iva Derivative-Free Methods for Policy Optimization: Guarantees for Linear Quadratic Systems By Published On :: 2020 We study derivative-free methods for policy optimization over the class of linear policies. We focus on characterizing the convergence rate of these methods when applied to linear-quadratic systems, and study various settings of driving noise and reward feedback. Our main theoretical result provides an explicit bound on the sample or evaluation complexity: we show that these methods are guaranteed to converge to within any pre-specified tolerance of the optimal policy with a number of zero-order evaluations that is an explicit polynomial of the error tolerance, dimension, and curvature properties of the problem. Our analysis reveals some interesting differences between the settings of additive driving noise and random initialization, as well as the settings of one-point and two-point reward feedback. Our theory is corroborated by simulations of derivative-free methods in application to these systems. Along the way, we derive convergence rates for stochastic zero-order optimization algorithms when applied to a certain class of non-convex problems. Full Article
iva Sparse and low-rank multivariate Hawkes processes By Published On :: 2020 We consider the problem of unveiling the implicit network structure of node interactions (such as user interactions in a social network), based only on high-frequency timestamps. Our inference is based on the minimization of the least-squares loss associated with a multivariate Hawkes model, penalized by $ell_1$ and trace norm of the interaction tensor. We provide a first theoretical analysis for this problem, that includes sparsity and low-rank inducing penalizations. This result involves a new data-driven concentration inequality for matrix martingales in continuous time with observable variance, which is a result of independent interest and a broad range of possible applications since it extends to matrix martingales former results restricted to the scalar case. A consequence of our analysis is the construction of sharply tuned $ell_1$ and trace-norm penalizations, that leads to a data-driven scaling of the variability of information available for each users. Numerical experiments illustrate the significant improvements achieved by the use of such data-driven penalizations. Full Article
iva Smoothed Nonparametric Derivative Estimation using Weighted Difference Quotients By Published On :: 2020 Derivatives play an important role in bandwidth selection methods (e.g., plug-ins), data analysis and bias-corrected confidence intervals. Therefore, obtaining accurate derivative information is crucial. Although many derivative estimation methods exist, the majority require a fixed design assumption. In this paper, we propose an effective and fully data-driven framework to estimate the first and second order derivative in random design. We establish the asymptotic properties of the proposed derivative estimator, and also propose a fast selection method for the tuning parameters. The performance and flexibility of the method is illustrated via an extensive simulation study. Full Article
iva Multivariate normal approximation of the maximum likelihood estimator via the delta method By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST Andreas Anastasiou, Robert E. Gaunt. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 136--149.Abstract: We use the delta method and Stein’s method to derive, under regularity conditions, explicit upper bounds for the distributional distance between the distribution of the maximum likelihood estimator (MLE) of a $d$-dimensional parameter and its asymptotic multivariate normal distribution. Our bounds apply in situations in which the MLE can be written as a function of a sum of i.i.d. $t$-dimensional random vectors. We apply our general bound to establish a bound for the multivariate normal approximation of the MLE of the normal distribution with unknown mean and variance. Full Article
iva Option pricing with bivariate risk-neutral density via copula and heteroscedastic model: A Bayesian approach By projecteuclid.org Published On :: Mon, 26 Aug 2019 04:00 EDT Lucas Pereira Lopes, Vicente Garibay Cancho, Francisco Louzada. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 801--825.Abstract: Multivariate options are adequate tools for multi-asset risk management. The pricing models derived from the pioneer Black and Scholes method under the multivariate case consider that the asset-object prices follow a Brownian geometric motion. However, the construction of such methods imposes some unrealistic constraints on the process of fair option calculation, such as constant volatility over the maturity time and linear correlation between the assets. Therefore, this paper aims to price and analyze the fair price behavior of the call-on-max (bivariate) option considering marginal heteroscedastic models with dependence structure modeled via copulas. Concerning inference, we adopt a Bayesian perspective and computationally intensive methods based on Monte Carlo simulations via Markov Chain (MCMC). A simulation study examines the bias, and the root mean squared errors of the posterior means for the parameters. Real stocks prices of Brazilian banks illustrate the approach. For the proposed method is verified the effects of strike and dependence structure on the fair price of the option. The results show that the prices obtained by our heteroscedastic model approach and copulas differ substantially from the prices obtained by the model derived from Black and Scholes. Empirical results are presented to argue the advantages of our strategy. Full Article
iva A new log-linear bimodal Birnbaum–Saunders regression model with application to survival data By projecteuclid.org Published On :: Mon, 04 Mar 2019 04:00 EST Francisco Cribari-Neto, Rodney V. Fonseca. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 329--355.Abstract: The log-linear Birnbaum–Saunders model has been widely used in empirical applications. We introduce an extension of this model based on a recently proposed version of the Birnbaum–Saunders distribution which is more flexible than the standard Birnbaum–Saunders law since its density may assume both unimodal and bimodal shapes. We show how to perform point estimation, interval estimation and hypothesis testing inferences on the parameters that index the regression model we propose. We also present a number of diagnostic tools, such as residual analysis, local influence, generalized leverage, generalized Cook’s distance and model misspecification tests. We investigate the usefulness of model selection criteria and the accuracy of prediction intervals for the proposed model. Results of Monte Carlo simulations are presented. Finally, we also present and discuss an empirical application. Full Article
iva The equivalence of dynamic and static asset allocations under the uncertainty caused by Poisson processes By projecteuclid.org Published On :: Mon, 14 Jan 2019 04:01 EST Yong-Chao Zhang, Na Zhang. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 1, 184--191.Abstract: We investigate the equivalence of dynamic and static asset allocations in the case where the price process of a risky asset is driven by a Poisson process. Under some mild conditions, we obtain a necessary and sufficient condition for the equivalence of dynamic and static asset allocations. In addition, we provide a simple sufficient condition for the equivalence. Full Article
iva Public-private partnerships in Canada : law, policy and value for money By dal.novanet.ca Published On :: Fri, 1 May 2020 19:34:09 -0300 Author: Murphy, Timothy J. (Timothy John), author.Callnumber: KE 1465 M87 2019ISBN: 9780433457985 (Cloth) Full Article
iva Flexible, boundary adapted, nonparametric methods for the estimation of univariate piecewise-smooth functions By projecteuclid.org Published On :: Tue, 04 Feb 2020 04:00 EST Umberto Amato, Anestis Antoniadis, Italia De Feis. Source: Statistics Surveys, Volume 14, 32--70.Abstract: We present and compare some nonparametric estimation methods (wavelet and/or spline-based) designed to recover a one-dimensional piecewise-smooth regression function in both a fixed equidistant or not equidistant design regression model and a random design model. Wavelet methods are known to be very competitive in terms of denoising and compression, due to the simultaneous localization property of a function in time and frequency. However, boundary assumptions, such as periodicity or symmetry, generate bias and artificial wiggles which degrade overall accuracy. Simple methods have been proposed in the literature for reducing the bias at the boundaries. We introduce new ones based on adaptive combinations of two estimators. The underlying idea is to combine a highly accurate method for non-regular functions, e.g., wavelets, with one well behaved at boundaries, e.g., Splines or Local Polynomial. We provide some asymptotic optimal results supporting our approach. All the methods can handle data with a random design. We also sketch some generalization to the multidimensional setting. To study the performance of the proposed approaches we have conducted an extensive set of simulations on synthetic data. An interesting regression analysis of two real data applications using these procedures unambiguously demonstrates their effectiveness. Full Article
