x Quantitative profiling of protein tyrosine kinases in human cancer cell lines by multiplexed parallel reaction monitoring assays [Technology] By feedproxy.google.com Published On :: 2015-09-25T14:31:13-07:00 Protein tyrosine kinases (PTKs) play key roles in cellular signal transduction, cell cycle regulation, cell division, and cell differentiation. Dysregulation of PTK-activated pathways, often by receptor overexpression, gene amplification, or genetic mutation, is a causal factor underlying numerous cancers. In this study, we have developed a parallel reaction monitoring (PRM)-based assay for quantitative profiling of 83 PTKs. The assay detects 308 proteotypic peptides from 54 receptor tyrosine kinases and 29 nonreceptor tyrosine kinases in a single run. Quantitative comparisons were based on the labeled reference peptide method. We implemented the assay in four cell models: 1) a comparison of proliferating versus epidermal growth factor (EGF)-stimulated A431 cells, 2) a comparison of SW480Null (mutant APC) and SW480APC (APC restored) colon tumor cell lines, and 3) a comparison of 10 colorectal cancer cell lines with different genomic abnormalities, and 4) lung cancer cell lines with either susceptibility (11-18) or acquired resistance (11-18R) to the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib. We observed distinct PTK expression changes that were induced by stimuli, genomic features or drug resistance, which were consistent with previous reports. However, most of the measured expression differences were novel observations. For example, acquired resistance to erlotinib in the 11-18 cell model was associated not only with previously reported upregulation of MET, but also with upregulation of FLK2 and downregulation of LYN and PTK7. Immunoblot analyses and shotgun proteomics data were highly consistent with PRM data. Multiplexed PRM assays provide a targeted, systems-level profiling approach to evaluate cancer-related proteotypes and adaptations. Data are available through Proteome eXchange Accession PXD002706. Full Article
x WITHDRAWN: Quantitative mass spectrometry analysis of PD-L1 protein expression, N-glycosylation and expression stoichiometry with PD-1 and PD-L2 in human melanoma [Research] By feedproxy.google.com Published On :: 2017-04-28T07:30:39-07:00 This article has been withdrawn by the authors. We discovered an error after this manuscript was published as a Paper in Press. Specifically, we learned that the structures of glycans presented for the PD-L1 peptide were drawn and labeled incorrectly. We wish to withdraw this article and submit a corrected version for review. Full Article
x MaxQuant software for ion mobility enhanced shotgun proteomics [Technological Innovation and Resources] By feedproxy.google.com Published On :: 2020-03-10T07:35:19-07:00 Ion mobility can add a dimension to LC-MS based shotgun proteomics which has the potential to boost proteome coverage, quantification accuracy and dynamic range. Required for this is suitable software that extracts the information contained in the four-dimensional (4D) data space spanned by m/z, retention time, ion mobility and signal intensity. Here we describe the ion mobility enhanced MaxQuant software, which utilizes the added data dimension. It offers an end to end computational workflow for the identification and quantification of peptides and proteins in LC-IMS-MS/MS shotgun proteomics data. We apply it to trapped ion mobility spectrometry (TIMS) coupled to a quadrupole time-of-flight (QTOF) analyzer. A highly parallelizable 4D feature detection algorithm extracts peaks which are assembled to isotope patterns. Masses are recalibrated with a non-linear m/z, retention time, ion mobility and signal intensity dependent model, based on peptides from the sample. A new matching between runs (MBR) algorithm that utilizes collisional cross section (CCS) values of MS1 features in the matching process significantly gains specificity from the extra dimension. Prerequisite for using CCS values in MBR is a relative alignment of the ion mobility values between the runs. The missing value problem in protein quantification over many samples is greatly reduced by CCS aware MBR.MS1 level label-free quantification is also implemented which proves to be highly precise and accurate on a benchmark dataset with known ground truth. MaxQuant for LC-IMS-MS/MS is part of the basic MaxQuant release and can be downloaded from http://maxquant.org. Full Article
x DEqMS: a method for accurate variance estimation in differential protein expression analysis [Technological Innovation and Resources] By feedproxy.google.com Published On :: 2020-03-23T12:35:18-07:00 Quantitative proteomics by mass spectrometry is widely used in biomarker research and basic biology research for investigation of phenotype level cellular events. Despite the wide application, the methodology for statistical analysis of differentially expressed proteins has not been unified. Various methods such as t-test, linear model and mixed effect models are used to define changes in proteomics experiments. However, none of these methods consider the specific structure of MS-data. Choices between methods, often originally developed for other types of data, are based on compromises between features such as statistical power, general applicability and user friendliness. Furthermore, whether to include proteins identified with one peptide in statistical analysis of differential protein expression varies between studies. Here we present DEqMS, a robust statistical method developed specifically for differential protein expression analysis in mass spectrometry data. In all datasets investigated there is a clear dependence of variance on the number of PSMs or peptides used for protein quantification. DEqMS takes this feature into account when assessing differential protein expression. This allows for a more accurate data-dependent estimation of protein variance and inclusion of single peptide identifications without increasing false discoveries. The method was tested in several datasets including E.coli proteome spike-in data, using both label-free and TMT-labelled quantification. In comparison to previous statistical methods used in quantitative proteomics, DEqMS showed consistently better accuracy in detecting altered protein levels compared to other statistical methods in both label-free and labelled quantitative proteomics data. DEqMS is available as an R package in Bioconductor. Full Article
x Selection of features with consistent profiles improves relative protein quantification in mass spectrometry experiments [Research] By feedproxy.google.com Published On :: 2020-03-31T13:35:14-07:00 In bottom-up mass spectrometry-based proteomics, relative protein quantification is often achieved with data-dependent acquisition (DDA), data-independent acquisition (DIA), or selected reaction monitoring (SRM). These workflows quantify proteins by summarizing the abundances of all the spectral features of the protein (e.g., precursor ions, transitions or fragments) in a single value per protein per run. When abundances of some features are inconsistent with the overall protein profile (for technological reasons such as interferences, or for biological reasons such as post-translational modifications), the protein-level summaries and the downstream conclusions are undermined. We propose a statistical approach that automatically detects spectral features with such inconsistent patterns. The detected features can be separately investigated, and if necessary removed from the dataset. We evaluated the proposed approach on a series of benchmark controlled mixtures and biological investigations with DDA, DIA and SRM data acquisitions. The results demonstrated that it can facilitate and complement manual curation of the data. Moreover, it can improve the estimation accuracy, sensitivity and specificity of detecting differentially abundant proteins, and reproducibility of conclusions across different data processing tools. The approach is implemented as an option in the open-source R-based software MSstats. Full Article
x Characterization of signaling pathways associated with pancreatic {beta}-cell adaptive flexibility in compensation of obesity-linked diabetes in db/db mice [Research] By feedproxy.google.com Published On :: 2020-04-07T14:34:38-07:00 The onset of obesity-linked type 2 diabetes (T2D) is marked by an eventual failure in pancreatic β-cell function and mass that is no longer able to compensate for the inherent insulin resistance and increased metabolic load intrinsic to obesity. However, in a commonly used model of T2D, the db/db mouse, β-cells have an inbuilt adaptive flexibility enabling them to effectively adjust insulin production rates relative to the metabolic demand. Pancreatic β-cells from these animals have markedly reduced intracellular insulin stores, yet high rates of (pro)insulin secretion, together with a substantial increase in proinsulin biosynthesis highlighted by expanded rough endoplasmic reticulum and Golgi apparatus. However, when the metabolic overload and/or hyperglycemia is normalized, β-cells from db/db mice quickly restore their insulin stores and normalize secretory function. This demonstrates the β-cell’s adaptive flexibility and indicates that therapeutic approaches applied to encourage β-cell rest are capable of restoring endogenous β-cell function. However, mechanisms that regulate β-cell adaptive flexibility are essentially unknown. To gain deeper mechanistic insight into the molecular events underlying β-cell adaptive flexibility in db/db β-cells, we conducted a combined proteomic and post-translational modification specific proteomic (PTMomics) approach on islets from db/db mice and wild-type controls (WT) with or without prior exposure to normal glucose levels. We identified differential modifications of proteins involved in redox homeostasis, protein refolding, K48-linked deubiquitination, mRNA/protein export, focal adhesion, ERK1/2 signaling, and renin-angiotensin-aldosterone signaling, as well as sialyltransferase activity, associated with β-cell adaptive flexibility. These proteins are all related to proinsulin biosynthesis and processing, maturation of insulin secretory granules, and vesicular trafficking—core pathways involved in the adaptation of insulin production to meet metabolic demand. Collectively, this study outlines a novel and comprehensive global PTMome signaling map that highlights important molecular mechanisms related to the adaptive flexibility of β-cell function, providing improved insight into disease pathogenesis of T2D. Full Article
