. Collectively, our data suggest that fasting-associated ketosis and the ketogenic effects of SGLT2 inhibitors occur almost entirely independent of glucagon. Full Article
gene Women’s experiences of diagnosis and management of polycystic ovary syndrome: a mixed-methods study in general practice By bjgp.org Published On :: 2020-04-30T16:04:41-07:00 BackgroundPolycystic ovary syndrome (PCOS) is a common lifelong metabolic condition with serious associated comorbidities. Evidence points to a delay in diagnosis and inconsistency in the information provided to women with PCOS.AimTo capture women’s experiences of how PCOS is diagnosed and managed in UK general practice.Design and settingThis was a mixed-methods study with an online questionnaire survey and semi-structured telephone interviews with a subset of responders.MethodAn online survey to elicit women’s experiences of general practice PCOS care was promoted by charities and BBC Radio Leicester. The survey was accessible online between January 2018 and November 2018. A subset of responders undertook a semi-structured telephone interview to provide more in-depth data.ResultsA total of 323 women completed the survey (average age 35.4 years) and semi-structured interviews were conducted with 11 women. There were five key themes identified through the survey responses. Participants described a variable lag time from presentation to PCOS diagnosis, with a median of 6–12 months. Many had experienced mental health problems associated with their PCOS symptoms, but had not discussed these with the GP. Many were unable to recall any discussion about associated comorbidities with the GP. Some differences were identified between the experiences of women from white British backgrounds and those from other ethnic backgrounds.ConclusionFrom the experiences of the women in this study, it appears that PCOS in general practice is not viewed as a long-term condition with an increased risk of comorbidities including mental health problems. Further research should explore GPs’ awareness of comorbidities and the differences in PCOS care experienced by women from different ethnic backgrounds. Full Article
gene A quick reference guide for rare disease: supporting rare disease management in general practice By bjgp.org Published On :: 2020-04-30T16:04:41-07:00 Full Article
gene Fitter, Better, Sooner: helping your patients in general practice recover more quickly from surgery By bjgp.org Published On :: 2020-04-30T16:04:41-07:00 Full Article
gene Patient and public involvement in general practice research By bjgp.org Published On :: 2020-04-30T16:04:41-07:00 Full Article
gene Connecting General Practitioners Through a Peer-Facilitated Community of Practice for Chronic Disease Care [Innovations in Primary Care] By www.annfammed.org Published On :: 2020-03-09T14:00:11-07:00 Full Article
gene Anticoagulants Safety and Effectiveness in General Practice: A Nationwide Prospective Cohort Study [Original Research] By www.annfammed.org Published On :: 2020-03-09T14:00:11-07:00 PURPOSE Most real-world studies on anticoagulants have been based on health insurance databases or performed in secondary care. The aim of this study was to compare safety and effectiveness between patients treated with vitamin K antagonists (VKAs) and patients treated with direct oral anticoagulants (DOACs) in a general practice setting. METHODS The CACAO study (Comparison of Accidents and their Circumstances with Oral Anticoagulants) is a multicenter prospective cohort study conducted among ambulatory patients taking an oral anticoagulant. Participants were patients from the study’s cross-sectional phase receiving oral anticoagulants because of nonvalvular atrial fibrillation, for secondary prevention of venous thromboembolism, or both. They were followed as usual for 1 year by their general practitioners, who collected data on changes in therapy, thromboembolic events, bleeding, and deaths. All events were adjudicated by an independent committee. We used a propensity score and a Cox regression model to derive hazard ratios. RESULTS Between April and December 2014, a total of 3,082 patients were included. At 1 year, 42 patients (1.7%) had experienced an arterial or venous event; 151 (6.1%) had experienced bleeding, including 47 (1.9%) who experienced major bleeding; and 105 (4.1%) had died. There was no significant difference between the VKA and DOAC groups regarding arterial or venous events, or major bleeding. The VKA group had a lower risk of overall bleeding (hazard ratio = 0.65; 95% CI, 0.43-0.98) but twice the risk of death (hazard ratio = 1.98; 95% CI, 1.15-3.42). CONCLUSIONS VKAs and DOACs had fairly similar safety and effectiveness in general practice. The substantially higher incidence of deaths with VKAs is consistent with known data from health insurance databases and calls for further research to understand its cause. Full Article
gene General Practitioners in US Medical Practice Compared With Family Physicians [Original Research] By www.annfammed.org Published On :: 2020-03-09T14:00:11-07:00 PURPOSE General practitioners (GPs) are part of the US physician workforce, but little is known about who they are, what they do, and how they differ from family physicians (FPs). We describe self-identified GPs and compare them with board-certified FPs. METHODS Analysis of data on 102,604 Doctor of Medicine and Doctor of Osteopathy physicians in direct patient care in the United States in 2016, who identify themselves as GPs or FPs. The study used linking databases (American Medical Association Masterfile, American Board of Family Medicine [ABFM], Area Health Resource File, Medicare Public Use File) to examine personal, professional, and practice characteristics. RESULTS Of the physicians identified, 6,661 self-designated as GPs and 95,943 self-designated as FPs. Of the self-designated GPs, 116 had been ABFM certified and were excluded from the study. Of the remaining 102,488 physicians, those who self-designated as GPs but were never ABFM certified constituted the GP group (n = 6,545, 6%). Self-designated FPs that were ABFM certified made up the FP group (n = 79,449, 78%). The remaining self-designated FPs not ABFM certified constituted the uncertified group (n = 16,494, 16%). GPs differed from FPs in every characteristic examined. Compared with FPs, GPs are more likely to be older, male, Doctors of Osteopathy, graduates of non-US medical schools, and have no family medicine residency training. GPs practice location is similar to FPs, but GPs are less likely to participate in Medicare or to work in hospitals. CONCLUSIONS GPs in the United States are a varied group that differ from FPs. Researchers, educators, and policy makers should not lump GPs together with FPs in data collection, analysis, and reporting. Full Article
gene Pilot Study of Return of Genetic Results to Patients in Adult Nephrology By cjasn.asnjournals.org Published On :: 2020-05-07T10:00:25-07:00 Background and objectives Actionable genetic findings have implications for care of patients with kidney disease, and genetic testing is an emerging tool in nephrology practice. However, there are scarce data regarding best practices for return of results and clinical application of actionable genetic findings for kidney patients. Design, setting, participants, & measurements We developed a return of results workflow in collaborations with clinicians for the retrospective recontact of adult nephrology patients who had been recruited into a biobank research study for exome sequencing and were identified to have medically actionable genetic findings. Results Using this workflow, we attempted to recontact a diverse pilot cohort of 104 nephrology research participants with actionable genetic findings, encompassing 34 different monogenic etiologies of nephropathy and five single-gene disorders recommended by the American College of Medical Genetics and Genomics for return as medically actionable secondary findings. We successfully recontacted 64 (62%) participants and returned results to 41 (39%) individuals. In each case, the genetic diagnosis had meaningful implications for the patients’ nephrology care. Through implementation efforts and qualitative interviews with providers, we identified over 20 key challenges associated with returning results to study participants, and found that physician knowledge gaps in genomics was a recurrent theme. We iteratively addressed these challenges to yield an optimized workflow, which included standardized consultation notes with tailored management recommendations, monthly educational conferences on core topics in genomics, and a curated list of expert clinicians for patients requiring extranephrologic referrals. Conclusions Developing the infrastructure to support return of genetic results in nephrology was resource-intensive, but presented potential opportunities for improving patient care. Podcast This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2020_04_16_12481019.mp3 Full Article