iva Measuring multivariate association and beyond By projecteuclid.org Published On :: Wed, 16 Nov 2016 22:00 EST Julie Josse, Susan Holmes. Source: Statistics Surveys, Volume 10, 132--167.Abstract: Simple correlation coefficients between two variables have been generalized to measure association between two matrices in many ways. Coefficients such as the RV coefficient, the distance covariance (dCov) coefficient and kernel based coefficients are being used by different research communities. Scientists use these coefficients to test whether two random vectors are linked. Once it has been ascertained that there is such association through testing, then a next step, often ignored, is to explore and uncover the association’s underlying patterns. This article provides a survey of various measures of dependence between random vectors and tests of independence and emphasizes the connections and differences between the various approaches. After providing definitions of the coefficients and associated tests, we present the recent improvements that enhance their statistical properties and ease of interpretation. We summarize multi-table approaches and provide scenarii where the indices can provide useful summaries of heterogeneous multi-block data. We illustrate these different strategies on several examples of real data and suggest directions for future research. Full Article
iva $M$-functionals of multivariate scatter By projecteuclid.org Published On :: Fri, 20 Mar 2015 09:11 EDT Lutz Dümbgen, Markus Pauly, Thomas Schweizer. Source: Statistics Surveys, Volume 9, 32--105.Abstract: This survey provides a self-contained account of $M$-estimation of multivariate scatter. In particular, we present new proofs for existence of the underlying $M$-functionals and discuss their weak continuity and differentiability. This is done in a rather general framework with matrix-valued random variables. By doing so we reveal a connection between Tyler’s (1987a) $M$-functional of scatter and the estimation of proportional covariance matrices. Moreover, this general framework allows us to treat a new class of scatter estimators, based on symmetrizations of arbitrary order. Finally these results are applied to $M$-estimation of multivariate location and scatter via multivariate $t$-distributions. Full Article
iva Semi-parametric estimation for conditional independence multivariate finite mixture models By projecteuclid.org Published On :: Fri, 06 Feb 2015 08:39 EST Didier Chauveau, David R. Hunter, Michael Levine. Source: Statistics Surveys, Volume 9, 1--31.Abstract: The conditional independence assumption for nonparametric multivariate finite mixture models, a weaker form of the well-known conditional independence assumption for random effects models for longitudinal data, is the subject of an increasing number of theoretical and algorithmic developments in the statistical literature. After presenting a survey of this literature, including an in-depth discussion of the all-important identifiability results, this article describes and extends an algorithm for estimation of the parameters in these models. The algorithm works for any number of components in three or more dimensions. It possesses a descent property and can be easily adapted to situations where the data are grouped in blocks of conditionally independent variables. We discuss how to adapt this algorithm to various location-scale models that link component densities, and we even adapt it to a particular class of univariate mixture problems in which the components are assumed symmetric. We give a bandwidth selection procedure for our algorithm. Finally, we demonstrate the effectiveness of our algorithm using a simulation study and two psychometric datasets. Full Article
iva A review of survival trees By projecteuclid.org Published On :: Mon, 12 Sep 2011 09:13 EDT Imad Bou-Hamad, Denis Larocque, Hatem Ben-AmeurSource: Statist. Surv., Volume 5, 44--71.Abstract: This paper presents a non–technical account of the developments in tree–based methods for the analysis of survival data with censoring. This review describes the initial developments, which mainly extended the existing basic tree methodologies to censored data as well as to more recent work. We also cover more complex models, more specialized methods, and more specific problems such as multivariate data, the use of time–varying covariates, discrete–scale survival data, and ensemble methods applied to survival trees. A data example is used to illustrate some methods that are implemented in R. Full Article
iva Data confidentiality: A review of methods for statistical disclosure limitation and methods for assessing privacy By projecteuclid.org Published On :: Fri, 04 Feb 2011 09:16 EST Gregory J. Matthews, Ofer HarelSource: Statist. Surv., Volume 5, 1--29.Abstract: There is an ever increasing demand from researchers for access to useful microdata files. However, there are also growing concerns regarding the privacy of the individuals contained in the microdata. Ideally, microdata could be released in such a way that a balance between usefulness of the data and privacy is struck. This paper presents a review of proposed methods of statistical disclosure control and techniques for assessing the privacy of such methods under different definitions of disclosure. References:Abowd, J., Woodcock, S., 2001. Disclosure limitation in longitudinal linked data. Confidentiality, Disclosure, and Data Access: Theory and Practical Applications for Statistical Agencies, 215–277.Adam, N.R., Worthmann, J.C., 1989. Security-control methods for statistical databases: a comparative study. ACM Comput. Surv. 21 (4), 515–556.Armstrong, M., Rushton, G., Zimmerman, D.L., 1999. Geographically masking health data to preserve confidentiality. Statistics in Medicine 18 (5), 497–525.Bethlehem, J.G., Keller, W., Pannekoek, J., 1990. Disclosure control of microdata. Jorunal of the American Statistical Association 85, 38–45.Blum, A., Dwork, C., McSherry, F., Nissam, K., 2005. Practical privacy: The sulq framework. In: Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. pp. 128–138.Bowden, R.J., Sim, A.B., 1992. The privacy bootstrap. Journal of Business and Economic Statistics 10 (3), 337–345.Carlson, M., Salabasis, M., 2002. A data-swapping technique for generating synthetic samples; a method for disclosure control. Res. Official Statist. (5), 35–64.Cox, L.H., 1980. Suppression methodology and statistical disclosure control. Journal of the American Statistical Association 75, 377–385.Cox, L.H., 1984. Disclosure control methods for frequency count data. Tech. rep., U.S. Bureau of the Census.Cox, L.H., 1987. A constructive procedure for unbiased controlled rounding. Journal of the American Statistical Association 82, 520–524.Cox, L.H., 1994. Matrix masking methods for disclosure limitation in microdata. Survey Methodology 6, 165–169.Cox, L.H., Fagan, J.T., Greenberg, B., Hemmig, R., 1987. Disclosure avoidance techniques for tabular data. Tech. rep., U.S. Bureau of the Census.Dalenius, T., 1977. Towards a methodology for statistical disclosure control. Statistik Tidskrift 15, 429–444.Dalenius, T., 1986. Finding a needle in a haystack - or identifying anonymous census record. Journal of Official Statistics 2 (3), 329–336.Dalenius, T., Denning, D., 1982. A hybrid scheme for release of statistics. Statistisk Tidskrift.Dalenius, T., Reiss, S.P., 1982. Data-swapping: A technique for disclosure control. Journal of Statistical Planning and Inference 6, 73–85.De Waal, A., Hundepool, A., Willenborg, L., 1995. Argus: Software for statistical disclosure control of microdata. U.S. Census Bureau.DeGroot, M.H., 1962. Uncertainty, information, and sequential experiments. Annals of Mathematical Statistics 33, 404–419.DeGroot, M.H., 1970. Optimal Statistical Decisions. Mansell, London.Dinur, I., Nissam, K., 2003. Revealing information while preserving privacy. In: Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principlesof Database Systems. pp. 202–210.Domingo-Ferrer, J., Torra, V., 2001a. A Quantitative Comparison of Disclosure Control Methods for Microdata. In: Doyle, P., Lane, J., Theeuwes, J., Zayatz, L. (Eds.), Confidentiality, Disclosure and Data