nar

Die Schwindsucht im Lichte der Statistik und Socialpolitik : mit besonderer Berücksichtigung der staatlichen und privaten Versicherung ; eine Arbeit aus dem königlichen Versicherungsseminar der Universität Göttingen / von Wilhelm Kley.

Leipzig : Duncker & Humblot, 1898.




nar

Dietetical and medical hydrology : a treatise on baths; including cold, sea, warm, hot, vapour, gas, and mud baths, also on the watery regimen, hydropathy, and pulmonary inhalation; with a description of bathing in ancient and modern times / by John Bell.

Philadelphia : Barrington and Haswell, 1850.




nar

Diseases of the bladder, prostate gland, and urethra : including a practical view of urinary diseases deposits and calculi / by Frederick James Gant.

London : J. & A. Churchill, 1876.




nar

Diseases of the bladder, prostate gland, and urethra : including a practical view of urinary diseases deposits and calculi / by Frederick James Gant.

London : Bailliere, Tindall and Cox, 1884.




nar

Documents pour servir à l'histoire de la grossesse extra-utérine, douze observations / par A. Pinard.

Paris : G. Steinheil, 1892.




nar

The Edinburgh medical and physical dictionary : containing an explanation of the terms of art in anatomy, physiology, pathology ... as employed in the present improved state of medical science ... : to which is added, a copious glossary of obsolete terms

Edinburgh : Bell & Bradfute, 1807.




nar

Egypt and the Nile considered as a winter resort for pulmonary and other invalids / by John Patterson.

London : J. Churchill, 1867.




nar

Elementary lectures on veterinary science for agricultural students, farmers, and stock keepers / by Henry Thompson.

Whitehaven : T. Brakenridge, 1895.




nar

Epithélioma primitif du vagin / par Félix Bernard.

Paris : G. Carre, 1895.




nar

The equine hospital prescriber : drawn up for the use of veterinary practitioners and students / by James B. and Albert Gresswell.

London : Bailliere, Tindall and Cox, 1886.




nar

Erasmus Darwin / by Ernst Krause ; translated from the German by W.S. Dallas ; with a preliminary notice by Charles Darwin.

London : J. Murray, 1879.




nar

Essai sur l’alcalinitè du sang dans l’état de santé et dans quelques maladies / par J. Canard.

Paris : A. Parent, 1878.




nar

A shepherd watches the choking of a snared wolf that has killed a lamb; trappers hold back their hunting hounds while a shepherdess grieves for the lamb. Mezzotint by W.T. Annis, 1802, after J. Ward.

London (No. 32 Clipstone Street, Fitzroy Square) : Publish'd ... by S. Morgan, May 1st. 1802.




nar

Bernard Gilpin making peace among the warring clans on the English Border with Scotland. Photograph after W.B. Scott.

[19--?]




nar

Dream narrative

Oakland: Book River Press, 2018




nar

Aminergic hypotheses of behavior : reality or cliché? / edited by Bruce Kenneth Bernard.

Rockville, Maryland : National Institute on Drug Abuse, 1975.




nar

Narcotic antagonists, the search for long-acting preparations / editor, Robert Willette.

Rockville, Maryland : National Institute on Drug Abuse, 1976.




nar

Narcotic antagonists : naltrexone : progress report / editors, Demetrios Julius, Pierre Renault.

Rockville, Maryland : U.S. Dept. of Health, Education, and Welfare, Public Health Service, Alcohol, Drug Abuse and Mental Health Administration, 1976.




nar

New approaches to treatment of chronic pain : a review of multidisciplinary pain clinics and pain centers / editor, Lorenz K.Y. Ng.

Rockville, Maryland : National Institute on Drug Abuse, 1981.




nar

Professional and paraprofessional drug abuse counselors : three reports / Leonard A. LoSciuto, Leona S. Aiken, Mary Ann Ausetts ; [compiled, written, and prepared for publication by the Institute for Survey Research, Temple University].