x Dysregulation of Exosome Cargo by Mutant Tau Expressed in Human-Induced Pluripotent Stem Cell (iPSC) Neurons Revealed by Proteomics Analyses [Research] By feedproxy.google.com Published On :: 2020-04-15T09:35:42-07:00 Accumulation and propagation of hyperphosphorylated tau (p-tau) is a common neuropathological hallmark associated with neurodegeneration of Alzheimer's disease (AD), frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), and related tauopathies. Extracellular vesicles, specifically exosomes, have recently been demonstrated to participate in mediating tau propagation in brain. Exosomes produced by human induced pluripotent stem cell (iPSC)-derived neurons expressing mutant Tau (mTau), containing the P301L and V337M Tau mutations of FTDP-17, possess the ability to propagate p-tau pathology after injection into mouse brain. To gain an understanding of the mTau exosome cargo involved in tau pathogenesis, these pathogenic exosomes were analyzed by proteomics and bioinformatics. The data showed that mTau expression dysregulates the exosome proteome to result in (1) proteins uniquely present only in mTau, and not control exosomes, (2) the absence of proteins in mTau exosomes, uniquely present in control exosomes, and (3) shared proteins which were significantly up-regulated or down-regulated in mTau compared to control exosomes. Notably, mTau exosomes (not control exosomes) contain ANP32A (also known as I1PP2A), an endogenous inhibitor of the PP2A phosphatase which regulates the phosphorylation state of p-tau. Several of the mTau exosome-specific proteins have been shown to participate in AD mechanisms involving lysosomes, inflammation, secretases, and related processes. Furthermore, the mTau exosomes lacked a substantial portion of proteins present in control exosomes involved in pathways of localization, vesicle transport, and protein binding functions. The shared proteins present in both mTau and control exosomes represented exosome functions of vesicle-mediated transport, exocytosis, and secretion processes. These data illustrate mTau as a dynamic regulator of the biogenesis of exosomes to result in acquisition, deletion, and up- or down-regulation of protein cargo to result in pathogenic mTau exosomes capable of in vivo propagation of p-tau neuropathology in mouse brain. Full Article
x Acquiring and Analyzing Data Independent Acquisition Proteomics Experiments without Spectrum Libraries [Perspective] By feedproxy.google.com Published On :: 2020-04-20T11:35:14-07:00 Data independent acquisition (DIA) is an attractive alternative to standard shotgun proteomics methods for quantitative experiments. However, most DIA methods require collecting exhaustive, sample-specific spectrum libraries with data dependent acquisition (DDA) to detect and quantify peptides. In addition to working with non-human samples, studies of splice junctions, sequence variants, or simply working with small sample yields can make developing DDA-based spectrum libraries impractical. Here we illustrate how to acquire, queue, and validate DIA data without spectrum libraries, and provide a workflow to efficiently generate DIA-only chromatogram libraries using gas-phase fractionation (GPF). We present best-practice methods for collecting DIA data using Orbitrap-based instruments, and develop an understanding for why DIA using an Orbitrap mass spectrometer should be approached differently than when using time-of-flight instruments. Finally, we discuss several methods for analyzing DIA data without libraries. Full Article
x HIGD2A is required for assembly of the COX3 module of human mitochondrial complex IV [Research] By feedproxy.google.com Published On :: 2020-04-21T08:36:14-07:00 Assembly factors play a critical role in the biogenesis of mitochondrial respiratory chain complexes I-IV where they assist in the membrane insertion of subunits, attachment of co-factors, and stabilization of assembly intermediates. The major fraction of complexes I, III and IV are present together in large molecular structures known as respiratory chain supercomplexes. A number of assembly factors have been proposed as required for supercomplex assembly, including the hypoxia inducible gene 1 domain family member HIGD2A. Using gene-edited human cell lines and extensive steady state, translation and affinity enrichment proteomics techniques we show that loss of HIGD2A leads to defects in the de novo biogenesis of mtDNA-encoded COX3, subsequent accumulation of complex IV intermediates and turnover of COX3 partner proteins. Deletion of HIGD2A also leads to defective complex IV activity. The impact of HIGD2A loss on complex IV was not altered by growth under hypoxic conditions, consistent with its role being in basal complex IV assembly. While in the absence of HIGD2A we show that mitochondria do contain an altered supercomplex assembly, we demonstrate it to harbor a crippled complex IV lacking COX3. Our results redefine HIGD2A as a classical assembly factor required for building the COX3 module of complex IV. Full Article
x The DNA sensor cGAS is decorated by acetylation and phosphorylation modifications in the context of immune signaling [Research] By feedproxy.google.com Published On :: 2020-04-28T18:38:31-07:00 The cyclic GMP-AMP synthase (cGAS) protein is a pattern-recognition receptor of the mammalian innate immune system that is recognized as a main cytosolic sensor of pathogenic or damaged DNA. cGAS DNA binding initiates catalytic production of the second messenger, cyclic GMP-AMP, which activates the STING-TBK1-IRF3 signaling axis to induce cytokine expression. Post-translational modification (PTM) has started to be recognized as a critical component of cGAS regulation, yet the extent of these modifications remains unclear. Here, we report the identification and functional analysis of cGAS phosphorylations and acetylations in several cell types under basal and immune-stimulated conditions. cGAS was enriched by immunoaffinity purification from human primary fibroblasts prior to and after infection with herpes simplex virus type 1 (HSV-1), as well as from immune-stimulated STING-HEK293T cells. Six phosphorylations and eight acetylations were detected, of which eight PTMs were not previously documented. PTMs were validated by parallel reaction monitoring (PRM) mass spectrometry in fibroblasts, HEK293T cells, and THP-1 macrophage-like cells. Primary sequence and structural analysis of cGAS highlighted a subset of PTM sites with elevated surface accessibility and high evolutionary sequence conservation. To assess the functional relevance of each PTM, we generated a series of single-point cGAS mutations. Stable cell lines were constructed to express cGAS with amino acid substitutions that prevented phosphorylation (Ser-to-Ala) and acetylation (Lys-to-Arg) or that mimicked the modification state (Ser-to-Asp and Lys-to-Gln). cGAS-dependent apoptotic and immune signaling activities were then assessed for each mutation. Our results show that acetyl-mimic mutations at Lys384 and Lys414 inhibit the ability of cGAS to induce apoptosis. In contrast, the Lys198 acetyl-mimic mutation increased cGAS-dependent interferon signaling when compared to the unmodified charge-mimic. Moreover, targeted PRM quantification showed that Lys198 acetylation is decreased upon infections with two herpesviruses—HSV-1 and human cytomegalovirus (HCMV), highlighting this residue as a regulatory point during virus infection. Full Article
x Proteomics of Campylobacter jejuni growth in deoxycholate reveals Cj0025c as a cystine transport protein required for wild-type human infection phenotypes [Research] By feedproxy.google.com Published On :: 2020-05-06T13:56:38-07:00 Campylobacter jejuni is a major cause of food-borne gastroenteritis. Proteomics by label-based two-dimensional liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) identified proteins associated with growth in 0.1% sodium deoxycholate (DOC, a component of gut bile salts), and system-wide validation was performed by data-independent acquisition (DIA-SWATH-MS). LC-MS/MS quantified 1326 proteins (~82% of the predicted C. jejuni proteome), of which 1104 were validated in additional biological replicates by DIA-SWATH-MS. DOC resulted in a profound proteome shift with 512 proteins showing significantly altered abundance. Induced proteins were associated with flagellar motility and antibiotic resistance; and these correlated with increased DOC motility and resistance to polymyxin B and ciprofloxacin. DOC also increased human Caco-2 cell adherence and invasion. Abundances of proteins involved in nutrient transport were altered by DOC and aligned with intracellular changes to their respective carbon sources. DOC increased intracellular levels of sulfur-containing amino acids (cysteine and methionine) and the dipeptide cystine (Cys-Cys), which also correlated with reduced resistance to oxidative stress. A DOC induced transport protein was Cj0025c, which has sequence similarity to bacterial Cys-Cys transporters. Deletion of cj0025c (cj0025c) resulted in proteome changes consistent with sulfur starvation, as well as attenuated invasion, reduced motility, atypical morphology, increased antimicrobial susceptibility and poor biofilm formation. Targeted metabolomics showed cj0025c was capable of utilizing known C. jejuni amino and organic acid substrates commensurate with wild-type. Medium Cys-Cys levels however, were maintained in cj0025c relative to wild-type. A toxic Cys-Cys mimic (selenocystine) inhibited wild-type growth, but not cj0025c. Provision of an alternate sulfur source (2 mM thiosulfate) restored cj0025c motility. Our data confirm that Cj0025c is a Cys-Cys transporter that we have named TcyP consistent with the nomenclature of homologous proteins in other species. Full Article