Access - Theory and Practical Applications for Statistical Agencies. North-Holland, Amsterdam, Ch. 6, pp. 113–135.Domingo-Ferrer, J., Torra, V., 2001b. Disclosure control methods and information loss for microdata. In: Doyle, P., Lane, J., Theeuwes, J., Zayatz, L. (Eds.), Confidentiality, Disclosure and Data Access - Theory and Practical Applications for Statistical Agencies. North-Holland, Amsterdam, Ch. 5, pp. 93–112.Duncan, G., Lambert, D., 1986. Disclosure-limited data dissemination. Journal of the American Statistical Association 81, 10–28.Duncan, G., Lambert, D., 1989. The risk of disclosure for microdata. Journal of Business & Economic Statistics 7, 207–217. Duncan, G., Pearson, R., 1991. Enhancing access to microdata while protecting confidentiality: prospects for the future (with discussion). Statistical Science 6, 219–232.Dwork, C., 2006. Differential privacy. In: ICALP. Springer, pp. 1–12.Dwork, C., 2008. An ad omnia approach to defining and achieving private data analysis. In: Lecture Notes in Computer Science. Springer, p. 10.Dwork, C., Lei, J., 2009. Differential privacy and robust statistics. In: Proceedings of the 41th Annual ACM Symposium on Theory of Computing (STOC). pp. 371–380.Dwork, C., Mcsherry, F., Nissim, K., Smith, A., 2006. Calibrating noise to sensitivity in private data analysis. In: Proceedings of the 3rd Theory of Cryptography Conference. Springer, pp. 265–284.Dwork, C., Nissam, K., 2004. Privacy-preserving datamining on vertically partitioned databases. In: Advances in Cryptology: Proceedings of Crypto. pp. 528–544.Elliot, M., 2000. DIS: a new approach to the measurement of statistical disclosure risk. International Journal of Risk Assessment and Management 2, 39–48.Federal Committee on Statistical Methodology (FCSM), 2005. Statistical policy working group 22 - report on statistical disclosure limitation methodology. U.S. Census Bureau.Fellegi, I.P., 1972. On the question of statistical confidentiality. Journal of the American Statistical Association 67 (337), 7–18.Fienberg, S.E., McIntyre, J., 2004. Data swapping: Variations on a theme by Dalenius and Reiss. In: Domingo-Ferrer, J., Torra, V. (Eds.), Privacy in Statistical Databases. Vol. 3050 of Lecture Notes in Computer Science. Springer Berlin/Heidelberg, pp. 519, http://dx.doi.org/10.1007/ 978-3-540-25955-8_2Fuller, W., 1993. Masking procedurse for microdata disclosure limitation. Journal of Official Statistics 9, 383–406.General Assembly of the United Nations, 1948. Universal declaration of human rights.Gouweleeuw, J., P. Kooiman, L.W., de Wolf, P.-P., 1998. Post randomisation for statistical disclosure control: Theory and implementation. Journal of Official Statistics 14 (4), 463–478.Greenberg, B., 1987. Rank swapping for masking ordinal microdata. Tech. rep., U.S. Bureau of the Census (unpublished manuscript), Suitland, Maryland, USA.Greenberg, B.G., Abul-Ela, A.-L.A., Simmons, W.R., Horvitz, D.G., 1969. The unrelated question randomized response model: Theoretical framework. Journal of the American Statistical Association 64 (326), 520–539.Harel, O., Zhou, X.-H., 2007. Multiple imputation: Review and theory, implementation and software. Statistics in Medicine 26, 3057–3077. Hundepool, A., Domingo-ferrer, J., Franconi, L., Giessing, S., Lenz, R., Longhurst, J., Nordholt, E.S., Seri, G., paul De Wolf, P., 2006. A CENtre of EXcellence for Statistical Disclosure Control Handbook on Statistical Disclosure Control Version 1.01.Hundepool, A., Wetering, A. v.d., Ramaswamy, R., Wolf, P.d., Giessing, S., Fischetti, M., Salazar, J., Castro, J., Lowthian, P., Feb. 2005. τ-argus 3.1 user manual. Statistics Netherlands, Voorburg NL.Hundepool, A., Willenborg, L., 1996. μ- and τ-argus: Software for statistical disclosure control. Third International Seminar on Statistical Confidentiality, Bled.Karr, A., Kohnen, C.N., Oganian, A., Reiter, J.P., Sanil, A.P., 2006. A framework for evaluating the utility of data altered to protect confidentiality. American Statistician 60 (3), 224–232.Kaufman, S., Seastrom, M., Roey, S., 2005. Do disclosure controls to protect confidentiality degrade the quality of the data? In: American Statistical Association, Proceedings of the Section on Survey Research.Kennickell, A.B., 1997. Multiple imputation and disclosure protection: the case of the 1995 survey of consumer finances. Record Linkage Techniques, 248–267.Kim, J., 1986. Limiting disclosure in microdata based on random noise and transformation. Bureau of the Census.Krumm, J., 2007. Inference attacks on location tracks. Proceedings of Fifth International Conference on Pervasive Computingy, 127–143.Li, N., Li, T., Venkatasubramanian, S., 2007. t-closeness: Privacy beyond k-anonymity and l-diversity. In: Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on. pp. 106–115.Liew, C.K., Choi, U.J., Liew, C.J., 1985. A data distortion by probability distribution. ACM Trans. Database Syst. 10 (3), 395–411.Little, R.J.A., 1993. Statistical analysis of masked data. Journal of Official Statistics 9, 407–426.Little, R.J.A., Rubin, D.B., 1987. Statistical Analysis with Missing Data. John Wiley & Sons.Liu, F., Little, R.J.A., 2002. Selective multiple mputation of keys for statistical disclosure control in microdata. In: Proceedings Joint Statistical Meet. pp. 2133–2138.Machanavajjhala, A., Kifer, D., Abowd, J., Gehrke, J., Vilhuber, L., April 2008. Privacy: Theory meets practice on the map. In: International Conference on Data Engineering. Cornell University Comuputer Science Department, Cornell, USA, p. 10.Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M., 2007. L-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1 (1), 3.Manning, A.M., Haglin, D.J., Keane, J.A., 2008. A recursive search algorithm for statistical disclosure assessment. Data Min. Knowl. Discov. 16 (2), 165–196. Marsh, C., Skinner, C., Arber, S., Penhale, B., Openshaw, S., Hobcraft, J., Lievesley, D., Walford, N., 1991. The case for samples of anonymized records from the 1991 census. Journal of the Royal Statistical Society 154 (2), 305–340.Matthews, G.J., Harel, O., Aseltine, R.H., 2010a. Assessing database privacy using the area under the receiver-operator characteristic curve. Health Services and Outcomes Research Methodology 10 (1), 1–15.Matthews, G.J., Harel, O., Aseltine, R.H., 2010b. Examining the robustness of fully synthetic data techniques for data with binary variables. Journal of Statistical Computation and Simulation 80 (6), 609–624.Moore, Jr., R., 1996. Controlled data-swapping techniques for masking public use microdata. Census Tech Report.Mugge, R., 1983. Issues in protecting confidentiality in national health statistics. Proceedings of the Section on Survey Research Methods.Nissim, K., Raskhodnikova, S., Smith, A., 2007. Smooth sensitivity and sampling in private data analysis. In: STOC ’07: Proceedings of the thirty-ninth annual ACM symposium on Theory of computing. pp. 75–84.Paass, G., 1988. Disclosure risk and disclosure avoidance for microdata. Journal of Business and Economic Statistics 6 (4), 487–500.Palley, M., Simonoff, J., 1987. The use of regression methodology for the compromise of confidential information in statistical databases. ACM Trans. Database Systems 12 (4), 593–608.Raghunathan, T.E., Reiter, J.P., Rubin, D.B., 2003. Multiple imputation for statistical disclosure limitation. Journal of Official Statistics 19 (1), 1–16.Rajasekaran, S., Harel, O., Zuba, M., Matthews, G.J., Aseltine, Jr., R., 2009. Responsible data releases. In: Proceedings 9th Industrial Conference on Data Mining (ICDM). Springer LNCS, pp. 388–400.Reiss, S.P., 1984. Practical data-swapping: The first steps. CM Transactions on Database Systems 9, 20–37.Reiter, J.P., 2002. Satisfying disclosure restriction with synthetic data sets. Journal of Official Statistics 18 (4), 531–543.Reiter, J.P., 2003. Inference for partially synthetic, public use microdata sets. Survey Methodology 29 (2), 181–188.Reiter, J.P., 2004a. New approaches to data dissemination: A glimpse into the future (?). Chance 17 (3), 11–15.Reiter, J.P., 2004b. Simultaneous use of multiple imputation for missing data and disclosure limitation. Survey Methodology 30 (2), 235–242.Reiter, J.P., 2005a. Estimating risks of identification disclosure in microdata. Journal of the American Statistical Association 100, 1103–1112.Reiter, J.P., 2005b. Releasing multiply imputed, synthetic public use microdata: An illustration and empirical study. Journal of the Royal Statistical Society, Series A: Statistics in Society 168 (1), 185–205.Reiter, J.P., 2005c. Using CART to generate partially synthetic public use microdata. Journal of Official Statistics 21 (3), 441–462. Rubin, D.B., 1987. Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons.Rubin, D.B., 1993. Comment on “Statistical disclosure limitation”. Journal of Official Statistics 9, 461–468.Rubner, Y., Tomasi, C., Guibas, L.J., 1998. A metric for distributions with applications to image databases. Computer Vision, IEEE International Conference on 0, 59.Sarathy, R., Muralidhar, K., 2002a. The security of confidential numerical data in databases. Information Systems Research 13 (4), 389–403.Sarathy, R., Muralidhar, K., 2002b. The security of confidential numerical data in databases. Info. Sys. Research 13 (4), 389–403.Schafer, J.L., Graham, J.W., 2002. Missing data: Our view of state of the art. Psychological Methods 7 (2), 147–177.Singh, A., Yu, F., Dunteman, G., 2003. MASSC: A new data mask for limiting statistical information loss and disclosure. In: Proceedings of the Joint UNECE/EUROSTAT Work Session on Statistical Data Confidentiality. pp. 373–394.Skinner, C., 2009. Statistical disclosure control for survey data. In: Pfeffermann, D and Rao, C.R. eds. Handbook of Statistics Vol. 29A: Sample Surveys: Design, Methods and Applications. pp. 381–396.Skinner, C., Marsh, C., Openshaw, S., Wymer, C., 1994. Disclosure control for census microdata. Journal of Official Statistics 10, 31–51.Skinner, C., Shlomo, N., 2008. Assessing identification risk in survey microdata using log-linear models. Journal of the American Statistical Association 103, 989–1001.Skinner, C.J., Elliot, M.J., 2002. A measure of disclosure risk for microdata. Journal of the Royal Statistical Society. Series B (Statistical Methodology) 64 (4), 855–867.Smith, A., 2008. Efficient, dfferentially private point estimators. arXiv:0809.4794v1 [cs.CR].Spruill, N.L., 1982. Measures of confidentiality. Statistics of Income and Related Administrative Record Research, 131–136.Spruill, N.L., 1983. The confidentiality and analytic usefulness of masked business microdata. In: Proceedings of the Section on Survey Reserach Microdata. American Statistical Association, pp. 602–607.Sweeney, L., 1996. Replacing personally-identifying information in medical records, the scrub system. In: American Medical Informatics Association. Hanley and Belfus, Inc., pp. 333–337.Sweeney, L., 1997. Guaranteeing anonymity when sharing medical data, the datafly system. Journal of the American Medical Informatics Association 4, 51–55.Sweeney, L., 2002a. Achieving k-anonymity privacy protection using generalization and suppression. International Journal of Uncertainty, Fuzziness and Knowledge Based Systems 10 (5), 571–588. Sweeney, L., 2002b. k-anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge Based Systems 10 (5), 557–570.Tendick, P., 1991. Optimal noise addition for preserving confidentiality in multivariate data. Journal of Statistical Planning and Inference 27 (2), 341–353.United Nations Economic Comission for Europe (UNECE), 2007. Manging statistical cinfidentiality and microdata access: Principles and guidlinesof good practice.Warner, S.L., 1965. Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical Association 60 (309), 63–69.Wasserman, L., Zhou, S., 2010. A statistical framework for differential privacy. Journal of the American Statistical Association 105 (489), 375–389.Willenborg, L., de Waal, T., 2001. Elements of Statistical Disclosure Control. Springer-Verlag.Woodward, B., 1995. The computer-based patient record and confidentiality. The New England Journal of Medicine, 1419–1422. Full Article
iva A Critical Overview of Privacy-Preserving Approaches for Collaborative Forecasting. (arXiv:2004.09612v3 [cs.LG] UPDATED) By arxiv.org Published On :: Cooperation between different data owners may lead to an improvement in forecast quality - for instance by benefiting from spatial-temporal dependencies in geographically distributed time series. Due to business competitive factors and personal data protection questions, said data owners might be unwilling to share their data, which increases the interest in collaborative privacy-preserving forecasting. This paper analyses the state-of-the-art and unveils several shortcomings of existing methods in guaranteeing data privacy when employing Vector Autoregressive (VAR) models. The paper also provides mathematical proofs and numerical analysis to evaluate existing privacy-preserving methods, dividing them into three groups: data transformation, secure multi-party computations, and decomposition methods. The analysis shows that state-of-the-art techniques have limitations in preserving data privacy, such as a trade-off between privacy and forecasting accuracy, while the original data in iterative model fitting processes, in which intermediate results are shared, can be inferred after some iterations. Full Article
iva Bayesian factor models for multivariate categorical data obtained from questionnaires. (arXiv:1910.04283v2 [stat.AP] UPDATED) By arxiv.org Published On :: Factor analysis is a flexible technique for assessment of multivariate dependence and codependence. Besides being an exploratory tool used to reduce the dimensionality of multivariate data, it allows estimation of common factors that often have an interesting theoretical interpretation in real problems. However, standard factor analysis is only applicable when the variables are scaled, which is often inappropriate, for example, in data obtained from questionnaires in the field of psychology,where the variables are often categorical. In this framework, we propose a factor model for the analysis of multivariate ordered and non-ordered polychotomous data. The inference procedure is done under the Bayesian approach via Markov chain Monte Carlo methods. Two Monte-Carlo simulation studies are presented to investigate the performance of this approach in terms of estimation bias, precision and assessment of the number of factors. We also illustrate the proposed method to analyze participants' responses to the Motivational State Questionnaire dataset, developed to study emotions in laboratory and field settings. Full Article
iva Local Cascade Ensemble for Multivariate Data Classification. (arXiv:2005.03645v1 [cs.LG]) By arxiv.org Published On :: We present LCE, a Local Cascade Ensemble for traditional (tabular) multivariate data classification, and its extension LCEM for Multivariate Time Series (MTS) classification. LCE is a new hybrid ensemble method that combines an explicit boosting-bagging approach to handle the usual bias-variance tradeoff faced by machine learning models and an implicit divide-and-conquer approach to individualize classifier errors on different parts of the training data. Our evaluation firstly shows that the hybrid ensemble method LCE outperforms the state-of-the-art classifiers on the UCI datasets and that LCEM outperforms the state-of-the-art MTS classifiers on the UEA datasets. Furthermore, LCEM provides explainability by design and manifests robust performance when faced with challenges arising from continuous data collection (different MTS length, missing data and noise). Full Article
iva Fast multivariate empirical cumulative distribution function with connection to kernel density estimation. (arXiv:2005.03246v1 [cs.DS]) By arxiv.org Published On :: This paper revisits the problem of computing empirical cumulative distribution functions (ECDF) efficiently on large, multivariate datasets. Computing an ECDF at one evaluation point requires $mathcal{O}(N)$ operations on a dataset composed of $N$ data points. Therefore, a direct evaluation of ECDFs at $N$ evaluation points requires a quadratic $mathcal{O}(N^2)$ operations, which is prohibitive for large-scale problems. Two fast and exact methods are proposed and compared. The first one is based on fast summation in lexicographical order, with a $mathcal{O}(N{log}N)$ complexity and requires the evaluation points to lie on a regular grid. The second one is based on the divide-and-conquer principle, with a $mathcal{O}(Nlog(N)^{(d-1){vee}1})$ complexity and requires the evaluation points to coincide with the input points. The two fast algorithms are described and detailed in the general $d$-dimensional case, and numerical experiments validate their speed and accuracy. Secondly, the paper establishes a direct connection between cumulative distribution functions and kernel density estimation (KDE) for a large class of kernels. This connection paves the way for fast exact algorithms for multivariate kernel density estimation and kernel regression. Numerical tests with the Laplacian kernel validate the speed and accuracy of the proposed algorithms. A broad range of large-scale multivariate density estimation, cumulative distribution estimation, survival function estimation and regression problems can benefit from the proposed numerical methods. Full Article