Rockville, Maryland : National Institute on Drug Abuse, 1979.




nar

Co-ordinating drugs services : the role of regional and district drug advisory committees : a preliminary study for the Department of Health / by Peter Baker and Dorothy Runnicles.

London : London Research Centre, 1991.




nar

A fast MCMC algorithm for the uniform sampling of binary matrices with fixed margins

Guanyang Wang.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 1690--1706.

Abstract:
Uniform sampling of binary matrix with fixed margins is an important and difficult problem in statistics, computer science, ecology and so on. The well-known swap algorithm would be inefficient when the size of the matrix becomes large or when the matrix is too sparse/dense. Here we propose the Rectangle Loop algorithm, a Markov chain Monte Carlo algorithm to sample binary matrices with fixed margins uniformly. Theoretically the Rectangle Loop algorithm is better than the swap algorithm in Peskun’s order. Empirically studies also demonstrates the Rectangle Loop algorithm is remarkablely more efficient than the swap algorithm.




nar

Reduction problems and deformation approaches to nonstationary covariance functions over spheres

Emilio Porcu, Rachid Senoussi, Enner Mendoza, Moreno Bevilacqua.

Source: Electronic Journal of Statistics, Volume 14, Number 1, 890--916.

Abstract:
The paper considers reduction problems and deformation approaches for nonstationary covariance functions on the $(d-1)$-dimensional spheres, $mathbb{S}^{d-1}$, embedded in the $d$-dimensional Euclidean space. Given a covariance function $C$ on $mathbb{S}^{d-1}$, we chase a pair $(R,Psi)$, for a function $R:[-1,+1] o mathbb{R}$ and a smooth bijection $Psi$, such that $C$ can be reduced to a geodesically isotropic one: $C(mathbf{x},mathbf{y})=R(langle Psi (mathbf{x}),Psi (mathbf{y}) angle )$, with $langle cdot ,cdot angle $ denoting the dot product. The problem finds motivation in recent statistical literature devoted to the analysis of global phenomena, defined typically over the sphere of $mathbb{R}^{3}$. The application domains considered in the manuscript makes the problem mathematically challenging. We show the uniqueness of the representation in the reduction problem. Then, under some regularity assumptions, we provide an inversion formula to recover the bijection $Psi$, when it exists, for a given $C$. We also give sufficient conditions for reducibility.




nar

Unique Sharp Local Minimum in L1-minimization Complete Dictionary Learning

We study the problem of globally recovering a dictionary from a set of signals via $ell_1$-minimization. We assume that the signals are generated as i.i.d. random linear combinations of the $K$ atoms from a complete reference dictionary $D^*in mathbb R^{K imes K}$, where the linear combination coefficients are from either a Bernoulli type model or exact sparse model. First, we obtain a necessary and sufficient norm condition for the reference dictionary $D^*$ to be a sharp local minimum of the expected $ell_1$ objective function. Our result substantially extends that of Wu and Yu (2015) and allows the combination coefficient to be non-negative. Secondly, we obtain an explicit bound on the region within which the objective value of the reference dictionary is minimal. Thirdly, we show that the reference dictionary is the unique sharp local minimum, thus establishing the first known global property of $ell_1$-minimization dictionary learning. Motivated by the theoretical results, we introduce a perturbation based test to determine whether a dictionary is a sharp local minimum of the objective function. In addition, we also propose a new dictionary learning algorithm based on Block Coordinate Descent, called DL-BCD, which is guaranteed to decrease the obective function monotonically. Simulation studies show that DL-BCD has competitive performance in terms of recovery rate compared to other state-of-the-art dictionary learning algorithms when the reference dictionary is generated from random Gaussian matrices.




nar

On Stationary-Point Hitting Time and Ergodicity of Stochastic Gradient Langevin Dynamics