x Perlecan knockdown significantly alters extracellular matrix composition and organization during cartilage development [Research] By feedproxy.google.com Published On :: 2020-05-07T06:36:04-07:00 Perlecan is a critical proteoglycan found in the extracellular matrix (ECM) of cartilage. In healthy cartilage, perlecan regulates cartilage biomechanics and we previously demonstrated perlecan deficiency leads to reduced cellular and ECM stiffness in vivo. This change in mechanics may lead to the early onset osteoarthritis seen in disorders resulting from perlecan knockdown such as Schwartz-Jampel syndrome (SJS). To identify how perlecan knockdown affects the material properties of developing cartilage, we used imaging and liquid chromatography–tandem mass spectrometry (LC-MS/MS) to study the ECM in a murine model of SJS, Hspg2C1532Y-Neo. Perlecan knockdown led to defective pericellular matrix formation, whereas the abundance of bulk ECM proteins, including many collagens, increased. Post-translational modifications and ultrastructure of collagens were not significantly different; however, LC-MS/MS analysis showed more protein was secreted by Hspg2C1532Y-Neo cartilage in vitro, suggesting that the incorporation of newly synthesized ECM was impaired. In addition, glycosaminoglycan deposition was atypical, which may explain the previously observed decrease in mechanics. Overall, these findings provide insight into the influence of perlecan on functional cartilage assembly and the progression of osteoarthritis in SJS. Full Article
x Nigerian Elections: Big Men and Ballot Boxes By feedproxy.google.com Published On :: Mon, 27 Apr 2020 12:58:13 +0000 1 March 2007 , Number 6 The minister paused, leaned forward and fiddled with his cufflinks, ‘It wasn’t about whether the election was rigged or not,’ he said. ‘The truth is, everybody rigged it. We just rigged it better than them.’ Does the next Nigerian presidential election in April promise anything different? Sola Tayo Journalist, HARDtalk, BBC News GettyImages-73130322.jpg Supporters of the ruling Peoples Democratic Party wave banners and posters Full Article
x Can Uzbekistan’s President Meet Raised Expectations? By feedproxy.google.com Published On :: Wed, 11 Dec 2019 14:14:05 +0000 11 December 2019 Kate Mallinson Associate Fellow, Russia and Eurasia Programme @Kate_Mallinson1 Shavkat Mirziyoyev has implemented a number of important reforms, but is now entering a more hazardous period. 2019-12-11-Uz.jpg Shavkat Mirziyoyev in June. Photo: Getty Images. In the three years since Shavkat Mirziyoyev was elected president of Uzbekistan, he has embarked on a wide-ranging reform process including currency liberalization, eliminating forced labour and abolishing exit visas. This has encouraged foreign investors and the population, but a rare protest last week over natural gas and electricity shortages shows that the Uzbek population’s faith in change under the new leadership could be wearing thin, while foreign direct investment that adds real value to the economy is in short supply.When Mirziyoyev came to power, Uzbekistan was on the verge of bankruptcy. A former prime minister of 13 years, and a pragmatic economist, the new president set on a rapid course to open Uzbekistan up to its neighbours and remove barriers to trade and foreign investment. The alacrity and ambition of the reform process and the monetary and economic liberalization has at times been overwhelming for lawyers and businesses. However, allowing the free movement of capital, people and goods are natural moves to boost an economy after 20 years of stasis. The country is now immersed in the more challenging and substantive phase of development, including privatization, the breakup of monopolies and capital markets reform. Despite a marked increase in foreign direct investment, the country is not receiving the investment it needs. Much of it comes from Russia or China through bilateral arrangements, with debt from China washing through state-owned banks and state-owned enterprises. Uzbekistan’s debt to China has increased three times since the end of 2016.Meanwhile, European and US companies still appear unsure about the business environment and the staying power of reforms. A lack of consistent policy, alongside hastily drafted decrees and legislation that often require presidential decrees to clarify their meaning as well, as opaque carve outs, are further deterring Western investors. A workforce that is still in transition from a Soviet to a free market approach exacerbates the situation.Opposition within the government to implementation of some of the reforms, as well as competing government interests, have led to backtracking on some reforms (such as free and unrestricted currency convertibility) and creeping protectionism in some sectors. Some reforms simply get lost in the long chain from presidential decree to implementation. After 2018, import tariffs were abolished but recently, a list of protected domestically produced products has been drawn up raising concerns that vested interests are replacing state monopolies with private ones.Despite progress on the economic front, political and social reform has lagged. Uzbekistan is still largely run by senior cadres from the previous administration of Islam Karimov. While the government has attracted younger reformers, often returning from abroad, it has also been rehabilitating key figures from the Karimov years that were implicated in corruption scandals. Progressive senior officials, such as the former general prosecutor Otabek Murodov, have been removed with little explanation as to why; trials take place behind closed doors.The new leadership has transformed the media environment, but the country still lacks objective analytical reporting. Direct criticism of the president or the ruling family remains taboo. Economic and monetary liberalization has come at a cost to the population in the form of double-digit inflation, while utility prices are moving to the level of the free market. Popular discontent is growing at the grass roots level and some hark back to the stability of the former government, in spite of its reputation for appalling human rights treatment.Small and innovative steps have been taken to improve the rule of law, but more can be done, including introducing transparency over judicial processes and ensuring regional authorities have less impunity before the law. An initiative to address the issue of conflict of interest – whereby mayors, senators and other senior civil servants have been able to benefit commercially from their positions during an era of government economic stimulus – would signal a commitment to fundamental reform.With great promises of political and economic reform, the government has set a high bar for itself. A continuing paternalistic form of governance, with its restricted civil society freedoms, human rights, stifling bureaucracy and corruption, against continuing lack of opportunities, will clash with the expectations of a growing young population.Mirziyoyev is trying to make the parliamentary elections on 22 December, the first during his presidency, more dynamic. Yet no opposition parties have been able to emerge to serve as a check on the executive branch. A product of the system he ostensibly wishes to reform, Mirziyoyev will need to prioritize the strengthening of independent institutions to deliver results to his expectant people. Full Article
x The New Orthodox Church of Ukraine: Opportunities and Challenges of Canonical Independence By feedproxy.google.com Published On :: Wed, 18 Dec 2019 09:55:01 +0000 Invitation Only Research Event 22 January 2020 - 10:00am to 11:30am Chatham House | 10 St James's Square | London | SW1Y 4LE Event participants Archbishop Yevstraty (Zoria) of Chernihiv, Deputy Head of Department for External Church Relations, Ukrainian Orthodox Church (Orthodox Church of Ukraine) In January 2019, the Ecumenical Patriarchate of Constantinople granted the Orthodox Church of Ukraine a self-governing status, ending its centuries-long subordination to the Moscow Patriarchate. The Russian Orthodox Church condemned this decision and severed its links with the Constantinople Patriarchate.More than 500 parishes have left the Ukrainian Orthodox Church of the Moscow Patriarchate to join the newly independent Ukrainian Orthodox Church (UOC).What challenges is the new church facing? Has its independence been recognized by other Orthodox churches? How is it affected by the schism between Constantinople and Moscow? What are UOC’s priorities in relations with the West and with the Orthodox world? Department/project Russia and Eurasia Programme, Ukraine Forum Anna Morgan Administrator, Ukraine Forum +44 (0)20 7389 3274 Email Full Article
x Three Challenges for UK Peacebuilding Policy in the South Caucasus After Brexit By feedproxy.google.com Published On :: Tue, 21 Jan 2020 09:24:44 +0000 21 January 2020 Laurence Broers Associate Fellow, Russia and Eurasia Programme @LaurenceBroers Building on the legacies of a long-term British investment in a peace strategy for the South Caucasus is a realistic and attainable goal. 2020-01-21-NK.jpg A building in Nagorny Karabakh flies the flag of the self-proclaimed republic. 