iva mvord: An R Package for Fitting Multivariate Ordinal Regression Models By www.jstatsoft.org Published On :: Sat, 18 Apr 2020 03:35:08 +0000 The R package mvord implements composite likelihood estimation in the class of multivariate ordinal regression models with a multivariate probit and a multivariate logit link. A flexible modeling framework for multiple ordinal measurements on the same subject is set up, which takes into consideration the dependence among the multiple observations by employing different error structures. Heterogeneity in the error structure across the subjects can be accounted for by the package, which allows for covariate dependent error structures. In addition, different regression coefficients and threshold parameters for each response are supported. If a reduction of the parameter space is desired, constraints on the threshold as well as on the regression coefficients can be specified by the user. The proposed multivariate framework is illustrated by means of a credit risk application. Full Article
iva Semi-Parametric Joint Modeling of Survival and Longitudinal Data: The R Package JSM By www.jstatsoft.org Published On :: Sat, 18 Apr 2020 03:35:08 +0000 This paper is devoted to the R package JSM which performs joint statistical modeling of survival and longitudinal data. In biomedical studies it has been increasingly common to collect both baseline and longitudinal covariates along with a possibly censored survival time. Instead of analyzing the survival and longitudinal outcomes separately, joint modeling approaches have attracted substantive attention in the recent literature and have been shown to correct biases from separate modeling approaches and enhance information. Most existing approaches adopt a linear mixed effects model for the longitudinal component and the Cox proportional hazards model for the survival component. We extend the Cox model to a more general class of transformation models for the survival process, where the baseline hazard function is completely unspecified leading to semiparametric survival models. We also offer a non-parametric multiplicative random effects model for the longitudinal process in JSM in addition to the linear mixed effects model. In this paper, we present the joint modeling framework that is implemented in JSM, as well as the standard error estimation methods, and illustrate the package with two real data examples: a liver cirrhosis data and a Mayo Clinic primary biliary cirrhosis data. Full Article
iva The Washington manual internship survival guide By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9781975116859 Full Article
iva Dynamics of immune activation in viral diseases By dal.novanet.ca Published On :: Fri, 1 May 2020 19:44:43 -0300 Callnumber: OnlineISBN: 9789811510458 (electronic bk.) Full Article
iva Markov equivalence of marginalized local independence graphs By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Søren Wengel Mogensen, Niels Richard Hansen. Source: The Annals of Statistics, Volume 48, Number 1, 539--559.Abstract: Symmetric independence relations are often studied using graphical representations. Ancestral graphs or acyclic directed mixed graphs with $m$-separation provide classes of symmetric graphical independence models that are closed under marginalization. Asymmetric independence relations appear naturally for multivariate stochastic processes, for instance, in terms of local independence. However, no class of graphs representing such asymmetric independence relations, which is also closed under marginalization, has been developed. We develop the theory of directed mixed graphs with $mu $-separation and show that this provides a graphical independence model class which is closed under marginalization and which generalizes previously considered graphical representations of local independence. Several graphs may encode the same set of independence relations and this means that in many cases only an equivalence class of graphs can be identified from observational data. For statistical applications, it is therefore pivotal to characterize graphs that induce the same independence relations. Our main result is that for directed mixed graphs with $mu $-separation each equivalence class contains a maximal element which can be constructed from the independence relations alone. Moreover, we introduce the directed mixed equivalence graph as the maximal graph with dashed and solid edges. This graph encodes all information about the edges that is identifiable from the independence relations, and furthermore it can be computed efficiently from the maximal graph. Full Article
iva Adaptive risk bounds in univariate total variation denoising and trend filtering By projecteuclid.org Published On :: Mon, 17 Feb 2020 04:02 EST Adityanand Guntuboyina, Donovan Lieu, Sabyasachi Chatterjee, Bodhisattva Sen. Source: The Annals of Statistics, Volume 48, Number 1, 205--229.Abstract: We study trend filtering, a relatively recent method for univariate nonparametric regression. For a given integer $rgeq1$, the $r$th order trend filtering estimator is defined as the minimizer of the sum of squared errors when we constrain (or penalize) the sum of the absolute $r$th order discrete derivatives of the fitted function at the design points. For $r=1$, the estimator reduces to total variation regularization which has received much attention in the statistics and image processing literature. In this paper, we study the performance of the trend filtering estimator for every $rgeq1$, both in the constrained and penalized forms. Our main results show that in the strong sparsity setting when the underlying function is a (discrete) spline with few “knots,” the risk (under the global squared error loss) of the trend filtering estimator (with an appropriate choice of the tuning parameter) achieves the parametric $n^{-1}$-rate, up to a logarithmic (multiplicative) factor. Our results therefore provide support for the use of trend filtering, for every $rgeq1$, in the strong sparsity setting. Full Article
iva Adaptive estimation of the rank of the coefficient matrix in high-dimensional multivariate response regression models By projecteuclid.org Published On :: Wed, 30 Oct 2019 22:03 EDT Xin Bing, Marten H. Wegkamp. Source: The Annals of Statistics, Volume 47, Number 6, 3157--3184.Abstract: We consider the multivariate response regression problem with a regression coefficient matrix of low, unknown rank. In this setting, we analyze a new criterion for selecting the optimal reduced rank. This criterion differs notably from the one proposed in Bunea, She and Wegkamp ( Ann. Statist. 39 (2011) 1282–1309) in that it does not require estimation of the unknown variance of the noise, nor does it depend on a delicate choice of a tuning parameter. We develop an iterative, fully data-driven procedure, that adapts to the optimal signal-to-noise ratio. This procedure finds the true rank in a few steps with overwhelming probability. At each step, our estimate increases, while at the same time it does not exceed the true rank. Our finite sample results hold for any sample size and any dimension, even when the number of responses and of covariates grow much faster than the number of observations. We perform an extensive simulation study that confirms our theoretical findings. The new method performs better and is more stable than the procedure of Bunea, She and Wegkamp ( Ann. Statist. 39 (2011) 1282–1309) in both low- and high-dimensional settings. Full Article
iva Distance multivariance: New dependence measures for random vectors By projecteuclid.org Published On :: Fri, 02 Aug 2019 22:04 EDT Björn Böttcher, Martin Keller-Ressel, René L. Schilling. Source: The Annals of Statistics, Volume 47, Number 5, 2757--2789.Abstract: We introduce two new measures for the dependence of $nge2$ random variables: distance multivariance and total distance multivariance . Both measures are based on the weighted $L^{2}$-distance of quantities related to the characteristic functions of the underlying random variables. These extend distance covariance (introduced by Székely, Rizzo and Bakirov) from pairs of random variables to $n$-tuplets of random variables. We show that total distance multivariance can be used to detect the independence of $n$ random variables and has a simple finite-sample representation in terms of distance matrices of the sample points, where distance is measured by a continuous negative definite function. Under some mild moment conditions, this leads to a test for independence of multiple random vectors which is consistent against all alternatives. Full Article