gene RIPK3 Orchestrates Fatty Acid Metabolism in Tumor-Associated Macrophages and Hepatocarcinogenesis By cancerimmunolres.aacrjournals.org Published On :: 2020-05-01T00:05:25-07:00 Metabolic reprogramming is critical for the polarization and function of tumor-associated macrophages (TAM) and hepatocarcinogenesis, but how this reprogramming occurs is unknown. Here, we showed that receptor-interacting protein kinase 3 (RIPK3), a central factor in necroptosis, is downregulated in hepatocellular carcinoma (HCC)–associated macrophages, which correlated with tumorigenesis and enhanced the accumulation and polarization of M2 TAMs. Mechanistically, RIPK3 deficiency in TAMs reduced reactive oxygen species and significantly inhibited caspase1-mediated cleavage of PPAR. These effects enabled PPAR activation and facilitated fatty acid metabolism, including fatty acid oxidation (FAO), and induced M2 polarization in the tumor microenvironment. RIPK3 upregulation or FAO blockade reversed the immunosuppressive activity of TAMs and dampened HCC tumorigenesis. Our findings provide molecular basis for the regulation of RIPK3-mediated, lipid metabolic reprogramming of TAMs, thus highlighting a potential strategy for targeting the immunometabolism of HCC. Full Article
gene Identification of the Targets of T-cell Receptor Therapeutic Agents and Cells by Use of a High-Throughput Genetic Platform By cancerimmunolres.aacrjournals.org Published On :: 2020-05-01T00:05:25-07:00 T-cell receptor (TCR)–based therapeutic cells and agents have emerged as a new class of effective cancer therapies. These therapies work on cells that express intracellular cancer-associated proteins by targeting peptides displayed on MHC receptors. However, cross-reactivities of these agents to off-target cells and tissues have resulted in serious, sometimes fatal, adverse events. We have developed a high-throughput genetic platform (termed "PresentER") that encodes MHC-I peptide minigenes for functional immunologic assays and determines the reactivities of TCR-like therapeutic agents against large libraries of MHC-I ligands. In this article, we demonstrated that PresentER could be used to identify the on-and-off targets of T cells and TCR-mimic (TCRm) antibodies using in vitro coculture assays or binding assays. We found dozens of MHC-I ligands that were cross-reactive with two TCRm antibodies and two native TCRs and that were not easily predictable by other methods. Full Article
gene Diversity and Genetic Basis for Carbapenem Resistance in a Coastal Marine Environment [Public and Environmental Health Microbiology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Resistance to the "last-resort" antibiotics, such as carbapenems, has led to very few antibiotics being left to treat infections by multidrug-resistant bacteria. Spread of carbapenem resistance (CR) has been well characterized for the clinical environment. However, there is a lack of information about its environmental distribution. Our study reveals that CR is present in a wide range of Gram-negative bacteria in the coastal seawater environment, including four phyla, eight classes, and 30 genera. These bacteria were likely introduced into seawater via stormwater flows. Some CR isolates found here, such as Acinetobacter junii, Acinetobacter johnsonii, Brevundimonas vesicularis, Enterococcus durans, Pseudomonas monteilii, Pseudomonas fulva, and Stenotrophomonas maltophilia, are further relevant to human health. We also describe a novel metallo-β-lactamase (MBL) for marine Rheinheimera isolates with CR, which has likely been horizontally transferred to Citrobacter freundii or Enterobacter cloacae. In contrast, another MBL of the New Delhi type was likely acquired by environmental Variovorax isolates from Escherichia coli, Klebsiella pneumoniae, or Acinetobacter baumannii utilizing a plasmid. Our findings add to the growing body of evidence that the aquatic environment is both a reservoir and a vector for novel CR genes. IMPORTANCE Resistance against the "last-resort" antibiotics of the carbapenem family is often based on the production of carbapenemases, and this has been frequently observed in clinical samples. However, the dissemination of carbapenem resistance (CR) in the environment has been less well explored. Our study shows that CR is commonly found in a range of bacterial taxa in the coastal aquatic environment and can involve the exchange of novel metallo-β-lactamases from typical environmental bacteria to potential human pathogens or vice versa. The outcomes of this study contribute to a better understanding of how aquatic and marine bacteria can act as reservoirs and vectors for CR outside the clinical setting. Full Article
gene TnFLX: a Third-Generation mariner-Based Transposon System for Bacillus subtilis [Genetics and Molecular Biology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Random transposon mutagenesis is a powerful and unbiased genetic approach to answer fundamental biological questions. Here, we introduce an improved mariner-based transposon system with enhanced stability during propagation and versatile applications in mutagenesis. We used a low-copy-number plasmid as a transposon delivery vehicle, which affords a lower frequency of unintended recombination during vector construction and propagation in Escherichia coli. We generated a variety of transposons allowing for gene disruption or artificial overexpression, each in combination with one of four different antibiotic resistance markers. In addition, we provide transposons that will report gene/protein expression due to transcriptional or translational coupling. We believe that the TnFLX system will help enhance the flexibility of future transposon modification and application in Bacillus and other organisms. IMPORTANCE The stability of transposase-encoding vectors during cloning and propagation is crucial for the reliable application of transposons. Here, we increased the stability of the mariner delivery vehicle in E. coli. Moreover, the TnFLX transposon system will improve the application of forward genetic methods with an increased number of antibiotic resistance markers and the ability to generate unbiased green fluorescent protein (GFP) fusions to report on protein translation and subcellular localization. Full Article