'Abkhazia, South Ossetia and Nagorny Karabakh have evolved into examples of what scholars call "de facto states" that, to differing degrees, control territory, provide governance and exercise internal sovereignty,' writes Laurence Broers. Photo: Getty Images. What does Britain’s departure from the EU mean for the country’s policy towards the South Caucasus, a small region on the periphery of Europe, fractured by conflict? Although Britain is not directly involved in any of the region’s peace processes (except in the case of the Geneva International Discussions on conflicts involving Georgia, as an EU member state), it has been a significant stakeholder in South Caucasian stability since the mid-1990s.Most obviously, Britain has been the single largest foreign investor in Caspian oil and gas. Yet beyond pipelines, Britain also has been a significant investor in long-term civil society-led strategies to build peace in the South Caucasus.Through what was then the Global Conflict Prevention Pool, in the early 2000s the Department for International Development (DfID) pioneered large-scale peacebuilding interventions, such as the Consortium Initiative, addressing Armenian-Azerbaijani conflict, in 2003-09. These built civic networks in the South Caucasus and partnerships with British-based NGOs.This experience left a strong intellectual legacy. British expertise on the South Caucasus, including specific expertise on its conflicts, is highly regarded in the region and across the world.There is also a strong tradition of British scholarship on the Caucasus, and several British universities offer Caucasus-related courses. Through schemes such as the John Smith Fellowship Trust, the Robert Bosch Stiftung Academy Fellowship at Chatham House and Chevening Scholarships, significant numbers of young leaders from the South Caucasus have spent time in British institutions and built effective relationships within them.Three challengesThis niche as a champion of long-term, strategic peacebuilding and repository of area-specific knowledge should not be lost as Britain’s relationship with the EU and regional actors evolves. This can be ensured through awareness of three challenges confronting a post-Brexit Caucasus policy.The first challenge for London is to avoid framing a regional policy in the South Caucasus as an extension of a wider ‘Russia policy’. Deteriorating Russian-British relations in recent years strengthen a tendency to view policies in the European neighbourhood through the traditional prisms of Cold War and Russian-Western rivalries.Yet an overwhelming focus on Russia fails to capture other important aspects of political developments in South Caucasus conflicts. Although often referred to as ‘breakaway’ or ‘occupied’ territories, Abkhazia, South Ossetia and Nagorny Karabakh are not ungoverned spaces. They have evolved into examples of what scholars call ‘de facto states’ that, to differing degrees, control territory, provide governance and exercise internal sovereignty.Few disagree that these entities would not survive without external patronage. But neither does that patronage explain their sustainability on its own. Russia-centricity diminishes Britain’s latitude to engage on the full range of local drivers sustaining these entities, contributing instead to less effective policies predicated on competition and containment.A second and related challenge is to maintain and develop Britain’s position on the issue of engaging populations in these entities. De facto states appear to stand outside of the international rules-based system. Yet in many cases, their civil societies are peopled by skilled and motivated activists who want their leaders to be held accountable according to international rules.Strategies of isolation ignore these voices and contribute instead to fearful and demoralized communities less likely to engage in a transformation of adversarial relationships. Making this case with the wider international community, and facilitating the funding of local civil societies in contested territories, would be important steps in sustaining an effective British policy on the resolution of conflicts. The third challenge for Britain is to maintain a long-term approach to the conflicts of the South Caucasus alongside potential short-term imperatives in other policy fields, as relationships shift post-Brexit.In this fluid international environment, the Foreign and Commonwealth Office has a role to play both as an internal champion of a long-term peacebuilding strategy and a coordinator of British efforts with those of multilateral actors engaged in the South Caucasus. These include the United Nations, the EU’s Special Representative for the South Caucasus and the Crisis in Georgia and OSCE’s Special Representative for the OSCE Chairperson-in-Office for the South Caucasus, all of which have built relationships with relevant actors on the ground.RecommendationsBritain’s niche as a champion and advocate of a strategic approach to peaceful change can be secured post-Brexit in the following ways. First, in-house expertise is crucial to effective peacebuilding programming. The Foreign Office’s research analysts play a vital role in generating independent internal advice and liaising with academic and NGO communities. Their role could be supplemented by the reinstatement of a regional conflict adviser post, based in Tbilisi, tasked with strengthening Britain’s regional presence on conflict issues and coordinating policy at a regional level.This post, with a remit to cover conflicts and build up area knowledge and relationships can contribute significantly to working closely with local civil societies, where so much expertise and knowledge resides, as well as other stakeholders.Second, programming should build in conflict sensitivity by dissociating eligibility from contested political status. This can encourage local populations to take advantage of opportunities for funding, study, comparative learning and professional development irrespective of the status of the entity where they reside.The Chevening Scholarships are an excellent example, whereby applicants can select ‘South Caucasus’ as their affiliated identity from a drop-down menu. This enables citizens from across the region to apply irrespective of the status of the territory in which they live. Finally, a holistic understanding of peace is crucial. Programming in unrecognized or partially-recognized entities should acknowledge that effective peacebuilding needs to embrace political dynamics and processes beyond cross-conflict contact and confidence building. Local actors in such entities may find peacebuilding funding streams defined exclusively in terms of cross-conflict contact more politically risky and ineffective in addressing domestic blockages to peace.While cross-conflict dynamics remain critical, ‘single-community’ programming framed in terms of civic participation, inclusion, civil society capacity-building, minority and human rights in contested territories, and building the confidence from within to engage in constructive dialogue, are no less important.The ’global Britain’ promised by Brexit remains a fanciful idea. Quiet, painstaking work to build on the legacies of a long-term British investment in a peace strategy for the South Caucasus, on the other hand, is a realistic and attainable goal. Full Article
x Crimea’s Occupation Exemplifies the Threat of Attacks on Cultural Heritage By feedproxy.google.com Published On :: Tue, 04 Feb 2020 14:24:47 +0000 4 February 2020 Kateryna Busol Robert Bosch Stiftung Academy Fellow, Russia and Eurasia Programme @KaterynaBusol LinkedIn Societies, courts and policymakers should have a clearer awareness that assaults against cultural heritage constitute a creeping encroachment on a people’s identity, endangering its very survival. 2020-02-04-Bakhchysarai.jpg 'The destructive reconstruction of the 16th-century Bakhchysarai Palace is being conducted by a team with no experience of cultural sites, in a manner that erodes its authenticity and historical value.' Photo: Getty Images. Violations against cultural property – such as archaeological treasures, artworks, museums or historical sites – can be no less detrimental to the survival of a nation than the physical persecution of its people. These assaults on heritage ensure the hegemony of some nations and distort the imprint of other nations in world history, sometimes to the point of eradication.As contemporary armed conflicts in Syria, Ukraine and Yemen demonstrate, cultural property violations are not only a matter of the colonial past; they continue to be perpetrated, often in new, intricate ways.Understandably, from a moral perspective, it is more often the suffering of persons, rather than any kind of ‘cultural’ destruction, that receives the most attention from humanitarian aid providers, the media or the courts. Indeed, the extent of the damage caused by an assault on cultural property is not always immediately evident, but the result can be a threat to the survival of a people. This is strikingly exemplified by what is currently happening in Crimea.Ukraine’s Crimean peninsula has been occupied by Russia since February 2014, meaning that, under international law, the two states have been involved in an international armed conflict for the last six years.While much attention has been paid to the alleged war crimes perpetrated by the occupying power, reports by international organizations and the International Criminal Court (ICC) have been less vocal on the issue of cultural property in Crimea. Where they do raise it, they tend to confine their findings to the issue of misappropriation.However, as part of its larger policy of the annexation and Russification of the peninsula and its history, Russia has gone far beyond misappropriation.Crimean artefacts have been transferred to Russia – without security justification or Ukrainian authorization as required by the international law of occupation – to be showcased at exhibitions celebrating Russia’s own cultural heritage. In 2016, the Tretyakov Gallery in Moscow staged its record-breaking Aivazovsky exhibition, which included 38 artworks from the Aivazovsky Museum in the Crimean town of Feodosia.Other ‘cultural’ violations in the region include numerous unsanctioned archaeological excavations, whose findings are often unlawfully exported to Russia or end up on the black market.There is also the example of Russia’s plan to establish a museum of Christianity in Ukraine’s UNESCO World Heritage site, the Ancient City of Tauric Chersonese. This is an indication of Russia’s policy of asserting itself as a bastion of Orthodox Christianity and culture in the Slavic world, with Crimea as one of the centres.The harmful effects of Russia’s destructive cultural property policy can be seen in the situation of the Crimean Tatars, Ukraine’s indigenous Muslim people. Already depleted by a Stalin-ordered deportation in 1944 and previously repressed by the Russian Empire, the Crimean Tatars are now facing the destruction of much of the remainder of their heritage.For example, Muslim burial grounds have been demolished to build the Tavrida Highway, which leads to the newly built Kerch Bridge connecting the peninsula to Russia.The destructive reconstruction of the 16th-century Bakhchysarai Palace – the only remaining complete architectural ensemble of the indigenous people, included in the UNESCO World