Stochastic gradient Langevin dynamics (SGLD) is a fundamental algorithm in stochastic optimization. Recent work by Zhang et al. (2017) presents an analysis for the hitting time of SGLD for the first and second order stationary points. The proof in Zhang et al. (2017) is a two-stage procedure through bounding the Cheeger's constant, which is rather complicated and leads to loose bounds. In this paper, using intuitions from stochastic differential equations, we provide a direct analysis for the hitting times of SGLD to the first and second order stationary points. Our analysis is straightforward. It only relies on basic linear algebra and probability theory tools. Our direct analysis also leads to tighter bounds comparing to Zhang et al. (2017) and shows the explicit dependence of the hitting time on different factors, including dimensionality, smoothness, noise strength, and step size effects. Under suitable conditions, we show that the hitting time of SGLD to first-order stationary points can be dimension-independent. Moreover, we apply our analysis to study several important online estimation problems in machine learning, including linear regression, matrix factorization, and online PCA.




nar

Estimation of parameters in the $operatorname{DDRCINAR}(p)$ model

Xiufang Liu, Dehui Wang.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 3, 638--673.

Abstract:
This paper discusses a $p$th-order dependence-driven random coefficient integer-valued autoregressive time series model ($operatorname{DDRCINAR}(p)$). Stationarity and ergodicity properties are proved. Conditional least squares, weighted least squares and maximum quasi-likelihood are used to estimate the model parameters. Asymptotic properties of the estimators are presented. The performances of these estimators are investigated and compared via simulations. In certain regions of the parameter space, simulative analysis shows that maximum quasi-likelihood estimators perform better than the estimators of conditional least squares and weighted least squares in terms of the proportion of within-$Omega$ estimates. At last, the model is applied to two real data sets.




nar

Nonstationary Bayesian modeling for a large data set of derived surface temperature return values. (arXiv:2005.03658v1 [stat.ME])

Heat waves resulting from prolonged extreme temperatures pose a significant risk to human health globally. Given the limitations of observations of extreme temperature, climate models are often used to characterize extreme temperature globally, from which one can derive quantities like return values to summarize the magnitude of a low probability event for an arbitrary geographic location. However, while these derived quantities are useful on their own, it is also often important to apply a spatial statistical model to such data in order to, e.g., understand how the spatial dependence properties of the return values vary over space and emulate the climate model for generating additional spatial fields with corresponding statistical properties. For these objectives, when modeling global data it is critical to use a nonstationary covariance function. Furthermore, given that the output of modern global climate models can be on the order of $mathcal{O}(10^4)$, it is important to utilize approximate Gaussian process methods to enable inference. In this paper, we demonstrate the application of methodology introduced in Risser and Turek (2020) to conduct a nonstationary and fully Bayesian analysis of a large data set of 20-year return values derived from an ensemble of global climate model runs with over 50,000 spatial locations. This analysis uses the freely available BayesNSGP software package for R.




nar

On a computationally-scalable sparse formulation of the multidimensional and non-stationary maximum entropy principle. (arXiv:2005.03253v1 [stat.CO])

Data-driven modelling and computational predictions based on maximum entropy principle (MaxEnt-principle) aim at finding as-simple-as-possible - but not simpler then necessary - models that allow to avoid the data overfitting problem. We derive a multivariate non-parametric and non-stationary formulation of the MaxEnt-principle and show that its solution can be approximated through a numerical maximisation of the sparse constrained optimization problem with regularization. Application of the resulting algorithm to popular financial benchmarks reveals memoryless models allowing for simple and qualitative descriptions of the major stock market indexes data. We compare the obtained MaxEnt-models to the heteroschedastic models from the computational econometrics (GARCH, GARCH-GJR, MS-GARCH, GARCH-PML4) in terms of the model fit, complexity and prediction quality. We compare the resulting model log-likelihoods, the values of the Bayesian Information Criterion, posterior model probabilities, the quality of the data autocorrelation function fits as well as the Value-at-Risk prediction quality. We show that all of the considered seven major financial benchmark time series (DJI, SPX, FTSE, STOXX, SMI, HSI and N225) are better described by conditionally memoryless MaxEnt-models with nonstationary regime-switching than by the common econometric models with finite memory. This analysis also reveals a sparse network of statistically-significant temporal relations for the positive and negative latent variance changes among different markets. The code is provided for open access.