gene Ecological and Ontogenetic Components of Larval Lake Sturgeon Gut Microbiota Assembly, Successional Dynamics, and Ecological Evaluation of Neutral Community Processes [Microbial Ecology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Gastrointestinal (GI) or gut microbiotas play essential roles in host development and physiology. These roles are influenced partly by the microbial community composition. During early developmental stages, the ecological processes underlying the assembly and successional changes in host GI community composition are influenced by numerous factors, including dispersal from the surrounding environment, age-dependent changes in the gut environment, and changes in dietary regimes. However, the relative importance of these factors to the gut microbiota is not well understood. We examined the effects of environmental (diet and water sources) and host early ontogenetic development on the diversity of and the compositional changes in the gut microbiota of a primitive teleost fish, the lake sturgeon (Acipenser fulvescens), based on massively parallel sequencing of the 16S rRNA gene. Fish larvae were raised in environments that differed in water source (stream versus filtered groundwater) and diet (supplemented versus nonsupplemented Artemia fish). We quantified the gut microbial community structure at three stages (prefeeding and 1 and 2 weeks after exogenous feeding began). The diversity declined and the community composition differed significantly among stages; however, only modest differences associated with dietary or water source treatments were documented. Many taxa present in the gut were over- or underrepresented relative to neutral expectations in each sampling period. The findings indicate dynamic relationships between the gut microbiota composition and host gastrointestinal physiology, with comparatively smaller influences being associated with the rearing environments. Neutral models of community assembly could not be rejected, but selectivity associated with microbe-host GI tract interactions through early ontogenetic stages was evident. The results have implications for sturgeon conservation and aquaculture production specifically and applications of microbe-based management in teleost fish generally. IMPORTANCE We quantified the effects of environment (diet and water sources) and host early ontogenetic development on the diversity of and compositional changes in gut microbial communities based on massively parallel sequencing of the 16S rRNA genes from the GI tracts of larval lake sturgeon (Acipenser fulvescens). The gut microbial community diversity declined and the community composition differed significantly among ontogenetic stages; however, only modest differences associated with dietary or water source treatments were documented. Selectivity associated with microbe-host GI tract interactions through early ontogenetic stages was evident. The results have implications for lake sturgeon and early larval ecology and survival in their natural habitat and for conservation and aquaculture production specifically, as well as applications of microbe-based management in teleost fish generally. Full Article
gene Oxidative Catabolism of (+)-Pinoresinol Is Initiated by an Unusual Flavocytochrome Encoded by Translationally Coupled Genes within a Cluster of (+)-Pinoresinol-Coinduced Genes in Pseudomonas sp. Strain SG-MS2 [Biodegradation] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Burkholderia sp. strain SG-MS1 and Pseudomonas sp. strain SG-MS2 have previously been found to mineralize (+)-pinoresinol through a common catabolic pathway. Here, we used comparative genomics, proteomics, protein semipurification, and heterologous expression to identify a flavoprotein from the vanillyl alcohol oxidase/p-cresol methyl hydroxylase (VAO/PCMH) enzyme family in SG-MS2 that carries out the initial hydroxylation of (+)-pinoresinol at the benzylic carbon. The cognate gene is translationally coupled with a downstream cytochrome gene, and the cytochrome is required for activity. The flavoprotein has a unique combination of cofactor binding and cytochrome requirements for the VAO/PCMH family. The heterologously expressed enzyme has a Km of 1.17 μM for (+)-pinoresinol. The enzyme is overexpressed in strain SG-MS2 upon exposure to (+)-pinoresinol, along with 45 other proteins, 22 of which were found to be encoded by genes in an approximately 35.1-kb cluster also containing the flavoprotein and cytochrome genes. Homologs of 18 of these 22 genes, plus the flavoprotein and cytochrome genes, were also found in a 38.7-kb cluster in SG-MS1. The amino acid identities of four of the other proteins within the SG-MS2 cluster suggest they catalyze conversion of hydroxylated pinoresinol to protocatechuate and 2-methoxyhydroquinone. Nine other proteins upregulated in SG-MS2 on exposure to (+)-pinoresinol appear to be homologs of proteins known to comprise the protocatechuate and 2-methoxyhydroquinone catabolic pathways, but only three of the cognate genes lie within the cluster containing the flavoprotein and cytochrome genes. IMPORTANCE (+)-Pinoresinol is an important plant defense compound, a major food lignan for humans and some other animals, and the model compound used to study degradation of the β-β' linkages in lignin. We report a gene cluster, in one strain each of Pseudomonas and Burkholderia, that is involved in the oxidative catabolism of (+)-pinoresinol. The flavoprotein component of the α-hydroxylase which heads the pathway belongs to the 4-phenol oxidizing (4PO) subgroup of the vanillyl alcohol oxidase/p-cresol methyl hydroxylase (VAO/PCMH) enzyme family but constitutes a novel combination of cofactor and electron acceptor properties for the family. It is translationally coupled with a cytochrome gene whose product is also required for activity. The work casts new light on the biology of (+)-pinoresinol and its transformation to other bioactive molecules. Potential applications of the findings include new options for deconstructing lignin into useful chemicals and the generation of new phytoestrogenic enterolactones from lignans. Full Article
gene Two Functional Fatty Acyl Coenzyme A Ligases Affect Free Fatty Acid Metabolism To Block Biosynthesis of an Antifungal Antibiotic in Lysobacter enzymogenes [Environmental Microbiology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 In Lysobacter enzymogenes OH11, RpfB1 and RpfB2 were predicted to encode acyl coenzyme A (CoA) ligases. RpfB1 is located in the Rpf gene cluster. Interestingly, we found an RpfB1 homolog (RpfB2) outside this canonical gene cluster, and nothing is known about its functionality or mechanism. Here, we report that rpfB1 and rpfB2 can functionally replace EcFadD in the Escherichia coli fadD mutant JW1794. RpfB activates long-chain fatty acids (n-C16:0 and n-C18:0) for the corresponding fatty acyl-CoA ligase (FCL) activity in vitro, and Glu-361 plays critical roles in the catalytic mechanism of RpfB1 and RpfB2. Deletion of rpfB1 and rpfB2 resulted in significantly increased heat-stable antifungal factor (HSAF) production, and overexpression of rpfB1 or rpfB2 completely suppressed HSAF production. Deletion of rpfB1 and rpfB2 resulted in increased L. enzymogenes diffusible signaling factor 3 (LeDSF3) synthesis in L. enzymogenes. Overall, our results showed that changes in intracellular free fatty acid levels significantly altered HSAF production. Our report shows that intracellular free fatty acids are required for HSAF production and that RpfB affects HSAF production via FCL activity. The global transcriptional regulator Clp directly regulated the expression of rpfB1 and rpfB2. In conclusion, these findings reveal new roles of RpfB in antibiotic biosynthesis in L. enzymogenes. IMPORTANCE Understanding the biosynthetic and regulatory mechanisms of heat-stable antifungal factor (HSAF) could improve the yield in Lysobacter enzymogenes. Here, we report that RpfB1 and RpfB2 encode acyl coenzyme A (CoA) ligases. Our research shows that RpfB1 and RpfB2 affect free fatty acid metabolism via fatty acyl-CoA ligase (FCL) activity to reduce the substrate for HSAF synthesis and, thereby, block HSAF production in L. enzymogenes. Furthermore, these findings reveal new roles for the fatty acyl-CoA ligases RpfB1 and RpfB2 in antibiotic biosynthesis in L. enzymogenes. Importantly, the novelty of this work is the finding that RpfB2 lies outside the Rpf gene cluster and plays a key role in HSAF production, which has not been reported in other diffusible signaling factor (DSF)/Rpf-producing bacteria. Full Article