Heritage Tentative List – is another example of how the very identity of the Crimean Tatars is being threatened. This reconstruction is being conducted by a team with no experience of cultural sites, in a manner that erodes its authenticity and historical value – which is precisely as Russia intends.There is a solid body of international and domestic law covering Russia’s treatment of Crimea’s cultural property.Under the 1954 Hague Convention for the Protection of Cultural Property in the Event of Armed Conflict – ratified by both Ukraine and Russia – the occupying power must facilitate the safeguarding efforts of the national authorities in occupied territories. States parties must prevent any vandalism or misappropriation of cultural property, and, according to the first protocol of the convention, the occupying power is required to prevent any export of artefacts from the occupied territory.The 1907 Hague Regulations and the 1949 Fourth Geneva Convention confirm that the authentic domestic legislation continues to apply in occupied territories. This leaves Russia with no excuse for non-compliance with Ukraine’s cultural property laws and imposing its own rules unless absolutely necessary.Besides, both Ukrainian and Russian criminal codes penalise pillage in occupied territory, as well as unsanctioned archaeological excavations. As an occupying power, Russia must not just abstain from such wrongdoings in Crimea, but also duly investigate and prosecute the alleged misconduct.The clarity of the international legal situation demonstrates that no exhibitions in continental Russia and no archaeological excavations which are not sanctioned by Ukraine can be justified. Likewise, any renovation or use of cultural sites, especially those on permanent or tentative UNESCO lists, must only be conducted pursuant to consultancy with and approval of the Ukrainian authorities.But the resonance of the Crimean case goes beyond law and touches on issues of the very survival of a people. The Soviet deportation of the Crimean Tatars in 1944 did not only result in the deaths of individuals. Their footprints in Crimea have been gradually erased by baseless treason charges, the long exile of the indigenous community from their native lands and ongoing persecution.First the Soviet Union and now Russia have targeted the Crimean Tatars’ cultural heritage to undermine their significance in the general historical narrative, making attempts to preserve or celebrate this culture seem futile. Russia is thus imposing its own historical and political hegemony at the expense of the Crimean Tatar and Ukrainian layers of Crimean history.As exemplified by occupied Crimea, the manipulation and exploitation of cultural heritage can serve an occupying power’s wider policies of appropriating history and asserting its own dominance. Domestic cultural property proceedings are challenging due to the lack of access to the occupied territory, but they should still be pursued.More effort is needed in the following areas: case prioritization; informing the documenters of alleged violations about the spectrum of cultural property crimes; developing domestic investigative and prosecutorial capacity, including by involving foreign expert consultancy; more proactively seeking bilateral and multilateral cooperation in art crime cases; liaising with auction houses (to track down objects originating from war-affected areas) and museums (to prevent the exhibition of the artefacts from occupied territories).When possible, cultural property crimes should also be reported to the ICC.Additionally, more international – public, policy, media and jurisprudential – attention to such violations is needed. Societies, courts and policymakers should have a clearer awareness that assaults against cultural heritage constitute a creeping encroachment on a people’s identity, endangering its very survival. Full Article
x Erratum: FTY720/fingolimod decreases hepatic steatosis and expression of fatty acid synthase in diet-induced nonalcoholic fatty liver disease in mice [Errata] By feedproxy.google.com Published On :: 2020-02-01T00:05:23-08:00 Full Article
x Metallopeptidase Stp1 activates the transcription factor Sre1 in the carotenogenic yeast Xanthophyllomyces dendrorhous [Research Articles] By feedproxy.google.com Published On :: 2020-02-01T00:05:23-08:00 Xanthophyllomyces dendrorhous is a basidiomycete yeast known as a natural producer of astaxanthin, a carotenoid of commercial interest because of its antioxidant properties. Recent studies indicated that X. dendrorhous has a functional SREBP pathway involved in the regulation of isoprenoid compound biosynthesis, which includes ergosterol and carotenoids. SREBP is a major regulator of sterol metabolism and homeostasis in mammals; characterization in fungi also provides information about its role in the hypoxia adaptation response and virulence. SREBP protease processing is required to activate SREBP pathway functions in fungi. Here, we identified and described the STP1 gene, which encodes a metallopeptidase of the M50 family involved in the proteolytic activation of the transcription factor Sre1 of the SREBP pathway, in X. dendrorhous. We assessed STP1 function in stp1 strains derived from the wild-type and a mutant of ergosterol biosynthesis that overproduces carotenoids and sterols. Bioinformatic analysis of the deduced protein predicted the presence of characteristic features identified in homologs from mammals and fungi. The stp1 mutation decreased yeast growth in the presence of azole drugs and reduced transcript levels of Sre1-dependent genes. This mutation also negatively affected the carotenoid- and sterol-overproducing phenotype. Western blot analysis demonstrated that Sre1 was activated in the yeast ergosterol biosynthesis mutant and that the stp1 mutation introduced in this strain prevented Sre1 proteolytic activation. Overall, our results demonstrate that STP1 encodes a metallopeptidase involved in proteolytic activation of Sre1 in X. dendrorhous, contributing to our understanding of fungal SREBP pathways. Full Article
x Endocytosis of very low-density lipoproteins: an unexpected mechanism for lipid acquisition by breast cancer cells [Research Articles] By feedproxy.google.com Published On :: 2020-02-01T00:05:23-08:00 We previously described the expression of CD36 and LPL by breast cancer (BC) cells and tissues and the growth-promoting effect of VLDL observed only in the presence of LPL. We now report a model in which LPL is bound to a heparan sulfate proteoglycan motif on the BC cell surface and acts in concert with the VLDL receptor to internalize VLDLs via receptor-mediated endocytosis. We also demonstrate that gene-expression programs for lipid synthesis versus uptake respond robustly to triglyceride-rich lipoprotein availability. The literature emphasizes de novo FA synthesis and exogenous free FA uptake using CD36 as paramount mechanisms for lipid acquisition by cancer cells. We find that the uptake of intact lipoproteins is also an important mechanism for lipid acquisition and that the relative reliance on lipid synthesis versus uptake varies among BC cell lines and in response to VLDL availability. This metabolic plasticity has important implications for the development of therapies aimed at the lipid dependence of many types of cancer, in that the inhibition of FA synthesis may elicit compensatory upregulation of lipid uptake. Moreover, the mechanism that we have elucidated provides a direct connection between dietary fat and tumor biology.. Full Article
x Lipid droplet-associated kinase STK25 regulates peroxisomal activity and metabolic stress response in steatotic liver [Research Articles] By feedproxy.google.com Published On :: 2020-02-01T00:05:23-08:00 Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are emerging as leading causes of liver disease worldwide and have been recognized as one of the major unmet medical needs of the 21st century. Our recent translational studies in mouse models, human cell lines, and well-characterized patient cohorts have identified serine/threonine kinase (STK)25 as a protein that coats intrahepatocellular lipid droplets (LDs) and critically regulates liver lipid homeostasis and progression of NAFLD/NASH. Here, we studied the mechanism-of-action of STK25 in steatotic liver by relative quantification of the hepatic LD-associated phosphoproteome from high-fat diet-fed Stk25 knockout mice compared with their wild-type littermates. We observed a total of 131 proteins and 60 phosphoproteins that were differentially represented in STK25-deficient livers. Most notably, a number of proteins involved in peroxisomal function, ubiquitination-mediated proteolysis, and antioxidant defense were coordinately regulated in Stk25–/– versus wild-type livers. We confirmed attenuated peroxisomal biogenesis and protection against oxidative and ER stress in STK25-deficient human liver cells, demonstrating the hepatocyte-autonomous manner of STK25’s action. In summary, our results suggest that regulation of peroxisomal function and metabolic stress response may be important molecular mechanisms by which STK25 controls the development and progression of NAFLD/NASH. Full Article
x Novel GPR120 agonist TUG891 modulates fat taste perception and preference and activates tongue-brain-gut axis in mice [Research Articles] By feedproxy.google.com Published On :: 2020-02-01T00:05:23-08:00 GPR120 is implicated as a lipid receptor in the oro-sensory detection of dietary fatty acids. However, the effects of GPR120 activation on dietary fat intake or obesity are not clearly understood. We investigated to determine whether the binding of TUG891, a novel GPR120 agonist, to lingual GPR120 modulates fat preference in mice. We explored the effects of TUG891 on obesity-related hormones and conducted behavioral choice tests on mice to better understand the physiologic relevance of the action of TUG891. In cultured mouse and human taste bud cells (TBCs), TUG891 induced a rapid increase in Ca2+ by acting on GPR120. A long-chain dietary fatty acid, linoleic acid (LA), also recruited Ca2+ via GPR120 in human and mouse TBCs. Both TUG891 and LA induced ERK1/2 phosphorylation and enhanced in vitro release of glucagon-like peptide-1 from cultured human and mouse TBCs. In situ application of TUG891 onto the tongue of anesthetized mice triggered the secretion of pancreatobiliary juice, probably via the tongue-brain-gut axis. Furthermore, lingual application of TUG891 altered circulating concentrations of cholecystokinin and adipokines, associated with decreased circulating LDL, in conscious mice. In behavioral tests, mice exhibited a spontaneous preference for solutions containing either TUG891 or LA instead of a control. However, addition of TUG891 to a solution containing LA significantly curtailed fatty acid preference. Our study demonstrates that TUG891 binds to lingual GPR120 receptors, activates the tongue-brain-gut axis, and modulates fat preference. These findings may support the development of new fat taste analogs that can change the approach to obesity prevention and treatment. Full Article