nar

History of Pre-Modern Medicine Seminar Series, Spring 2018

The History of Pre-Modern Medicine seminar series returns this month. The 2017–18 series – organised by a group of historians of medicine based at London universities and hosted by the Wellcome Library – will conclude with four seminars. The series… Continue reading




nar

Evolutionary developmental biology : a reference guide

9783319330389 (electronic bk.)




nar

Ethnoveterinary medicine : present and future concepts

9783030322700 (electronic bk.)




nar

DICTIONARY OF CONSTRUCTION, SURVEYING, AND CIVIL ENGINEERING

9780192568632 (electronic bk.)




nar

Binary code fingerprinting for cybersecurity : application to malicious code fingerprinting

Alrabaee, Saed, authior
9783030342388 (electronic bk.)




nar

Detecting relevant changes in the mean of nonstationary processes—A mass excess approach

Holger Dette, Weichi Wu.

Source: The Annals of Statistics, Volume 47, Number 6, 3578--3608.

Abstract:
This paper considers the problem of testing if a sequence of means $(mu_{t})_{t=1,ldots ,n}$ of a nonstationary time series $(X_{t})_{t=1,ldots ,n}$ is stable in the sense that the difference of the means $mu_{1}$ and $mu_{t}$ between the initial time $t=1$ and any other time is smaller than a given threshold, that is $|mu_{1}-mu_{t}|leq c$ for all $t=1,ldots ,n$. A test for hypotheses of this type is developed using a bias corrected monotone rearranged local linear estimator and asymptotic normality of the corresponding test statistic is established. As the asymptotic variance depends on the location of the roots of the equation $|mu_{1}-mu_{t}|=c$ a new bootstrap procedure is proposed to obtain critical values and its consistency is established. As a consequence we are able to quantitatively describe relevant deviations of a nonstationary sequence from its initial value. The results are illustrated by means of a simulation study and by analyzing data examples.




nar

Cross validation for locally stationary processes

Stefan Richter, Rainer Dahlhaus.

Source: The Annals of Statistics, Volume 47, Number 4, 2145--2173.

Abstract:
We propose an adaptive bandwidth selector via cross validation for local M-estimators in locally stationary processes. We prove asymptotic optimality of the procedure under mild conditions on the underlying parameter curves. The results are applicable to a wide range of locally stationary processes such linear and nonlinear processes. A simulation study shows that the method works fairly well also in misspecified situations.




nar

A hierarchical Bayesian model for predicting ecological interactions using scaled evolutionary relationships

Mohamad Elmasri, Maxwell J. Farrell, T. Jonathan Davies, David A. Stephens.

Source: The Annals of Applied Statistics, Volume 14, Number 1, 221--240.

Abstract:
Identifying undocumented or potential future interactions among species is a challenge facing modern ecologists. Recent link prediction methods rely on trait data; however, large species interaction databases are typically sparse and covariates are limited to only a fraction of species. On the other hand, evolutionary relationships, encoded as phylogenetic trees, can act as proxies for underlying traits and historical patterns of parasite sharing among hosts. We show that, using a network-based conditional model, phylogenetic information provides strong predictive power in a recently published global database of host-parasite interactions. By scaling the phylogeny using an evolutionary model, our method allows for biological interpretation often missing from latent variable models. To further improve on the phylogeny-only model, we combine a hierarchical Bayesian latent score framework for bipartite graphs that accounts for the number of interactions per species with host dependence informed by phylogeny. Combining the two information sources yields significant improvement in predictive accuracy over each of the submodels alone. As many interaction networks are constructed from presence-only data, we extend the model by integrating a correction mechanism for missing interactions which proves valuable in reducing uncertainty in unobserved interactions.




nar

Wavelet spectral testing: Application to nonstationary circadian rhythms

Jessica K. Hargreaves, Marina I. Knight, Jon W. Pitchford, Rachael J. Oakenfull, Sangeeta Chawla, Jack Munns, Seth J. Davis.