iva Optimal asset allocation with multivariate Bayesian dynamic linear models By projecteuclid.org Published On :: Wed, 15 Apr 2020 22:05 EDT Jared D. Fisher, Davide Pettenuzzo, Carlos M. Carvalho. Source: The Annals of Applied Statistics, Volume 14, Number 1, 299--338.Abstract: We introduce a fast, closed-form, simulation-free method to model and forecast multiple asset returns and employ it to investigate the optimal ensemble of features to include when jointly predicting monthly stock and bond excess returns. Our approach builds on the Bayesian dynamic linear models of West and Harrison ( Bayesian Forecasting and Dynamic Models (1997) Springer), and it can objectively determine, through a fully automated procedure, both the optimal set of regressors to include in the predictive system and the degree to which the model coefficients, volatilities and covariances should vary over time. When applied to a portfolio of five stock and bond returns, we find that our method leads to large forecast gains, both in statistical and economic terms. In particular, we find that relative to a standard no-predictability benchmark, the optimal combination of predictors, stochastic volatility and time-varying covariances increases the annualized certainty equivalent returns of a leverage-constrained power utility investor by more than 500 basis points. Full Article
iva Integrative survival analysis with uncertain event times in application to a suicide risk study By projecteuclid.org Published On :: Wed, 15 Apr 2020 22:05 EDT Wenjie Wang, Robert Aseltine, Kun Chen, Jun Yan. Source: The Annals of Applied Statistics, Volume 14, Number 1, 51--73.Abstract: The concept of integrating data from disparate sources to accelerate scientific discovery has generated tremendous excitement in many fields. The potential benefits from data integration, however, may be compromised by the uncertainty due to incomplete/imperfect record linkage. Motivated by a suicide risk study, we propose an approach for analyzing survival data with uncertain event times arising from data integration. Specifically, in our problem deaths identified from the hospital discharge records together with reported suicidal deaths determined by the Office of Medical Examiner may still not include all the death events of patients, and the missing deaths can be recovered from a complete database of death records. Since the hospital discharge data can only be linked to the death record data by matching basic patient characteristics, a patient with a censored death time from the first dataset could be linked to multiple potential event records in the second dataset. We develop an integrative Cox proportional hazards regression in which the uncertainty in the matched event times is modeled probabilistically. The estimation procedure combines the ideas of profile likelihood and the expectation conditional maximization algorithm (ECM). Simulation studies demonstrate that under realistic settings of imperfect data linkage the proposed method outperforms several competing approaches including multiple imputation. A marginal screening analysis using the proposed integrative Cox model is performed to identify risk factors associated with death following suicide-related hospitalization in Connecticut. The identified diagnostics codes are consistent with existing literature and provide several new insights on suicide risk, prediction and prevention. Full Article
iva Predicting paleoclimate from compositional data using multivariate Gaussian process inverse prediction By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST John R. Tipton, Mevin B. Hooten, Connor Nolan, Robert K. Booth, Jason McLachlan. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2363--2388.Abstract: Multivariate compositional count data arise in many applications including ecology, microbiology, genetics and paleoclimate. A frequent question in the analysis of multivariate compositional count data is what underlying values of a covariate(s) give rise to the observed composition. Learning the relationship between covariates and the compositional count allows for inverse prediction of unobserved covariates given compositional count observations. Gaussian processes provide a flexible framework for modeling functional responses with respect to a covariate without assuming a functional form. Many scientific disciplines use Gaussian process approximations to improve prediction and make inference on latent processes and parameters. When prediction is desired on unobserved covariates given realizations of the response variable, this is called inverse prediction. Because inverse prediction is often mathematically and computationally challenging, predicting unobserved covariates often requires fitting models that are different from the hypothesized generative model. We present a novel computational framework that allows for efficient inverse prediction using a Gaussian process approximation to generative models. Our framework enables scientific learning about how the latent processes co-vary with respect to covariates while simultaneously providing predictions of missing covariates. The proposed framework is capable of efficiently exploring the high dimensional, multi-modal latent spaces that arise in the inverse problem. To demonstrate flexibility, we apply our method in a generalized linear model framework to predict latent climate states given multivariate count data. Based on cross-validation, our model has predictive skill competitive with current methods while simultaneously providing formal, statistical inference on the underlying community dynamics of the biological system previously not available. Full Article
iva A latent discrete Markov random field approach to identifying and classifying historical forest communities based on spatial multivariate tree species counts By projecteuclid.org Published On :: Wed, 27 Nov 2019 22:01 EST Stephen Berg, Jun Zhu, Murray K. Clayton, Monika E. Shea, David J. Mladenoff. Source: The Annals of Applied Statistics, Volume 13, Number 4, 2312--2340.Abstract: The Wisconsin Public Land Survey database describes historical forest composition at high spatial resolution and is of interest in ecological studies of forest composition in Wisconsin just prior to significant Euro-American settlement. For such studies it is useful to identify recurring subpopulations of tree species known as communities, but standard clustering approaches for subpopulation identification do not account for dependence between spatially nearby observations. Here, we develop and fit a latent discrete Markov random field model for the purpose of identifying and classifying historical forest communities based on spatially referenced multivariate tree species counts across Wisconsin. We show empirically for the actual dataset and through simulation that our latent Markov random field modeling approach improves prediction and parameter estimation performance. For model fitting we introduce a new stochastic approximation algorithm which enables computationally efficient estimation and classification of large amounts of spatial multivariate count data. Full Article
iva Oblique random survival forests By projecteuclid.org Published On :: Wed, 16 Oct 2019 22:03 EDT Byron C. Jaeger, D. Leann Long, Dustin M. Long, Mario Sims, Jeff M. Szychowski, Yuan-I Min, Leslie A. Mcclure, George Howard, Noah Simon. Source: The Annals of Applied Statistics, Volume 13, Number 3, 1847--1883.Abstract: We introduce and evaluate the oblique random survival forest (ORSF). The ORSF is an ensemble method for right-censored survival data that uses linear combinations of input variables to recursively partition a set of training data. Regularized Cox proportional hazard models are used to identify linear combinations of input variables in each recursive partitioning step. Benchmark results using simulated and real data indicate that the ORSF’s predicted risk function has high prognostic value in comparison to random survival forests, conditional inference forests, regression and boosting. In an application to data from the Jackson Heart Study, we demonstrate variable and partial dependence using the ORSF and highlight characteristics of its ten-year predicted risk function for atherosclerotic cardiovascular disease events (ASCVD; stroke, coronary heart disease). We present visualizations comparing variable and partial effect estimation according to the ORSF, the conditional inference forest, and the Pooled Cohort Risk equations. The obliqueRSF R package, which provides functions to fit the ORSF and create variable and partial dependence plots, is available on the comprehensive R archive network (CRAN). Full Article