gene Genetic Influences of the Microbiota on the Life Span of Drosophila melanogaster [Invertebrate Microbiology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 To better understand how associated microorganisms ("microbiota") influence organismal aging, we focused on the model organism Drosophila melanogaster. We conducted a metagenome-wide association (MGWA) as a screen to identify bacterial genes associated with variation in the D. melanogaster life span. The results of the MGWA predicted that bacterial cysteine and methionine metabolism genes influence fruit fly longevity. A mutant analysis, in which flies were inoculated with Escherichia coli strains bearing mutations in various methionine cycle genes, confirmed a role for some methionine cycle genes in extending or shortening fruit fly life span. Initially, we predicted these genes might influence longevity by mimicking or opposing methionine restriction, an established mechanism for life span extension in fruit flies. However, follow-up transcriptome sequencing (RNA-seq) and metabolomic experiments were generally inconsistent with this conclusion and instead implicated glucose and vitamin B6 metabolism in these influences. We then tested if bacteria could influence life span through methionine restriction using a different set of bacterial strains. Flies reared with a bacterial strain that ectopically expressed bacterial transsulfuration genes and lowered the methionine content of the fly diet also extended female D. melanogaster life span. Taken together, the microbial influences shown here overlap with established host genetic mechanisms for aging and therefore suggest overlapping roles for host and microbial metabolism genes in organismal aging. IMPORTANCE Associated microorganisms ("microbiota") are intimately connected to the behavior and physiology of their animal hosts, and defining the mechanisms of these interactions is an urgent imperative. This study focuses on how microorganisms influence the life span of a model host, the fruit fly Drosophila melanogaster. First, we performed a screen that suggested a strong influence of bacterial methionine metabolism on host life span. Follow-up analyses of gene expression and metabolite abundance identified stronger roles for vitamin B6 and glucose than methionine metabolism among the tested mutants, possibly suggesting a more limited role for bacterial methionine metabolism genes in host life span effects. In a parallel set of experiments, we created a distinct bacterial strain that expressed life span-extending methionine metabolism genes and showed that this strain can extend fly life span. Therefore, this work identifies specific bacterial genes that influence host life span, including in ways that are consistent with the expectations of methionine restriction. Full Article
gene The N-Acetylglucosaminidase LytB of Streptococcus pneumoniae Is Involved in the Structure and Formation of Biofilms [Genetics and Molecular Biology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 The N-acetylglucosaminidase LytB of Streptococcus pneumoniae is involved in nasopharyngeal colonization and is responsible for cell separation at the end of cell division; thus, lytB mutants form long chains of cells. This paper reports the construction and properties of a defective pneumococcal mutant producing an inactive LytB protein (LytBE585A). It is shown that an enzymatically active LytB is required for in vitro biofilm formation, as lytB mutants (either lytB or producing the inactive LytBE585A) are incapable of forming substantial biofilms, despite that extracellular DNA is present in the biofilm matrix. Adding small amounts (0.5 to 2.0 μg/ml) of exogenous LytB or some LytB constructs restored the biofilm-forming capacity of lytB mutants to wild-type levels. The LytBE585A mutant formed biofilm more rapidly than lytB mutants in the presence of LytB. This suggests that the mutant protein acted in a structural role, likely through the formation of complexes with extracellular DNA. The chain-dispersing capacity of LytB allowed the separation of daughter cells, presumably facilitating the formation of microcolonies and, finally, of biofilms. A role for the possible involvement of LytB in the synthesis of the extracellular polysaccharide component of the biofilm matrix is also discussed. IMPORTANCE It has been previously accepted that biofilm formation in S. pneumoniae must be a multigenic trait because the mutation of a single gene has led to only to partial inhibition of biofilm production. In the present study, however, evidence that the N-acetylglucosaminidase LytB is crucial in biofilm formation is provided. Despite the presence of extracellular DNA, strains either deficient in LytB or producing a defective LytB enzyme formed only shallow biofilms. Full Article
gene CosR Is a Global Regulator of the Osmotic Stress Response with Widespread Distribution among Bacteria [Genetics and Molecular Biology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Bacteria accumulate small, organic compounds called compatible solutes via uptake from the environment or biosynthesis from available precursors to maintain the turgor pressure of the cell in response to osmotic stress. The halophile Vibrio parahaemolyticus has biosynthesis pathways for the compatible solutes ectoine (encoded by ectABC-asp_ect) and glycine betaine (encoded by betIBA-proXWV), four betaine-carnitine-choline transporters (encoded by bccT1 to bccT4), and a second ProU transporter (encoded by proVWX). All of these systems are osmotically inducible with the exception of bccT2. Previously, it was shown that CosR, a MarR-type regulator, was a direct repressor of ectABC-asp_ect in Vibrio species. In this study, we investigated whether CosR has a broader role in the osmotic stress response. Expression analyses demonstrated that betIBA-proXWV, bccT1, bccT3, bccT4, and proVWX are repressed in low salinity. Examination of an in-frame cosR deletion mutant showed that expression of these systems is derepressed in the mutant at low salinity compared with the wild type. DNA binding assays demonstrated that purified CosR binds directly to the regulatory region of both biosynthesis systems and four transporters. In Escherichia coli green fluorescent protein (GFP) reporter assays, we demonstrated that CosR directly represses transcription of betIBA-proXWV, bccT3, and proVWX. Similar to Vibrio harveyi, we showed betIBA-proXWV was directly activated by the quorum-sensing LuxR homolog OpaR, suggesting a conserved mechanism of regulation among Vibrio species. Phylogenetic analysis demonstrated that CosR is ancestral to the Vibrionaceae family, and bioinformatics analysis showed widespread distribution among Gammaproteobacteria in general. Incidentally, in Aliivibrio fischeri, Aliivibrio finisterrensis, Aliivibrio sifiae, and Aliivibrio wodanis, an unrelated MarR-type regulator gene named ectR was clustered with ectABC-asp, which suggests the presence of another novel ectoine biosynthesis regulator. Overall, these data show that CosR is a global regulator of osmotic stress response that is widespread among bacteria. IMPORTANCE Vibrio parahaemolyticus can accumulate compatible solutes via biosynthesis and transport, which allow the cell to survive in high salinity conditions. There is little need for compatible solutes under low salinity conditions, and biosynthesis and transporter systems need to be repressed. However, the mechanism(s) of this repression is not known. In this study, we showed that CosR played a major role in the regulation of multiple compatible solute systems. Phylogenetic analysis showed that CosR is present in all members of the Vibrionaceae family as well as numerous Gammaproteobacteria. Collectively, these data establish CosR as a global regulator of the osmotic stress response that is widespread in bacteria, controlling many more systems than previously demonstrated. Full Article