Source: The Annals of Applied Statistics, Volume 13, Number 3, 1817--1846.

Abstract:
Rhythmic data are ubiquitous in the life sciences. Biologists need reliable statistical tests to identify whether a particular experimental treatment has caused a significant change in a rhythmic signal. When these signals display nonstationary behaviour, as is common in many biological systems, the established methodologies may be misleading. Therefore, there is a real need for new methodology that enables the formal comparison of nonstationary processes. As circadian behaviour is best understood in the spectral domain, here we develop novel hypothesis testing procedures in the (wavelet) spectral domain, embedding replicate information when available. The data are modelled as realisations of locally stationary wavelet processes, allowing us to define and rigorously estimate their evolutionary wavelet spectra. Motivated by three complementary applications in circadian biology, our new methodology allows the identification of three specific types of spectral difference. We demonstrate the advantages of our methodology over alternative approaches, by means of a comprehensive simulation study and real data applications, using both published and newly generated circadian datasets. In contrast to the current standard methodologies, our method successfully identifies differences within the motivating circadian datasets, and facilitates wider ranging analyses of rhythmic biological data in general.




nar

Functional weak limit theorem for a local empirical process of non-stationary time series and its application

Ulrike Mayer, Henryk Zähle, Zhou Zhou.

Source: Bernoulli, Volume 26, Number 3, 1891--1911.

Abstract:
We derive a functional weak limit theorem for a local empirical process of a wide class of piece-wise locally stationary (PLS) time series. The latter result is applied to derive the asymptotics of weighted empirical quantiles and weighted V-statistics of non-stationary time series. The class of admissible underlying time series is illustrated by means of PLS linear processes and PLS ARCH processes.




nar

On the probability distribution of the local times of diagonally operator-self-similar Gaussian fields with stationary increments

Kamran Kalbasi, Thomas Mountford.

Source: Bernoulli, Volume 26, Number 2, 1504--1534.

Abstract:
In this paper, we study the local times of vector-valued Gaussian fields that are ‘diagonally operator-self-similar’ and whose increments are stationary. Denoting the local time of such a Gaussian field around the spatial origin and over the temporal unit hypercube by $Z$, we show that there exists $lambdain(0,1)$ such that under some quite weak conditions, $lim_{n ightarrow+infty}frac{sqrt[n]{mathbb{E}(Z^{n})}}{n^{lambda}}$ and $lim_{x ightarrow+infty}frac{-logmathbb{P}(Z>x)}{x^{frac{1}{lambda}}}$ both exist and are strictly positive (possibly $+infty$). Moreover, we show that if the underlying Gaussian field is ‘strongly locally nondeterministic’, the above limits will be finite as well. These results are then applied to establish similar statements for the intersection local times of diagonally operator-self-similar Gaussian fields with stationary increments.




nar

The moduli of non-differentiability for Gaussian random fields with stationary increments

Wensheng Wang, Zhonggen Su, Yimin Xiao.

Source: Bernoulli, Volume 26, Number 2, 1410--1430.

Abstract:
We establish the exact moduli of non-differentiability of Gaussian random fields with stationary increments. As an application of the result, we prove that the uniform Hölder condition for the maximum local times of Gaussian random fields with stationary increments obtained in Xiao (1997) is optimal. These results are applicable to fractional Riesz–Bessel processes and stationary Gaussian random fields in the Matérn and Cauchy classes.




nar

Anarchy in Venezuela's jails laid bare by massacre over food

Three weeks before he was shot dead, Miguel Calderon, an inmate in the lawless Los Llanos jail on Venezuela's central plains, sent a voice message to his father. Like many of the prisoners in Venezuela's overcrowded and violent penitentiaries, Los Llanos's 4,000 inmates normally subsist on food relatives bring them. The guards, desperate themselves amid national shortages, began stealing the little food getting behind bars, inmates said, forcing some prisoners to turn to eating stray animals.





nar

Statistical Inference for the Evolutionary History of Cancer Genomes

Khanh N. Dinh, Roman Jaksik, Marek Kimmel, Amaury Lambert, Simon Tavaré.