x Exon 9-deleted CETP inhibits full length-CETP synthesis and promotes cellular triglyceride storage [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Cholesteryl ester transfer protein (CETP) exists as full-length (FL) and exon 9 (E9)-deleted isoforms. The function of E9-deleted CETP is poorly understood. Here, we investigated the role of E9-deleted CETP in regulating the secretion of FL-CETP by cells and explored its possible role in intracellular lipid metabolism. CETP overexpression in cells that naturally express CETP confirmed that E9-deleted CETP is not secreted, and showed that cellular FL- and E9-deleted CETP form an isolatable complex. Coexpression of CETP isoforms lowered cellular levels of both proteins and impaired FL-CETP secretion. These effects were due to reduced synthesis of both isoforms; however, the predominate consequence of FL- and E9-deleted CETP coexpression is impaired FL-CETP synthesis. We reported previously that reducing both CETP isoforms or overexpressing FL-CETP impairs cellular triglyceride (TG) storage. To investigate this further, E9-deleted CETP was expressed in SW872 cells that naturally synthesize CETP and in mouse 3T3-L1 cells that do not. E9-deleted CETP overexpression stimulated SW872 triglyceride synthesis and increased stored TG 2-fold. Expression of E9-deleted CETP in mouse 3T3-L1 cells produced a similar lipid phenotype. In vitro, FL-CETP promotes the transfer of TG from ER-enriched membranes to lipid droplets. E9-deleted CETP also promoted this transfer, although less effectively, and it inhibited the transfer driven by FL-CETP. We conclude that FL- and E9-deleted CETP isoforms interact to mutually decrease their intracellular levels and impair FL-CETP secretion by reducing CETP biosynthesis. E9-deleted CETP, like FL-CETP, alters cellular TG metabolism and storage but in a contrary manner. Full Article
x Monitoring the itinerary of lysosomal cholesterol in Niemann-Pick Type C1-deficient cells after cyclodextrin treatment [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Niemann-Pick disease type C (NPC) disease is a lipid-storage disorder that is caused by mutations in the genes encoding NPC proteins and results in lysosomal cholesterol accumulation. 2-Hydroxypropyl-β-cyclodextrin (CD) has been shown to reduce lysosomal cholesterol levels and enhance sterol homeostatic responses, but CD’s mechanism of action remains unknown. Recent work provides evidence that CD stimulates lysosomal exocytosis, raising the possibility that lysosomal cholesterol is released in exosomes. However, therapeutic concentrations of CD do not alter total cellular cholesterol, and cholesterol homeostatic responses at the ER are most consistent with increased ER membrane cholesterol. To address these disparate findings, here we used stable isotope labeling to track the movement of lipoprotein cholesterol cargo in response to CD in NPC1-deficient U2OS cells. Although released cholesterol was detectable, it was not associated with extracellular vesicles. Rather, we demonstrate that lysosomal cholesterol trafficks to the plasma membrane (PM), where it exchanges with lipoprotein-bound cholesterol in a CD-dependent manner. We found that in the absence of suitable extracellular cholesterol acceptors, cholesterol exchange is abrogated, cholesterol accumulates in the PM, and reesterification at the ER is increased. These results support a model in which CD promotes intracellular redistribution of lysosomal cholesterol, but not cholesterol exocytosis or efflux, during the restoration of cholesterol homeostatic responses. Full Article
x Role of pyruvate kinase M2 in oxidized LDL-induced macrophage foam cell formation and inflammation [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Pyruvate kinase M2 (PKM2) links metabolic and inflammatory dysfunction in atherosclerotic coronary artery disease; however, its role in oxidized LDL (Ox-LDL)-induced macrophage foam cell formation and inflammation is unknown and therefore was studied. In recombinant mouse granulocyte-macrophage colony-stimulating factor-differentiated murine bone marrow-derived macrophages, early (1–6 h) Ox-LDL treatment induced PKM2 tyrosine 105 phosphorylation and promotes its nuclear localization. PKM2 regulates aerobic glycolysis and inflammation because PKM2 shRNA or Shikonin abrogated Ox-LDL-induced hypoxia-inducible factor-1α target genes lactate dehydrogenase, glucose transporter member 1, interleukin 1β (IL-1β) mRNA expression, lactate, and secretory IL-1β production. PKM2 inhibition significantly increased Ox-LDL-induced ABCA1 and ABCG1 protein expression and NBD-cholesterol efflux to apoA1 and HDL. PKM2 shRNA significantly inhibited Ox-LDL-induced CD36, FASN protein expression, DiI-Ox-LDL binding and uptake, and cellular total cholesterol, free cholesterol, and cholesteryl ester content. Therefore, PKM2 regulates lipid uptake and efflux. DASA-58, a PKM2 activator, downregulated LXR-α, ABCA1, and ABCG1, and augmented FASN and CD36 protein expression. Peritoneal macrophages showed similar results. Ox-LDL induced PKM2- SREBP-1 interaction and FASN expression in a PKM2-dependent manner. Therefore, this study suggests a role for PKM2 in Ox-LDL-induced aerobic glycolysis, inflammation, and macrophage foam cell formation. Full Article
x A human-like bile acid pool induced by deletion of hepatic Cyp2c70 modulates effects of FXR activation in mice [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Bile acids (BAs) facilitate intestinal absorption of lipid-soluble nutrients and modulate various metabolic pathways through the farnesoid X receptor (FXR) and Takeda G-protein-coupled receptor 5. These receptors are targets for therapy in cholestatic and metabolic diseases. However, dissimilarities in BA metabolism between humans and mice complicate translation of preclinical data. Cytochrome P450 family 2 subfamily c polypeptide 70 (CYP2C70) was recently proposed to catalyze the formation of rodent-specific muricholic acids (MCAs). With CRISPR/Cas9-mediated somatic genome editing, we generated an acute hepatic Cyp2c70 knockout mouse model (Cyp2c70ako) to clarify the role of CYP2C70 in BA metabolism in vivo and evaluate whether its activity modulates effects of pharmacologic FXR activation on cholesterol homeostasis. In Cyp2c70ako mice, chenodeoxycholic acid (CDCA) increased at the expense of βMCA, resulting in a more hydrophobic human-like BA pool. Tracer studies demonstrated that, in vivo, CYP2C70 catalyzes the formation of βMCA primarily by sequential 6β-hydroxylation and C7-epimerization of CDCA, generating αMCA as an intermediate metabolite. Physiologically, the humanized BA composition in Cyp2c70ako mice blunted the stimulation of fecal cholesterol disposal in response to FXR activation compared with WT mice, predominantly due to reduced stimulation of transintestinal cholesterol excretion. Thus, deletion of hepatic Cyp2c70 in adult mice translates into a human-like BA pool composition and impacts the response to pharmacologic FXR activation. This Cyp2c70ako mouse model may be a useful tool for future studies of BA signaling and metabolism that informs human disease development and treatment. Full Article
x Lithium ion adduction enables UPLC-MS/MS-based analysis of multi-class 3-hydroxyl group-containing keto-steroids [Methods] By feedproxy.google.com Published On :: 2020-04-01T00:05:29-07:00 Steroids that contain a 3-hydroxyl group (3-OH steroids) are widely distributed in nature. During analysis with ESI-MS, they easily become dehydrated while in the protonated form, resulting in the production of several precursor ions and leading to low sensitivity of detection. To address this analytical challenge, here, we developed a method for the quantitation of 3-OH steroids by LC-MS/MS coupled with post-column addition of lithium (Li) ions to the mobile phase. The Li ion has a high affinity for the keto group of steroids, stabilizing their structures during ionization and permitting detection of analytes exclusively as the lithiated form. This not only improved the intensities of the precursor ions, but also promoted the formation of typical lithiated fragment ions. This improvement made the quantitation by multiple reaction monitoring more sensitive and reliable, as evidenced by 1.53–188 times enhanced detection sensitivity of 13 steroids that contained at least one keto and two hydroxyl groups or one keto and one 5-olefinic double bond, among 16 different 3-OH steroids. We deployed our newly developed method for profiling steroids in mouse brain tissue and identified six steroids in one tissue sample. Among these, 16-hydroxyestrone, tetrahydrocorticosterone, and 17α-hydroxypregnenolone were detected for the first time in the mouse brain. In summary, the method described here enables the detection of lithiated steroids by LC-MS/MS, including three 3-OH steroids not previously reported in the mouse brain. We anticipate that this new method may allow the determination of 3-OH steroids in different brain regions. Full Article