gene Systems Analysis Implicates WAVE2 Complex in the Pathogenesis of Developmental Left-Sided Obstructive Heart Defects By www.basictranslational.onlinejacc.org Published On :: 2020-04-27T11:00:20-07:00 Genetic variants are the primary driver of congenital heart disease (CHD) pathogenesis. However, our ability to identify causative variants is limited. To identify causal CHD genes that are associated with specific molecular functions, the study used prior knowledge to filter de novo variants from 2,881 probands with sporadic severe CHD. This approach enabled the authors to identify an association between left ventricular outflow tract obstruction lesions and genes associated with the WAVE2 complex and regulation of small GTPase-mediated signal transduction. Using CRISPR zebrafish knockdowns, the study confirmed that WAVE2 complex proteins brk1, nckap1, and wasf2 and the regulators of small GTPase signaling cul3a and racgap1 are critical to cardiac development. Full Article
gene Scope and Predictive Genetic/Phenotypic Signatures of Bicarbonate (NaHCO3) Responsiveness and {beta}-Lactam Sensitization in Methicillin-Resistant Staphylococcus aureus [Susceptibility] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 Addition of sodium bicarbonate (NaHCO3) to standard antimicrobial susceptibility testing medium reveals certain methicillin-resistant Staphylococcus aureus (MRSA) strains to be highly susceptible to β-lactams. We investigated the prevalence of this phenotype (NaHCO3 responsiveness) to two β-lactams among 58 clinical MRSA bloodstream isolates. Of note, ~75% and ~36% of isolates displayed the NaHCO3 responsiveness phenotype to cefazolin (CFZ) and oxacillin (OXA), respectively. Neither intrinsic β-lactam MICs in standard Mueller-Hinton broth (MHB) nor population analysis profiles were predictive of this phenotype. Several genotypic markers (clonal complex 8 [CC8]; agr I and spa t008) were associated with NaHCO3 responsiveness for OXA. Full Article
gene Using Genetic Distance from Archived Samples for the Prediction of Antibiotic Resistance in Escherichia coli [Epidemiology and Surveillance] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 The rising rates of antibiotic resistance increasingly compromise empirical treatment. Knowing the antibiotic susceptibility of a pathogen’s close genetic relative(s) may improve empirical antibiotic selection. Using genomic and phenotypic data for Escherichia coli isolates from three separate clinically derived databases, we evaluated multiple genomic methods and statistical models for predicting antibiotic susceptibility, focusing on potentially rapidly available information, such as lineage or genetic distance from archived isolates. We applied these methods to derive and validate the prediction of antibiotic susceptibility to common antibiotics. We evaluated 968 separate episodes of suspected and confirmed infection with Escherichia coli from three geographically and temporally separated databases in Ontario, Canada, from 2010 to 2018. Across all approaches, model performance (area under the curve [AUC]) ranges for predicting antibiotic susceptibility were the greatest for ciprofloxacin (AUC, 0.76 to 0.97) and the lowest for trimethoprim-sulfamethoxazole (AUC, 0.51 to 0.80). When a model predicted that an isolate was susceptible, the resulting (posttest) probabilities of susceptibility were sufficient to warrant empirical therapy for most antibiotics (mean, 92%). An approach combining multiple models could permit the use of narrower-spectrum oral agents in 2 out of every 3 patients while maintaining high treatment adequacy (~90%). Methods based on genetic relatedness to archived samples of E. coli could be used to predict antibiotic resistance and improve antibiotic selection. Full Article
gene Activity of Imipenem-Relebactam against Carbapenem-Resistant Escherichia coli Isolates from the United States in Relation to Clonal Background, Resistance Genes, Coresistance, and Region [Epidemiology and Surveillance] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 Imipenem-relebactam (I-R) is a recently developed carbapenem–beta-lactamase inhibitor combination agent that can overcome carbapenem resistance, which has now emerged in Escherichia coli, including sequence type 131 (ST131) and its fluoroquinolone-resistant H30R subclone, the leading cause of extraintestinal E. coli infections globally. To clarify the likely utility of I-R for carbapenem-resistant (CR) E. coli infections in the United States, we characterized 203 recent CR clinical E. coli isolates from across the United States (years 2002 to 2017) for phylogroup, clonal group (including ST131, H30R, and the CTX-M-15-associated H30Rx subset within H30R), relevant beta-lactamase genes, and broth microdilution MICs for I-R and 11 comparator agents. Overall, I-R was highly active (89% susceptible), more so than all comparators except tigecycline and colistin (both 99% susceptible). I-R’s activity varied significantly in relation to phylogroup, clonal background, resistance genotype, and region. It was greatest among phylogroup B2, ST131-H30R, H30Rx, Klebsiella pneumoniae carbapenemase (KPC)-positive, and northeast U.S. isolates and lowest among phylogroup C, New Delhi metallo-β-lactamase (NDM)-positive, and southeast U.S. isolates. Relebactam improved imipenem’s activity against CR isolates within each phylogroup—especially groups A, B1, and B2—and particularly against isolates containing KPC. I-R remained substantially active against isolates coresistant to comparator agents, albeit somewhat less so than against the corresponding susceptible isolates. These findings suggest that I-R should be useful for treating most CR E. coli infections in the United States, largely independent of coresistance, although this likely will vary in relation to the local prevalence of specific E. coli lineages and carbapenem resistance mechanisms. Full Article
gene In Vitro Activity of KBP-7072, a Novel Third-Generation Tetracycline, against 531 Recent Geographically Diverse and Molecularly Characterized Acinetobacter baumannii Species Complex Isolates [Susceptibility] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 KBP-7072 is a novel third-generation tetracycline (aminomethylcycline) antibacterial that overcomes common efflux and ribosomal protection resistance mechanisms that cause resistance in older-generation tetracyclines. KBP-7072 completed phase 1 clinical development studies for safety, tolerability, and pharmacokinetics (ClinicalTrials.gov identifier NCT02454361) and multiple ascending doses in healthy subjects (ClinicalTrials.gov identifier NCT02654626) in December 2015. Both oral and intravenous formulations of KBP-7072 are being developed. In this study, we evaluated the in vitro activities of KBP-7072 and comparator agents by CLSI document M07 (2018) broth microdilution against 531 recent geographically diverse and/or molecularly characterized Acinetobacter baumannii-A. calcoaceticus species complex (A. baumannii) isolates from the United States, Europe, Asia-Pacific (excluding China), and Latin America. A. baumannii isolates included carbapenem-resistant, colistin-resistant, tetracycline-resistant, and extended-spectrum-β-lactamase (ESBL)- and metallo-β-lactamase (MBL)-producing isolates. Overall, KBP-7072 (MIC50/90, 0.25/1 mg/liter) was comparable in activity to colistin (92.8%/92.8% susceptible [S] [CLSI/EUCAST]) against A. baumannii isolates, inhibiting 99.2% of isolates at ≤2 mg/liter and 97.6% of isolates at ≤1 mg/liter. KBP-7072 was equally active against A. baumannii isolates, including carbapenem-resistant, colistin-resistant, and tetracycline-resistant isolates, regardless of geographic location, and maintained activity against ESBL- and MBL-producing isolates. KBP-7072 outperformed comparator agents, including ceftazidime (40.3% S [CLSI]), gentamicin (48.2%/48.2% S [CLSI/EUCAST]), levofloxacin (39.5%/37.9% S [CLSI/EUCAST]), meropenem (42.0%/42.0% S [CLSI/EUCAST]), piperacillin-tazobactam (33.3% S [CLSI]), and all tetracycline-class comparator agents, which include doxycycline (67.3% S [CLSI]), minocycline (73.8% S [CLSI]), tetracycline (37.2% S [CLSI]), and tigecycline (79.5% inhibited by ≤2 mg/liter). The potent in vitro activity of KBP-7072 against recent geographically diverse, molecularly characterized, and drug-resistant A. baumannii isolates supports continued clinical development for the treatment of serious infections, including those caused by A. baumannii. Full Article