Source: Statistical Science, Volume 35, Number 1, 129--144.

Abstract:
Recent years have seen considerable work on inference about cancer evolution from mutations identified in cancer samples. Much of the modeling work has been based on classical models of population genetics, generalized to accommodate time-varying cell population size. Reverse-time, genealogical views of such models, commonly known as coalescents, have been used to infer aspects of the past of growing populations. Another approach is to use branching processes, the simplest scenario being the classical linear birth-death process. Inference from evolutionary models of DNA often exploits summary statistics of the sequence data, a common one being the so-called Site Frequency Spectrum (SFS). In a bulk tumor sequencing experiment, we can estimate for each site at which a novel somatic point mutation has arisen, the proportion of cells that carry that mutation. These numbers are then grouped into collections of sites which have similar mutant fractions. We examine how the SFS based on birth-death processes differs from those based on the coalescent model. This may stem from the different sampling mechanisms in the two approaches. However, we also show that despite this, they are quantitatively comparable for the range of parameters typical for tumor cell populations. We also present a model of tumor evolution with selective sweeps, and demonstrate how it may help in understanding the history of a tumor as well as the influence of data pre-processing. We illustrate the theory with applications to several examples from The Cancer Genome Atlas tumors.




nar

Assessing the Causal Effect of Binary Interventions from Observational Panel Data with Few Treated Units

Pantelis Samartsidis, Shaun R. Seaman, Anne M. Presanis, Matthew Hickman, Daniela De Angelis.

Source: Statistical Science, Volume 34, Number 3, 486--503.

Abstract:
Researchers are often challenged with assessing the impact of an intervention on an outcome of interest in situations where the intervention is nonrandomised, the intervention is only applied to one or few units, the intervention is binary, and outcome measurements are available at multiple time points. In this paper, we review existing methods for causal inference in these situations. We detail the assumptions underlying each method, emphasize connections between the different approaches and provide guidelines regarding their practical implementation. Several open problems are identified thus highlighting the need for future research.




nar

How can the smoker and the nonsmoker be equally free in the same place? George Bernard Shaw / Biman Mullick.

[London?], [199-?]




nar

Rassegna trimestrale BRI dicembre 2017: Un paradossale inasprimento ci riporta all'enigma del mercato obbligazionario

Italian translation of the BIS press release about the BIS Quarterly Review, December 2017




nar

Rassegna trimestrale BRI marzo 2018: La volatilità ritorna sulla scena in seguito alle tensioni dei mercati azionari

Italian translation of the BIS press release about the BIS Quarterly Review, March 2018




nar

Wintrust Financial Corporation Announces Precautionary Decision to Help Achieve Community Health Objectives By Temporarily Closing Selected Branches

To view more press releases, please visit http://www.snl.com/irweblinkx/news.aspx?iid=1024452.




nar

How to Stay Safe on the Internet, Part 2: Take Canaries Into the Data Mine

More than any other factor, it is our asset that determines our adversary. For most of us, our asset is the corpus of sensitive personal details used for online transactions. This all comes down to how much data an adversary can glean from you, and how thoroughly it can analyze it. If your data passes through some software or hardware, its developer or maintainer enjoys some measure of control.




nar

Your Butterfly Photos Could Help Monarch Conservation

As monarchs leave their winter hideaways, conservationists are seeking assistance in studying their migration routes




nar

Hand-Reared Monarch Butterflies Are Weaker Than Their Wild Cousins

In the wild, only about one in 20 caterpillars grows up to be a butterfly