iva Bayesian linear regression for multivariate responses under group sparsity By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Bo Ning, Seonghyun Jeong, Subhashis Ghosal. Source: Bernoulli, Volume 26, Number 3, 2353--2382.Abstract: We study frequentist properties of a Bayesian high-dimensional multivariate linear regression model with correlated responses. The predictors are separated into many groups and the group structure is pre-determined. Two features of the model are unique: (i) group sparsity is imposed on the predictors; (ii) the covariance matrix is unknown and its dimensions can also be high. We choose a product of independent spike-and-slab priors on the regression coefficients and a new prior on the covariance matrix based on its eigendecomposition. Each spike-and-slab prior is a mixture of a point mass at zero and a multivariate density involving the $ell_{2,1}$-norm. We first obtain the posterior contraction rate, the bounds on the effective dimension of the model with high posterior probabilities. We then show that the multivariate regression coefficients can be recovered under certain compatibility conditions. Finally, we quantify the uncertainty for the regression coefficients with frequentist validity through a Bernstein–von Mises type theorem. The result leads to selection consistency for the Bayesian method. We derive the posterior contraction rate using the general theory by constructing a suitable test from the first principle using moment bounds for certain likelihood ratios. This leads to posterior concentration around the truth with respect to the average Rényi divergence of order $1/2$. This technique of obtaining the required tests for posterior contraction rate could be useful in many other problems. Full Article
iva Local differential privacy: Elbow effect in optimal density estimation and adaptation over Besov ellipsoids By projecteuclid.org Published On :: Mon, 27 Apr 2020 04:02 EDT Cristina Butucea, Amandine Dubois, Martin Kroll, Adrien Saumard. Source: Bernoulli, Volume 26, Number 3, 1727--1764.Abstract: We address the problem of non-parametric density estimation under the additional constraint that only privatised data are allowed to be published and available for inference. For this purpose, we adopt a recent generalisation of classical minimax theory to the framework of local $alpha$-differential privacy and provide a lower bound on the rate of convergence over Besov spaces $mathcal{B}^{s}_{pq}$ under mean integrated $mathbb{L}^{r}$-risk. This lower bound is deteriorated compared to the standard setup without privacy, and reveals a twofold elbow effect. In order to fulfill the privacy requirement, we suggest adding suitably scaled Laplace noise to empirical wavelet coefficients. Upper bounds within (at most) a logarithmic factor are derived under the assumption that $alpha$ stays bounded as $n$ increases: A linear but non-adaptive wavelet estimator is shown to attain the lower bound whenever $pgeq r$ but provides a slower rate of convergence otherwise. An adaptive non-linear wavelet estimator with appropriately chosen smoothing parameters and thresholding is shown to attain the lower bound within a logarithmic factor for all cases. Full Article
iva Robust regression via mutivariate regression depth By projecteuclid.org Published On :: Fri, 31 Jan 2020 04:06 EST Chao Gao. Source: Bernoulli, Volume 26, Number 2, 1139--1170.Abstract: This paper studies robust regression in the settings of Huber’s $epsilon$-contamination models. We consider estimators that are maximizers of multivariate regression depth functions. These estimators are shown to achieve minimax rates in the settings of $epsilon$-contamination models for various regression problems including nonparametric regression, sparse linear regression, reduced rank regression, etc. We also discuss a general notion of depth function for linear operators that has potential applications in robust functional linear regression. Full Article
iva Multivariate count autoregression By projecteuclid.org Published On :: Tue, 26 Nov 2019 04:00 EST Konstantinos Fokianos, Bård Støve, Dag Tjøstheim, Paul Doukhan. Source: Bernoulli, Volume 26, Number 1, 471--499.Abstract: We are studying linear and log-linear models for multivariate count time series data with Poisson marginals. For studying the properties of such processes we develop a novel conceptual framework which is based on copulas. Earlier contributions impose the copula on the joint distribution of the vector of counts by employing a continuous extension methodology. Instead we introduce a copula function on a vector of associated continuous random variables. This construction avoids conceptual difficulties related to the joint distribution of counts yet it keeps the properties of the Poisson process marginally. Furthermore, this construction can be employed for modeling multivariate count time series with other marginal count distributions. We employ Markov chain theory and the notion of weak dependence to study ergodicity and stationarity of the models we consider. Suitable estimating equations are suggested for estimating unknown model parameters. The large sample properties of the resulting estimators are studied in detail. The work concludes with some simulations and a real data example. Full Article
iva 4 Ways to Help Students Cultivate Meaningful Connections Through Tech By marketbrief.edweek.org Published On :: Thu, 07 May 2020 15:19:55 +0000 The CEO of Move This World isn't big on screen time, but in the midst of the coronavirus pandemic, technology--when used with care--can help strengthen relationships. The post 4 Ways to Help Students Cultivate Meaningful Connections Through Tech appeared first on Market Brief. Full Article Marketplace K-12 Coronavirus COVID-19 Educational Technology/Ed-Tech Online / Virtual Learning Social Emotional Learning (SEL) wellbeing
iva Bayesian Sparse Multivariate Regression with Asymmetric Nonlocal Priors for Microbiome Data Analysis By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Kurtis Shuler, Marilou Sison-Mangus, Juhee Lee. Source: Bayesian Analysis, Volume 15, Number 2, 559--578.Abstract: We propose a Bayesian sparse multivariate regression method to model the relationship between microbe abundance and environmental factors for microbiome data. We model abundance counts of operational taxonomic units (OTUs) with a negative binomial distribution and relate covariates to the counts through regression. Extending conventional nonlocal priors, we construct asymmetric nonlocal priors for regression coefficients to efficiently identify relevant covariates and their effect directions. We build a hierarchical model to facilitate pooling of information across OTUs that produces parsimonious results with improved accuracy. We present simulation studies that compare variable selection performance under the proposed model to those under Bayesian sparse regression models with asymmetric and symmetric local priors and two frequentist models. The simulations show the proposed model identifies important covariates and yields coefficient estimates with favorable accuracy compared with the alternatives. The proposed model is applied to analyze an ocean microbiome dataset collected over time to study the association of harmful algal bloom conditions with microbial communities. Full Article
iva Additive Multivariate Gaussian Processes for Joint Species Distribution Modeling with Heterogeneous Data By projecteuclid.org Published On :: Thu, 19 Mar 2020 22:02 EDT Jarno Vanhatalo, Marcelo Hartmann, Lari Veneranta. Source: Bayesian Analysis, Volume 15, Number 2, 415--447.Abstract: Species distribution models (SDM) are a key tool in ecology, conservation and management of natural resources. Two key components of the state-of-the-art SDMs are the description for species distribution response along environmental covariates and the spatial random effect that captures deviations from the distribution patterns explained by environmental covariates. Joint species distribution models (JSDMs) additionally include interspecific correlations which have been shown to improve their descriptive and predictive performance compared to single species models. However, current JSDMs are restricted to hierarchical generalized linear modeling framework. Their limitation is that parametric models have trouble in explaining changes in abundance due, for example, highly non-linear physical tolerance limits which is particularly important when predicting species distribution in new areas or under scenarios of environmental change. On the other hand, semi-parametric response functions have been shown to improve the predictive performance of SDMs in these tasks in single species models. Here, we propose JSDMs where the responses to environmental covariates are modeled with additive multivariate Gaussian processes coded as linear models of coregionalization. These allow inference for wide range of functional forms and interspecific correlations between the responses. We propose also an efficient approach for inference with Laplace approximation and parameterization of the interspecific covariance matrices on the Euclidean space. We demonstrate the benefits of our model with two small scale examples and one real world case study. We use cross-validation to compare the proposed model to analogous semi-parametric single species models and parametric single and joint species models in interpolation and extrapolation tasks. The proposed model outperforms the alternative models in all cases. We also show that the proposed model can be seen as an extension of the current state-of-the-art JSDMs to semi-parametric models. Full Article