gene Hypermutator Pseudomonas aeruginosa Exploits Multiple Genetic Pathways To Develop Multidrug Resistance during Long-Term Infections in the Airways of Cystic Fibrosis Patients [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-04-21T08:01:09-07:00 Pseudomonas aeruginosa exploits intrinsic and acquired resistance mechanisms to resist almost every antibiotic used in chemotherapy. Antimicrobial resistance in P. aeruginosa isolates recovered from cystic fibrosis (CF) patients is further enhanced by the occurrence of hypermutator strains, a hallmark of chronic infections in CF patients. However, the within-patient genetic diversity of P. aeruginosa populations related to antibiotic resistance remains unexplored. Here, we show the evolution of the mutational resistome profile of a P. aeruginosa hypermutator lineage by performing longitudinal and transversal analyses of isolates collected from a CF patient throughout 20 years of chronic infection. Our results show the accumulation of thousands of mutations, with an overall evolutionary history characterized by purifying selection. However, mutations in antibiotic resistance genes appear to have been positively selected, driven by antibiotic treatment. Antibiotic resistance increased as infection progressed toward the establishment of a population constituted by genotypically diversified coexisting sublineages, all of which converged to multidrug resistance. These sublineages emerged by parallel evolution through distinct evolutionary pathways, which affected genes of the same functional categories. Interestingly, ampC and ftsI, encoding the β-lactamase and penicillin-binding protein 3, respectively, were found to be among the most frequently mutated genes. In fact, both genes were targeted by multiple independent mutational events, which led to a wide diversity of coexisting alleles underlying β-lactam resistance. Our findings indicate that hypermutators, apart from boosting antibiotic resistance evolution by simultaneously targeting several genes, favor the emergence of adaptive innovative alleles by clustering beneficial/compensatory mutations in the same gene, hence expanding P. aeruginosa strategies for persistence. Full Article
gene Whole-Genome Characterization of a Shewanella algae Strain Coharboring blaCTX-M-15 and armA Genes on a Novel IncC Plasmid [Letters] By aac.asm.org Published On :: 2020-04-21T08:01:09-07:00 Full Article
gene The Novel Macrolide Resistance Genes mef(D), msr(F), and msr(H) Are Present on Resistance Islands in Macrococcus canis, Macrococcus caseolyticus, and Staphylococcus aureus [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-04-21T08:01:09-07:00 Chromosomal resistance islands containing the methicillin resistance gene mecD (McRImecD) have been reported in Macrococcus caseolyticus. Here, we identified novel macrolide resistance genes in Macrococcus canis on similar elements, called McRImsr. These elements were also integrated into the 3' end of the 30S ribosomal protein S9 gene (rpsI), delimited by characteristic attachment (att) sites, and carried a related site-specific integrase gene (int) at the 5' end. They carried novel macrolide resistance genes belonging to the msr family of ABC subfamily F (ABC-F)-type ribosomal protection protein [msr(F) and msr(H)] and the macrolide efflux mef family [mef(D)]. Highly related mef(D)-msr(F) fragments were found on diverse McRImsr elements in M. canis, M. caseolyticus, and Staphylococcus aureus. Another McRImsr-like element identified in an M. canis strain lacked the classical att site at the 3' end and carried the msr(H) gene but no neighboring mef gene. The expression of the novel resistance genes in S. aureus resulted in a low-to-moderate increase in the MIC of erythromycin but not streptogramin B. In the mef(D)-msr(F) operon, the msr(F) gene was shown to be the crucial determinant for macrolide resistance. The detection of circular forms of McRImsr and the mef(D)-msr(F) fragment suggested mobility of both the island and the resistance gene subunit. The discovery of McRImsr in different Macrococcus species and S. aureus indicates that these islands have a potential for dissemination of antibiotic resistance within the Staphylococcaceae family. Full Article
gene Fibroblast Heterogeneity in the Pancreatic Tumor Microenvironment [Mini Review] By cancerdiscovery.aacrjournals.org Published On :: 2020-05-01T00:05:26-07:00 The poor prognosis for patients with pancreatic ductal adenocarcinoma (PDAC) impels an improved understanding of disease biology to facilitate the development of better therapies. PDAC typically features a remarkably dense stromal reaction, featuring and established by a prominent population of cancer-associated fibroblasts (CAF). Genetically engineered mouse models and increasingly sophisticated cell culture techniques have demonstrated important roles for fibroblasts in PDAC progression and therapy response, but these roles are complex, with strong evidence for both tumor-supportive and tumor-suppressive or homeostatic functions. Here, we review the recent literature that has improved our understanding of heterogeneity in fibroblast fate and function in this disease including the existence of distinct fibroblast populations, and highlight important avenues for future study. Significance: Although the abundant stromal reaction associated with pancreatic cancer has long been appreciated, the functions of the CAF cells that establish this stromal reaction remain unclear. An improved understanding of the transcriptional and functional heterogeneity of pancreatic CAFs, as well as their tumor-supportive versus tumor-suppressive capacity, may facilitate the development of effective therapies for this disease. Full Article
gene Oncogene-Induced Senescence Uniquely Alters Genome Architecture [Senescence] By cancerdiscovery.aacrjournals.org Published On :: 2020-05-01T00:05:26-07:00 Unlike replicative senescence, oncogene-induced senescence caused heterochromatin-body formation. Full Article
gene Epigenetic Therapy Can Suppress Premetastatic Changes in the Lung [Metastasis] By cancerdiscovery.aacrjournals.org Published On :: 2020-05-01T00:05:26-07:00 Low-dose adjuvant epigenetic therapy (AET) reduced metastasis and promoted survival in mouse models. Full Article
gene Gastrin Blocks Symmetric Stem-Cell Division and Gastric Tumorigenesis [Gastric Cancer] By cancerdiscovery.aacrjournals.org Published On :: 2020-05-01T00:05:26-07:00 Symmetric division of stem cells positive for gastrin receptor CCK2R is linked to gastric cancer. Full Article
gene The diagnostic challenges and clinical course of a myeloid/lymphoid neoplasm with eosinophilia and ZBTB20-JAK2 gene fusion presenting as B-lymphoblastic leukemia [RESEARCH REPORT] By molecularcasestudies.cshlp.org Published On :: 2020-04-01T06:30:17-07:00 We report the diagnostic challenges and the clinical course of a patient with an extraordinary presentation of B-lymphoblastic leukemia (B-ALL) with eosinophilia. We identified a novel ZBTB20-JAK2 gene fusion as a chimeric RNA transcript using the Archer platform. This gene fusion from the same patient was recently identified by Peterson et al. (2019) at the genomic level using a different sequencing technology platform. The configuration of this gene fusion predicts the production of a kinase-activating JAK2 fusion protein, which would normally lead to a diagnosis of Philadelphia chromosome–like B-ALL (Ph-like B-ALL). However, the unusual presentation of eosinophilia led us to demonstrate the presence of this gene fusion in nonlymphoid hematopoietic cells by fluorescence in situ hybridization (FISH) studies with morphologic correlation. Therefore, we believe this disease, in fact, represents blast crisis arising from an underlying myeloid neoplasm with JAK2 rearrangements. This case illustrates the difficulty in differentiating Ph-like B-ALL and myeloid/lymphoid neoplasm with eosinophilia and gene rearrangements (MLN-EGR) in blast crisis. As currently defined, the diagnosis of MLN-EGR relies on the hematologic presentations and the identification of marker gene fusions (including PCM1-JAK2, ETV6-JAK2, and BCR-JAK2). However, these same gene fusions, when limited to B-lymphoblasts, also define Ph-like B-ALL. Yet, our case does not conform to either condition. Therefore, the assessment for lineage restriction of gene rearrangements to reflect the pathophysiologic difference between B-ALL and MLN-EGR in blast crisis is likely a more robust diagnostic approach and allows the inclusion of MLN-EGR with novel gene fusions. Full Article