x Hexacosenoyl-CoA is the most abundant very long-chain acyl-CoA in ATP binding cassette transporter D1-deficient cells [Patient-Oriented and Epidemiological Research] By feedproxy.google.com Published On :: 2020-04-01T00:05:29-07:00 X-linked adrenoleukodystrophy (X-ALD) is an inherited disorder caused by deleterious mutations in the ABCD1 gene. The ABCD1 protein transports very long-chain FAs (VLCFAs) from the cytosol into the peroxisome where the VLCFAs are degraded through β-oxidation. ABCD1 dysfunction leads to VLCFA accumulation in individuals with X-ALD. FAs are activated by esterification to CoA before metabolic utilization. However, the intracellular pools and metabolic profiles of individual acyl-CoA esters have not been fully analyzed. In this study, we profiled the acyl-CoA species in fibroblasts from X-ALD patients and in ABCD1-deficient HeLa cells. We found that hexacosenoyl (26:1)-CoA, but not hexacosanoyl (26:0)-CoA, was the most abundantly concentrated among the VLCFA-CoA species in these cells. We also show that 26:1-CoA is mainly synthesized from oleoyl-CoA, and the metabolic turnover rate of 26:1-CoA was almost identical to that of oleoyl-CoA in both WT and ABCD1-deficient HeLa cells. The findings of our study provide precise quantitative and metabolic information of each acyl-CoA species in living cells. Our results suggest that VLCFA is endogenously synthesized as VLCFA-CoA through a FA elongation pathway and is then efficiently converted to other metabolites, such as phospholipids, in the absence of ABCD1. Full Article
x Dynamics of sphingolipids and the serine palmitoyltransferase complex in rat oligodendrocytes during myelination [Research Articles] By feedproxy.google.com Published On :: 2020-04-01T00:05:29-07:00 Myelin is a unique lipid-rich membrane structure that accelerates neurotransmission and supports neuronal function. Sphingolipids are critical myelin components. Yet sphingolipid content and synthesis have not been well characterized in oligodendrocytes, the myelin-producing cells of the CNS. Here, using quantitative real-time PCR, LC-MS/MS-based lipid analysis, and biochemical assays, we examined sphingolipid synthesis during the peak period of myelination in the postnatal rat brain. Importantly, we characterized sphingolipid production in isolated oligodendrocytes. We analyzed sphingolipid distribution and levels of critical enzymes and regulators in the sphingolipid biosynthetic pathway, with focus on the serine palmitoyltransferase (SPT) complex, the rate-limiting step in this pathway. During myelination, levels of the major SPT subunits increased and oligodendrocyte maturation was accompanied by extensive alterations in the composition of the SPT complex. These included changes in the relative levels of two alternative catalytic subunits, SPTLC2 and -3, in the relative levels of isoforms of the small subunits, ssSPTa and -b, and in the isoform distribution of the SPT regulators, the ORMDLs. Myelination progression was accompanied by distinct changes in both the nature of the sphingoid backbone and the N-acyl chains incorporated into sphingolipids. We conclude that the distribution of these changes among sphingolipid family members is indicative of a selective channeling of the ceramide backbone toward specific downstream metabolic pathways during myelination. Our findings provide insights into myelin production in oligodendrocytes and suggest how dysregulation of the biosynthesis of this highly specialized membrane could contribute to demyelinating diseases. Full Article
x Of mice and men: murine bile acids explain species differences in the regulation of bile acid and cholesterol metabolism [Research Articles] By feedproxy.google.com Published On :: 2020-04-01T00:05:29-07:00 Compared with humans, rodents have higher synthesis of cholesterol and bile acids (BAs) and faster clearance and lower levels of serum LDL-cholesterol. Paradoxically, they increase BA synthesis in response to bile duct ligation (BDL). Another difference is the production of hydrophilic 6-hydroxylated muricholic acids (MCAs), which may antagonize the activation of FXRs, in rodents versus humans. We hypothesized that the presence of MCAs is key for many of these metabolic differences between mice and humans. We thus studied the effects of genetic deletion of the Cyp2c70 gene, previously proposed to control MCA formation. Compared with WT animals, KO mice created using the CRISPR/Cas9 system completely lacked MCAs, and displayed >50% reductions in BA and cholesterol synthesis and hepatic LDL receptors, leading to a marked increase in serum LDL-cholesterol. The doubling of BA synthesis following BDL in WT animals was abolished in KO mice, despite extinguished intestinal fibroblast growth factor (Fgf)15 expression in both groups. Accumulation of cholesterol-enriched particles ("Lp-X") in serum was almost eliminated in KO mice. Livers of KO mice were increased 18% in weight, and serum markers of liver function indicated liver damage. The human-like phenotype of BA metabolism in KO mice could not be fully explained by the activation of FXR-mediated changes. In conclusion, the presence of MCAs is critical for many of the known metabolic differences between mice and humans. The Cyp2c70-KO mouse should be useful in studies exploring potential therapeutic targets for human disease. Full Article
x Hepatic monoamine oxidase B is involved in endogenous geranylgeranoic acid synthesis in mammalian liver cells [Research Articles] By feedproxy.google.com Published On :: 2020-05-01T00:05:28-07:00 Geranylgeranoic acid (GGA) originally was identified in some animals and has been developed as an agent for preventing second primary hepatoma. We previously have also identified GGA as an acyclic diterpenoid in some medicinal herbs. Recently, we reported that in human hepatoma-derived HuH-7 cells, GGA is metabolically labeled from 13C-mevalonate. Several cell-free experiments have demonstrated that GGA is synthesized through geranylgeranial by oxygen-dependent oxidation of geranylgeraniol (GGOH), but the exact biochemical events giving rise to GGA in hepatoma cells remain unclear. Monoamine oxidase B (MOAB) has been suggested to be involved in GGOH oxidation. Here, using two human hepatoma cell lines, we investigated whether MAOB contributes to GGA biosynthesis. Using either HuH-7 cell lysates or recombinant human MAOB, we found that: 1) the MAO inhibitor tranylcypromine dose-dependently downregulates endogenous GGA levels in HuH-7 cells; and 2) siRNA-mediated MAOB silencing reduces intracellular GGA levels in HuH-7 and Hep3B cells. Unexpectedly, however, CRISPR/Cas9-generated MAOB-KO human hepatoma Hep3B cells had GGA levels similar to those in MAOB-WT cells. A sensitivity of GGA levels to siRNA-mediated MAOB downregulation was recovered when the MAOB-KO cells were transfected with a MAOB-expression plasmid, suggesting that MAOB is the enzyme primarily responsible for GGOH oxidation and that some other latent metabolic pathways may maintain endogenous GGA levels in the MAOB-KO hepatoma cells. Along with the previous findings, these results provide critical insights into the biological roles of human MAOB and provide evidence that hepatic MAOB is involved in endogenous GGA biosynthesis via GGOH oxidation. Full Article
x Slc43a3 is a regulator of free fatty acid flux [Research Articles] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Adipocytes take up long chain FAs through diffusion and protein-mediated transport, whereas FA efflux is considered to occur by diffusion. To identify potential membrane proteins that are involved in regulating FA flux in adipocytes, the expression levels of 55 membrane transporters without known function were screened in subcutaneous adipose samples from obese patients before and after bariatric surgery using branched DNA methodology. Among the 33 solute carrier (SLC) transporter family members screened, the expression of 14 members showed significant changes before and after bariatric surgery. One of them, Slc43a3, increased about 2.5-fold after bariatric surgery. Further investigation demonstrated that Slc43a3 is highly expressed in murine adipose tissue and induced during adipocyte differentiation in primary preadipocytes and in OP9 cells. Knockdown of Slc43a3 with siRNA in differentiated OP9 adipocytes reduced both basal and forskolin-stimulated FA efflux, while also increasing FA uptake and lipid droplet accumulation. In contrast, overexpression of Slc43a3 decreased FA uptake in differentiated OP9 cells and resulted in decreased lipid droplet accumulation. Therefore, Slc43a3 seems to regulate FA flux in adipocytes, functioning as a positive regulator of FA efflux and as a negative regulator of FA uptake. Full Article
x Vitamin E does not prevent Western diet-induced NASH progression and increases metabolic flux dysregulation in mice [Research Articles] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Fatty liver involves ectopic lipid accumulation and dysregulated hepatic oxidative metabolism, which can progress to a state of elevated inflammation and fibrosis referred to as nonalcoholic steatohepatitis (NASH). The factors that control progression from simple steatosis to NASH are not fully known. Here, we tested the hypothesis that dietary vitamin E (VitE) supplementation would prevent NASH progression and associated metabolic alterations induced by a Western diet (WD). Hyperphagic melanocortin-4 receptor-deficient (MC4R–/–) mice were fed chow, chow+VitE, WD, or WD+VitE starting at 8 or 20 weeks of age. All groups exhibited extensive hepatic steatosis by the end of the study (28 weeks of age). WD feeding exacerbated liver disease severity without inducing proportional changes in liver triglycerides. Eight weeks of WD accelerated liver pyruvate cycling, and 20 weeks of WD extensively upregulated liver glucose and oxidative metabolism assessed by 2H/13C flux analysis. VitE supplementation failed to reduce the histological features of NASH. Rather, WD+VitE increased the abundance and saturation of liver ceramides and accelerated metabolic flux dysregulation compared with 8 weeks of WD alone. In summary, VitE did not limit NASH pathogenesis in genetically obese mice, but instead increased some indicators of metabolic dysfunction. Full Article