iva Bayesian Design of Experiments for Intractable Likelihood Models Using Coupled Auxiliary Models and Multivariate Emulation By projecteuclid.org Published On :: Mon, 13 Jan 2020 04:00 EST Antony Overstall, James McGree. Source: Bayesian Analysis, Volume 15, Number 1, 103--131.Abstract: A Bayesian design is given by maximising an expected utility over a design space. The utility is chosen to represent the aim of the experiment and its expectation is taken with respect to all unknowns: responses, parameters and/or models. Although straightforward in principle, there are several challenges to finding Bayesian designs in practice. Firstly, the utility and expected utility are rarely available in closed form and require approximation. Secondly, the design space can be of high-dimensionality. In the case of intractable likelihood models, these problems are compounded by the fact that the likelihood function, whose evaluation is required to approximate the expected utility, is not available in closed form. A strategy is proposed to find Bayesian designs for intractable likelihood models. It relies on the development of an automatic, auxiliary modelling approach, using multivariate Gaussian process emulators, to approximate the likelihood function. This is then combined with a copula-based approach to approximate the marginal likelihood (a quantity commonly required to evaluate many utility functions). These approximations are demonstrated on examples of stochastic process models involving experimental aims of both parameter estimation and model comparison. Full Article
iva Semiparametric Multivariate and Multiple Change-Point Modeling By projecteuclid.org Published On :: Tue, 11 Jun 2019 04:00 EDT Stefano Peluso, Siddhartha Chib, Antonietta Mira. Source: Bayesian Analysis, Volume 14, Number 3, 727--751.Abstract: We develop a general Bayesian semiparametric change-point model in which separate groups of structural parameters (for example, location and dispersion parameters) can each follow a separate multiple change-point process, driven by time-dependent transition matrices among the latent regimes. The distribution of the observations within regimes is unknown and given by a Dirichlet process mixture prior. The properties of the proposed model are studied theoretically through the analysis of inter-arrival times and of the number of change-points in a given time interval. The prior-posterior analysis by Markov chain Monte Carlo techniques is developed on a forward-backward algorithm for sampling the various regime indicators. Analysis with simulated data under various scenarios and an application to short-term interest rates are used to show the generality and usefulness of the proposed model. Full Article
iva Separable covariance arrays via the Tucker product, with applications to multivariate relational data By projecteuclid.org Published On :: Wed, 13 Jun 2012 14:27 EDT Peter D. HoffSource: Bayesian Anal., Volume 6, Number 2, 179--196.Abstract: Modern datasets are often in the form of matrices or arrays, potentially having correlations along each set of data indices. For example, data involving repeated measurements of several variables over time may exhibit temporal correlation as well as correlation among the variables. A possible model for matrix-valued data is the class of matrix normal distributions, which is parametrized by two covariance matrices, one for each index set of the data. In this article we discuss an extension of the matrix normal model to accommodate multidimensional data arrays, or tensors. We show how a particular array-matrix product can be used to generate the class of array normal distributions having separable covariance structure. We derive some properties of these covariance structures and the corresponding array normal distributions, and show how the array-matrix product can be used to define a semi-conjugate prior distribution and calculate the corresponding posterior distribution. We illustrate the methodology in an analysis of multivariate longitudinal network data which take the form of a four-way array. Full Article
iva Physical Exercise Prevents Stress-Induced Activation of Granule Neurons and Enhances Local Inhibitory Mechanisms in the Dentate Gyrus By www.jneurosci.org Published On :: 2013-05-01 Timothy J. SchoenfeldMay 1, 2013; 33:7770-7777BehavioralSystemsCognitive Full Article
iva Sleep Deprivation Biases the Neural Mechanisms Underlying Economic Preferences By www.jneurosci.org Published On :: 2011-03-09 Vinod VenkatramanMar 9, 2011; 31:3712-3718BehavioralSystemsCognitive Full Article
iva {Delta}9-Tetrahydrocannabinol and Cannabinol Activate Capsaicin-Sensitive Sensory Nerves via a CB1 and CB2 Cannabinoid Receptor-Independent Mechanism By www.jneurosci.org Published On :: 2002-06-01 Peter M. ZygmuntJun 1, 2002; 22:4720-4727Behavioral Full Article
iva Endothelial Adora2a Activation Promotes Blood-Brain Barrier Breakdown and Cognitive Impairment in Mice with Diet-Induced Insulin Resistance By www.jneurosci.org Published On :: 2019-05-22 Masaki YamamotoMay 22, 2019; 39:4179-4192Neurobiology of Disease Full Article
iva Sleep Loss Promotes Astrocytic Phagocytosis and Microglial Activation in Mouse Cerebral Cortex By www.jneurosci.org Published On :: 2017-05-24 Michele BellesiMay 24, 2017; 37:5263-5273Cellular Full Article
iva Brain Activation during Human Male Ejaculation By www.jneurosci.org Published On :: 2003-10-08 Gert HolstegeOct 8, 2003; 23:9185-9193BehavioralSystemsCognitive Full Article
iva Aprendizajes derivados de veinticinco años de autonomía del Banco de México By www.bis.org Published On :: 2019-11-22T14:45:00Z Discurso del Dr. Agustín Carstens, Director General del Banco de Pagos Internacionales, en la Celebración del 25 Aniversario de la Autonomía del Banco de México, Ciudad de México, 22 de noviembre de 2019. Full Article
iva Deletion of a Neuronal Drp1 Activator Protects against Cerebral Ischemia By www.jneurosci.org Published On :: 2020-04-08T09:30:18-07:00 Mitochondrial fission catalyzed by dynamin-related protein 1 (Drp1) is necessary for mitochondrial biogenesis and maintenance of healthy mitochondria. However, excessive fission has been associated with multiple neurodegenerative disorders, and we recently reported that mice with smaller mitochondria are sensitized to ischemic stroke injury. Although pharmacological Drp1 inhibition has been put forward as neuroprotective, the specificity and mechanism of the inhibitor used is controversial. Here, we provide genetic evidence that Drp1 inhibition is neuroprotective. Drp1 is activated by dephosphorylation of an inhibitory phosphorylation site, Ser637. We identify Bβ2, a mitochondria-localized protein phosphatase 2A (PP2A) regulatory subunit, as a neuron-specific Drp1 activator in vivo. Bβ2 KO mice of both sexes display elongated mitochondria in neurons and are protected from cerebral ischemic injury. Functionally, deletion of Bβ2 and maintained Drp1 Ser637 phosphorylation improved mitochondrial respiratory capacity, Ca2+ homeostasis, and attenuated superoxide production in response to ischemia and excitotoxicity in vitro and ex vivo. Last, deletion of Bβ2 rescued excessive stroke damage associated with dephosphorylation of Drp1 S637 and mitochondrial fission. These results indicate that the state of mitochondrial connectivity and PP2A/Bβ2-mediated dephosphorylation of Drp1 play a critical role in determining the severity of cerebral ischemic injury. Therefore, Bβ2 may represent a target for prophylactic neuroprotective therapy in populations at high risk of stroke. SIGNIFICANCE STATEMENT With recent advances in clinical practice including mechanical thrombectomy up to 24 h after the ischemic event, there is resurgent interest in neuroprotective stroke therapies. In this study, we demonstrate reduced stroke damage in the brain of mice lacking the Bβ2 regulatory subunit of protein phosphatase 2A, which we have shown previously acts as a positive regulator of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). Importantly, we provide evidence that deletion of Bβ2 can rescue excessive ischemic damage in mice lacking the mitochondrial PKA scaffold AKAP1, apparently via opposing effects on Drp1 S637 phosphorylation. These results highlight reversible phosphorylation in bidirectional regulation of Drp1 activity and identify Bβ2 as a potential pharmacological target to protect the brain from stroke injury. Full Article