gene The tale of two genes: from next-generation sequencing to phenotype [RESEARCH REPORT] By molecularcasestudies.cshlp.org Published On :: 2020-04-01T06:30:17-07:00 An 18-yr-old man with a history of intellectual disability, craniofacial dysmorphism, seizure disorder, and obesity was identified to carry a de novo, pathogenic variant in ASXL1 (c.4198G>T; p.E1400X) associated with the diagnosis of Bohring–Opitz syndrome based on exome sequencing. In addition, he was identified to carry a maternally inherited and likely pathogenic variant in MC4R (c.817C>T; p.Q273X) associated with monogenic obesity. Dual genetic diagnosis occurs in 4%–6% of patients and results in unique clinical phenotypes that are a function of tissue-specific gene expression, involved pathways, clinical expressivity, and penetrance. This case highlights the utility of next-generation sequencing in patients with an unusual combination of clinical presentations for several pillars of precision medicine including (1) diagnosis, (2) prognosis and outcome, (3) management and therapy, and (4) utilization of resources. Full Article
gene Tumoral and immune heterogeneity in an anti-PD-1-responsive glioblastoma: a case study [RESEARCH REPORT] By molecularcasestudies.cshlp.org Published On :: 2020-04-01T06:30:17-07:00 Clinical benefit of immune checkpoint blockade in glioblastoma (GBM) is rare, and we hypothesize that tumor clonal evolution and the immune microenvironment are key determinants of response. Here, we present a detailed molecular characterization of the intratumoral and immune heterogeneity in an IDH wild-type, MGMT-negative GBM patient who plausibly benefited from anti-PD-1 therapy with an unusually long 25-mo overall survival time. We leveraged multiplex immunohistochemistry, RNA-seq, and whole-exome data from the primary tumor and three resected regions of recurrent disease to survey regional tumor-immune interactions, genomic instability, mutation burden, and expression profiles. We found significant regional heterogeneity in the neoantigenic and immune landscape, with a differential T-cell signature among recurrent sectors, a uniform loss of focal amplifications in EGFR, and a novel subclonal EGFR mutation. Comparisons with recently reported correlates of checkpoint blockade in GBM and with TCGA-GBM revealed appreciable intratumoral heterogeneity that may have contributed to a differential PD-1 blockade response. Full Article
gene [Molecular Pathology] Toward Combined Cell and Gene Therapy for Genodermatoses By cshperspectives.cshlp.org Published On :: 2020-05-01T06:30:17-07:00 To date, more than 200 monogenic, often devastating, skin diseases have been described. Because of unmet medical needs, development of long-lasting and curative therapies has been consistently attempted, with the aim of correcting the underlying molecular defect. In this review, we will specifically address the few combined cell and gene therapy strategies that made it to the clinics. Based on these studies, what can be envisioned for the future is a patient-oriented strategy, built on the specific features of the individual in need. Most likely, a combination of different strategies, approaches, and advanced therapies will be required to reach the finish line at the end of the long and winding road hampering the achievement of definitive treatments for genodermatoses. Full Article
gene Genetic and Circulating Biomarker Data Improve Risk Prediction for Pancreatic Cancer in the General Population By cebp.aacrjournals.org Published On :: 2020-05-01T00:05:36-07:00 Background: Pancreatic cancer is the third leading cause of cancer death in the United States, and 80% of patients present with advanced, incurable disease. Risk markers for pancreatic cancer have been characterized, but combined models are not used clinically to identify individuals at high risk for the disease. Methods: Within a nested case–control study of 500 pancreatic cancer cases diagnosed after blood collection and 1,091 matched controls enrolled in four U.S. prospective cohorts, we characterized absolute risk models that included clinical factors (e.g., body mass index, history of diabetes), germline genetic polymorphisms, and circulating biomarkers. Results: Model discrimination showed an area under ROC curve of 0.62 via cross-validation. Our final integrated model identified 3.7% of men and 2.6% of women who had at least 3 times greater than average risk in the ensuing 10 years. Individuals within the top risk percentile had a 4% risk of developing pancreatic cancer by age 80 years and 2% 10-year risk at age 70 years. Conclusions: Risk models that include established clinical, genetic, and circulating factors improved disease discrimination over models using clinical factors alone. Impact: Absolute risk models for pancreatic cancer may help identify individuals in the general population appropriate for disease interception. Full Article
gene One Size Does Not Fit All: Marked Heterogeneity in Incidence of and Survival from Gastric Cancer among Asian American Subgroups By cebp.aacrjournals.org Published On :: 2020-05-01T00:05:36-07:00 Background: Asian Americans are at higher risk for noncardia gastric cancers (NCGC) relative to non-Hispanic Whites (NHW). Asian Americans are genetically, linguistically, and culturally heterogeneous, yet have mostly been treated as a single population in prior studies. This aggregation may obscure important subgroup-specific cancer patterns. Methods: We utilized data from 13 regional United States cancer registries from 1990 to 2014 to determine secular trends in incidence and survivorship from NCGC. Data were analyzed for NHWs and the six largest Asian American subgroups: Chinese, Japanese, Filipino, Korean, Vietnamese, and South Asian (Indian/Pakistani). Results: There exists substantial heterogeneity in NCGC incidence between Asian subgroups, with Koreans (48.6 per 100,000 person-years) having seven-fold higher age-adjusted incidence than South Asians (7.4 per 100,000 person-years). Asians had generally earlier stages of diagnosis and higher rates of surgical resection compared with NHWs. All Asian subgroups also demonstrated higher 5-year observed survival compared with NHWs, with Koreans (41.3%) and South Asians (42.8%) having survival double that of NHWs (20.1%, P < 0.001). In multivariable regression, differences in stage of diagnosis and rates of resection partially explained the difference in survivorship between Asian subgroups. Conclusions: We find substantial differences in incidence, staging, histology, treatment, and survivorship from NCGC between Asian subgroups, data which challenge our traditional perceptions about gastric cancer in Asians. Both biological heterogeneity and cultural/environmental differences may underlie these findings. Impact: These data are relevant to the national discourse regarding the appropriate role of gastric cancer screening, and identifies high-risk racial/ethnic subgroups who many benefit from customized risk attenuation programs. Full Article