x Myeloid-specific deficiency of pregnane X receptor decreases atherosclerosis in LDL receptor-deficient mice [Research Articles] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 The pregnane X receptor (PXR) is a nuclear receptor that can be activated by numerous drugs and xenobiotic chemicals. PXR thereby functions as a xenobiotic sensor to coordinately regulate host responses to xenobiotics by transcriptionally regulating many genes involved in xenobiotic metabolism. We have previously reported that PXR has pro-atherogenic effects in animal models, but how PXR contributes to atherosclerosis development in different tissues or cell types remains elusive. In this study, we generated an LDL receptor-deficient mouse model with myeloid-specific PXR deficiency (PXRMyeLDLR–/–) to elucidate the role of macrophage PXR signaling in atherogenesis. The myeloid PXR deficiency did not affect metabolic phenotypes and plasma lipid profiles, but PXRMyeLDLR–/– mice had significantly decreased atherosclerosis at both aortic root and brachiocephalic arteries compared with control littermates. Interestingly, the PXR deletion did not affect macrophage adhesion and migration properties, but reduced lipid accumulation and foam cell formation in the macrophages. PXR deficiency also led to decreased expression of the scavenger receptor CD36 and impaired lipid uptake in macrophages of the PXRMyeLDLR–/– mice. Further, RNA-Seq analysis indicated that treatment with a prototypical PXR ligand affects the expression of many atherosclerosis-related genes in macrophages in vitro. These findings reveal a pivotal role of myeloid PXR signaling in atherosclerosis development and suggest that PXR may be a potential therapeutic target in atherosclerosis management. Full Article
x Hematopoiesis is regulated by cholesterol efflux pathways and lipid rafts: connections with cardiovascular diseases [Thematic Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Lipid rafts are highly ordered regions of the plasma membrane that are enriched in cholesterol and sphingolipids and play important roles in many cells. In hematopoietic stem and progenitor cells (HSPCs), lipid rafts house receptors critical for normal hematopoiesis. Lipid rafts also can bind and sequester kinases that induce negative feedback pathways to limit proliferative cytokine receptor cycling back to the cell membrane. Modulation of lipid rafts occurs through an array of mechanisms, with optimal cholesterol efflux one of the major regulators. As such, cholesterol homeostasis also regulates hematopoiesis. Increased lipid raft content, which occurs in response to changes in cholesterol efflux in the membrane, can result in prolonged receptor occupancy in the cell membrane and enhanced signaling. In addition, certain diseases, like diabetes, may contribute to lipid raft formation and affect cholesterol retention in rafts. In this review, we explore the role of lipid raft-related mechanisms in hematopoiesis and CVD (specifically, atherosclerosis) and discuss how defective cholesterol efflux pathways in HSPCs contribute to expansion of lipid rafts, thereby promoting myelopoiesis and thrombopoiesis. We also discuss the utility of cholesterol acceptors in contributing to lipid raft regulation and disruption, and highlight the potential to manipulate these pathways for therapeutic gain in CVD as well as other disorders with aberrant hematopoiesis. Full Article
x Lipid rafts and pathogens: the art of deception and exploitation [Thematic Reviews] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Lipid rafts, solid regions of the plasma membrane enriched in cholesterol and glycosphingolipids, are essential parts of a cell. Functionally, lipid rafts present a platform that facilitates interaction of cells with the outside world. However, the unique properties of lipid rafts required to fulfill this function at the same time make them susceptible to exploitation by pathogens. Many steps of pathogen interaction with host cells, and sometimes all steps within the entire lifecycle of various pathogens, rely on host lipid rafts. Such steps as binding of pathogens to the host cells, invasion of intracellular parasites into the cell, the intracellular dwelling of parasites, microbial assembly and exit from the host cell, and microbe transfer from one cell to another all involve lipid rafts. Interaction also includes modification of lipid rafts in host cells, inflicted by pathogens from both inside and outside the cell, through contact or remotely, to advance pathogen replication, to utilize cellular resources, and/or to mitigate immune response. Here, we provide a systematic overview of how and why pathogens interact with and exploit host lipid rafts, as well as the consequences of this interaction for the host, locally and systemically, and for the microbe. We also raise the possibility of modulation of lipid rafts as a therapeutic approach against a variety of infectious agents. Full Article
x GPIHBP1, a partner protein for lipoprotein lipase, is expressed only in capillary endothelial cells [Images In Lipid Research] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Full Article
x Problem Notes for SAS®9 - 65918: SAS Workflow Services fails to respond after a com.sas.workflow.engine.policy.PolicyExecutionException error occurs for a workflow instance By feedproxy.google.com Published On :: Wed, 6 May 2020 13:42:50 EST When the problem occurs, you are unable to perform any workflow actions in a SAS solution that uses SAS Workflow Services. Full Article WEBINFPLTFM+SAS+Web+Infrastructure+Platf
x Problem Notes for SAS®9 - 64285: The SCD Type 2 Loader transformation in SAS Data Integration Studio generates "ERROR 22-322: Syntax error, expecting one of the following:..." By feedproxy.google.com Published On :: Wed, 6 May 2020 12:38:17 EST If your business key column is a name literal, like " business key "n, a syntax error occurs when that variable name does not follow standard SAS naming conventions. Full Article DATABUILDER+SAS+Data+Integration+Studio
x Problem Notes for SAS®9 - 64459: A SAS Data Integration Studio job receives an error that states "The name '; index_name '; has the wrong number of qualifiers" By feedproxy.google.com Published On :: Wed, 6 May 2020 12:37:37 EST An error occurs because of an incorrectly generated CREATE INDEX clause in an SQL query that is sent to DB2 when the DB2 schema value is SESSION . The error message says "The name '; index_name '; has the wrong number of qualifie Full Article DATABUILDER+SAS+Data+Integration+Studio
x Problem Notes for SAS®9 - 65906: The EXPORT procedure contains a stack-corruption vulnerability By feedproxy.google.com Published On :: Wed, 6 May 2020 10:55:01 EST Severity: Medium Description: PROC EXPORT contains a stack-corruption vulnerability. Potential Impact: Under certain circumstances, the use of PROC EXP Full Article BASE+Base+SAS
x Problem Notes for SAS®9 - 65927: The Copy Files task in SAS Enterprise Guide 8.2 fails with the message "ERROR: Target folder does not exist or cannot be accessed" By feedproxy.google.com Published On :: Tue, 5 May 2020 09:59:15 EST When you run the Copy Files task in SAS Enterprise Guide and there is no connection to a SAS server, it fails with the following error: "ERROR: Target folder does not exist or cannot be accessed." Full Article EGUIDE+SAS+Enterprise+Guide
x Problem Notes for SAS®9 - 65903: You see a "java.lang.IllegalArgumentException" error in the log file when you use the IFRS9_Cycle workflow template in SAS Solution for IFRS 9 By feedproxy.google.com Published On :: Fri, 1 May 2020 18:01:29 EST The problem occurs on a content release on the SAS Risk Governance Framework. Full Article RGPBNDL+SAS+Risk+Governance+Framework
x Problem Notes for SAS®9 - 65872: You see a "java.lang.IllegalArgumentException" error in the log file when you use the CECL_Cycle workflow template in SAS Solution for CECL By feedproxy.google.com Published On :: Fri, 1 May 2020 16:53:01 EST The problem occurs on a content release on the SAS Risk Governance Framework. Full Article RGPBNDL+SAS+Risk+Governance+Framework
x Problem Notes for SAS®9 - 65904: SAS Federation Server stops responding when you run queries against X_OBJECT_PRIVILEGES in SYSCAT and the queries run for hours By feedproxy.google.com Published On :: Fri, 1 May 2020 14:48:24 EST The select * from "SYSCAT"."SYSCAT"."X_EFFECTIVE_OBJECT_PRIVILEGES" query runs for hours. In this scenario, SAS Federation Server stops responding, making it unavailable for use. Restarting SAS Federation Server solves t Full Article DFFEDSVR+SAS+Federation+Server
x Problem Notes for SAS®9 - 65898: A misleading SASTRACE message appears in the log when you insert a row into an Oracle table using SAS/ACCESS Interface to Oracle with DBIDIRECTEXEC By feedproxy.google.com Published On :: Thu, 30 Apr 2020 13:52:24 EST When you add one row to an Oracle table using DBIDIRECTEXEC, you see the following misleading trace message: "ORACLE: 4294967296 rows inserted/updated/deleted." You should see something similar to the following: "ORACLE: 1 rows inserte Full Article ORACLE+SAS/ACCESS+Interface+to+Oracle
x Problem Notes for SAS®9 - 65909: SAS Visual Analytics Designer 7.5 responds slowly when you edit large or complex reports By feedproxy.google.com Published On :: Thu, 30 Apr 2020 13:26:35 EST If your SAS Visual Analytics report contains many sections and objects, you might encounter performance problems when you are editing the report. A hot fix is planned for this issue. Full Article VISANLYTBNDL+SAS+Visual+Analytics
x Problem Notes for SAS®9 - 65572: The length of a string variable might be longer than specified with the MAX_CHAR_LEN= option By feedproxy.google.com Published On :: Tue, 28 Apr 2020 08:30:03 EST When you read in a BigQuery table, the length of string variables might be longer than the length specified with the MAX_CHAR_LEN= option when running your SAS software with UTF-8. By Full Article BIGQUERY+SAS/ACCESS+Interface+to+Google+
x Problem Notes for SAS®9 - 65856: The process of updating a lookup table in SAS Business Rules Manager (running in UNIX operating environments) does not work properly By feedproxy.google.com Published On :: Mon, 27 Apr 2020 13:37:52 EST Under UNIX, the process of updating a lookup table in SAS Business Rules Manager does not work properly. The problem occurs when you perform these steps: Open a lookup table. Cl Full Article BRLSTBNDL+SAS+Business+Rules+Manager
x Inbox: How will potential new rule affect Rays? By mlb.mlb.com Published On :: Thu, 7 Feb 2019 11:50:31 EDT Rays beat reporter Juan Toribio answers fans' questions. Full Article