gene The Impact of One-week Dietary Supplementation with Kava on Biomarkers of Tobacco Use and Nitrosamine-based Carcinogenesis Risk among Active Smokers By cancerpreventionresearch.aacrjournals.org Published On :: 2020-05-04T05:35:14-07:00 Tobacco smoking is the primary risk factor for lung cancer, driven by the addictive nature of nicotine and the indisputable carcinogenicity of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) as well as other compounds. The integration of lung cancer chemoprevention with smoking cessation is one potential approach to reduce this risk and mitigate lung cancer mortality. Experimental data from our group suggest that kava, commonly consumed in the South Pacific Islands as a beverage to promote relaxation, may reduce lung cancer risk by enhancing NNK detoxification and reducing NNK-derived DNA damage. Building upon these observations, we conducted a pilot clinical trial to evaluate the effects of a 7-day course of kava on NNK metabolism in active smokers. The primary objective was to compare urinary total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL plus its glucuronides, major metabolites of NNK) before and after kava administration as an indicator of NNK detoxification. Secondary objectives included determining kava's safety, its effects on DNA damage, tobacco use, and cortisol (a biomarker of stress). Kava increased urinary excretion of total NNAL and reduced urinary 3-methyladenine in participants, suggestive of its ability to reduce the carcinogenicity of NNK. Kava also reduced urinary total nicotine equivalents, indicative of its potential to facilitate tobacco cessation. Plasma cortisol and urinary total cortisol equivalents were reduced upon kava use, which may contribute to reductions in tobacco use. These results demonstrate the potential of kava intake to reduce lung cancer risk among smokers. Full Article
gene Maternal Epigenetic Regulation Contributes to Prevention of Estrogen Receptor-negative Mammary Cancer with Broccoli Sprout Consumption By cancerpreventionresearch.aacrjournals.org Published On :: 2020-05-04T05:35:14-07:00 Cruciferous vegetables have been of special interest due to the rich presence of bioactive compounds such as sulforaphane which show promising potential on cancer prevention and therapy as an epigenetic dietary strategy. Abnormal epigenetic alteration as one of the primary contributors to tumor development is closely related to breast cancer initiation and progression. In the present study, we investigated the effect of dietary broccoli sprouts (BSp), a common cruciferous vegetable, on prevention of estrogen receptor (ER)-negative mammary tumors at three different temporal exposure windows using a spontaneous breast cancer mouse model. Our findings indicate that maternal BSp treatment exhibited profound inhibitory and preventive effects on mammary cancer formation in the nontreated mouse offspring. The BSp diet administered to adult mice also showed suppressive effects on mammary cancer but was not as profound as the maternal BSp preventive effects. Moreover, such protective effects were linked with differentially expressed tumor- and epigenetic-related genes, as well as altered global histone acetylation, DNA methylation, and DNA hydroxymethylation levels. We also found that the expression changes of tumor-related genes were associated with the levels of histone methylation of H3K4 and H3K9 in the gene promoter regions. In addition, BSp-enriched sulforaphane was shown to increase protein expression of tumor suppressor genes such as p16 and p53 and inhibit the protein levels of Bmi1, DNA methyltransferases, and histone deacetylases in ERα-negative breast cancer cell lines. Collectively, these results suggest that maternal exposure to key phytochemicals may contribute to ER-negative mammary tumor prevention in their offspring through epigenetic regulations. Full Article
gene Retraction: Insulin-Like Growth Factor I Suppresses Bone Morphogenetic Protein Signaling in Prostate Cancer Cells by Activating mTOR Signaling By cancerres.aacrjournals.org Published On :: 2020-05-04T05:35:17-07:00 Full Article
gene Circulating Immune Cell Composition and Cancer Risk: A Prospective Study Using Epigenetic Cell Count Measures By cancerres.aacrjournals.org Published On :: 2020-05-04T05:35:17-07:00 Although ample evidence indicates that immune cell homeostasis is an important prognostic outcome determinant in patients with cancer, few studies have examined whether it also determines cancer risk among initially healthy individuals. We performed a case–cohort study including incident cases of breast (n = 207), colorectal (n = 111), lung (n = 70), and prostate (n = 201) cancer as well as a subcohort (n = 465) within the European Prospective Investigation into Cancer and Nutrition-Heidelberg cohort. Relative counts of neutrophils, monocytes, and lymphocyte sublineages were measured by qRT-PCR. HRs and 95% confidence intervals were used to measure the associations between relative counts of immune cell and cancer risks. When relative counts of immune cell types were taken individually, a significant positive association was observed between relative counts of FOXP3+ regulatory T cells (Tregs) and lung cancer risk, and significant inverse associations were observed between relative CD8+ counts and risks of lung and breast cancer (overall and ER+ subtype). Multivariable models with mutual adjustments across immune markers showed further significant positive associations between higher relative FOXP3+ T-cell counts and increased risks of colorectal and breast cancer (overall and ER− subtype). No associations were found between immune cell composition and prostate cancer risk. These results affirm the relevance of elevated FOXP3+ Tregs and lower levels of cytotoxic (CD8+) T cells as risk factors for tumor development.Significance:This epidemiologic study supports a role for both regulatory and cytotoxic T cells in determining cancer risk among healthy individuals.See related commentary by Song and Tworoger, p. 1801 Full Article
gene [PERSPECTIVES] Regulating Preimplantation Genetic Testing across the World: A Comparison of International Policy and Ethical Perspectives By perspectivesinmedicine.cshlp.org Published On :: 2020-05-01T06:30:15-07:00 Preimplantation genetic testing (PGT) is a reproductive technology that, in the course of in vitro fertilization (IVF), allows prospective parents to select their future offspring based on genetic characteristics. PGT could be seen as an exercise of reproductive liberty, thus potentially raising significant socioethical and legal controversy. In this review, we examine—from a comparative perspective—variations in policy approaches to the regulation of PGT. We draw on a sample of 19 countries (Australia, Austria, Belgium, Brazil, Canada, China, France, Germany, India, Israel, Italy, Japan, Mexico, Netherlands, Singapore, South Korea, Switzerland, United Kingdom, and the United States) to provide a global landscape of the spectrum of policy and legislative approaches (e.g., restrictive to permissive, public vs. private models). We also explore central socioethical and policy issues and contentious applications, including permissibility criteria (e.g., medical necessity), nonmedical sex selection, and reproductive tourism. Finally, we further outline genetic counseling requirements across policy approaches. Full Article
gene [PERSPECTIVES] Discouraging Elective Genetic Testing of Minors: A Norm under Siege in a New Era of Genomic Medicine By perspectivesinmedicine.cshlp.org Published On :: 2020-05-01T06:30:15-07:00 Consistently, the field of genetic counseling has advocated that parents be advised to defer elective genetic testing of minors until adulthood to prevent a range of potential harms, including stigma, discrimination, and the loss of the child's ability to decide for him- or herself as an adult. However, consensus around the policy of "defer-when-possible" obscures the extent to which this norm is currently under siege. Increasingly, routine use of full or partial genome sequencing challenges our ability to control what is discovered in childhood or, when applied in a prenatal context, even before birth. The expansion of consumer-initiated genetic testing services challenges our ability to restrict what is available to minors. As the barriers to access crumble, medical professionals should proceed with caution, bearing in mind potential risks and continuing to assess the impact of genetic testing on this vulnerable population. Full Article