mo

Phenotypic Adaption of Pseudomonas aeruginosa by Hacking Siderophores Produced by Other Microorganisms

Quentin Perraud
Apr 1, 2020; 19:589-607
Research




mo

The DNA sensor cGAS is decorated by acetylation and phosphorylation modifications in the context of immune signaling

Bokai Song
Apr 28, 2020; 0:RA120.001981v1-mcp.RA120.001981
Research




mo

Modulation of natural HLA-B*27:05 ligandome by ankylosing spondylitis-associated endoplasmic reticulum aminopeptidase 2 (ERAP2)

Elena Lorente
Apr 7, 2020; 0:RA120.002014v1-mcp.RA120.002014
Research




mo

HIGD2A is required for assembly of the COX3 module of human mitochondrial complex IV

Daniella H Hock
Apr 21, 2020; 0:RA120.002076v1-mcp.RA120.002076
Research




mo

Seminal Plasma Proteome as an Indicator of Sperm Dysfunction and Low Sperm Motility

Yunlei Li
Apr 20, 2020; 0:RA120.002017v1-mcp.RA120.002017
Research




mo

Investigation of inter- and intra-tumoral heterogeneity of glioblastoma using TOF-SIMS

Samvel K Gularyan
Apr 6, 2020; 0:RA120.001986v1-mcp.RA120.001986
Research




mo

Quantitative proteomics of human heart samples collected in vivo reveal the remodeled protein landscape of dilated left atrium without atrial fibrillation

Nora Linscheid
Apr 14, 2020; 0:RA119.001878v1-mcp.RA119.001878
Research




mo

Arginine in C9ORF72 Dipolypeptides Mediates Promiscuous Proteome Binding and Multiple Modes of Toxicity

Mona Radwan
Apr 1, 2020; 19:640-654
Research




mo

MaxQuant software for ion mobility enhanced shotgun proteomics

Nikita Prianichnikov
Mar 10, 2020; 0:TIR119.001720v1-mcp.TIR119.001720
Technological Innovation and Resources




mo

Following the money in a massive “sextortion” spam scheme

Cryptocurrency profits from sextortion spam funneled into wallets tied to other cybercrime and dark web market activity.




mo

How to remove unused devices from Sophos Central

We take you through the steps to clear your old devices from Sophos Central, so you've got more time to focus on the devices that matter.




mo

Protecting the Cloud: Securing user remote access to AWS

How to create secure access to services hosted in AWS with Sophos XG Firewall.





mo

Cybersecurity in the Commonwealth: Building the Foundations of Effective National Responses in the Caribbean

Invitation Only Research Event

8 March 2019 - 9:00am to 5:30pm

Bridgetown, Barbados

Event participants

Joyce Hakmeh, Cyber Research Fellow, International Security Department, Chatham House

This workshop is the second in a series in the 'Implementing the Commonwealth Cybersecurity Agenda' project. The workshop aims to provide a multi-stakeholder pan-Commonwealth platform to discuss how to take the implementation of the 'Commonwealth Cyber Declaration' forward with a focus on the second pillar of the declaration – building the foundations of an effective national cybersecurity response with eight action points. 

As such, the workshop gathers different project implementers under the UK Foreign and Commonwealth Office’s Cyber Programme, in addition to other key relevant stakeholders from the global level, to explore ongoing initiatives which aim to deliver one or more of pillar two’s action points.

The workshop addresses issues from a global perspective and a Commonwealth perspective and will include presentations from selected partners from different Commonwealth countries.

Calum Inverarity

Research Analyst and Coordinator, International Security Department
+44 (0) 207 957 5751




mo

European Approaches to Remote Warfare

Research Event

15 May 2019 - 9:00am to 6:00pm

Brussels, Belgium

With continuing instability at Europe's borders, along with uncertainty on future US support for NATO, many European countries are increasing their allocations to defence budgets and to collective European strategic defence. In addition, with non-state armed groups creating instability and threatening civilian lives and livelihoods in proximity to the EU’s borders, various operations have been carried out in conflict theatres in the Middle East, North Africa and the Sahel under the auspices of NATO, the UN, the EU or by single EU member states.

Although European military personnel have been deployed in many regions, with countries becoming more reluctant to deploy ‘boots on the ground’, warfare has been increasingly conducted through remote means. This has led to criticism on the limited transparency and accountability mechanisms at work in these operations, while some have questioned the military effectiveness of such tactics or the capacity and willingness of states to ensure that targets are struck accurately and without impact on civilian populations.

Against this background, the EU has started allocating resources to military research and development projects with a focus on unmanned systems and related technologies. Under the auspices of the European Defence Fund such funding is set to increase, while potential bilateral programmes between some states have also been explored. Despite concerns raised by the European Parliament, the development of these policies and technologies has taken place without significant consideration of what the legal, ethical and military-strategic impact of these instruments might be.    

This event will bring together a range of experts, policymakers and civil society organizations to discuss the technology horizon of European defence investments and policy developments around remote warfare. Participants will discuss the implications of the new EU defence fund, legal, ethical, and transparency issues in military research and development and the position of the EU as a global actor. 

This event is being organized in partnership with PAX Netherlands.

THIS EVENT IS NOW FULL AND REGISTRATION HAS CLOSED.

Nilza Amaral

Project Manager, International Security Programme




mo

Cyber Governance in the Commonwealth: Towards Stability and Responsible State Behaviour in Cyberspace

Invitation Only Research Event

7 October 2019 - 10:30am to 5:30pm

Addis Ababa, Ethiopia

This roundtable is part of a series under the project, 'Implementing the Commonwealth Cybersecurity Agenda', funded by the UK Foreign and Commonwealth Office (FCO). The roundtable aims to provide a multi-stakeholder, pan-Commonwealth platform to discuss how to implement the Commonwealth Cyber Declaration with a focus on its third pillar 'To promote stability in cyberspace through international cooperation'.

In particular, the roundtable focuses on points 3 and 4 of the third pillar which revolve around the commitment to promote frameworks for stability in cyberspace including the applicability of international law, agreed voluntary norms of responsible state behaviour and the development and implementation of confidence-building measures consistent with the 2015 report of the UNGGE. 

The workshop also focuses on the commitment to advance discussions on how existing international law, including the Charter of the United Nations and applicable international humanitarian law, applies in cyberspace.

The roundtable addresses the issue of global cyber governance from a Commonwealth perspective and will also include a discussion around the way forward, the needed capacity of the different Commonwealth countries and the cooperation between its members for better cyber governance.

Participants include UNGGE members from Commonwealth countries in addition to representatives to the UN Open-Ended Working Group from African countries as well as members from academia, civil society and industry.

Calum Inverarity

Research Analyst and Coordinator, International Security Department
+44 (0) 207 957 5751




mo

The Commonwealth Cyber Declaration: Achievements and Way Forward

Invitation Only Research Event

4 February 2020 - 9:15am to 5:30pm

Chatham House, London

In April 2018, the Commonwealth Heads of Government Meeting (CHOGM), held in London, saw the creation and the adoption of the Commonwealth Cyber Declaration. The declaration outlines the framework for a concerted effort to advance cybersecurity practices to promote a safe and prosperous cyberspace for Commonwealth citizens, businesses and societies. 

The conference will aim to provide an overview on the progress made on cybersecurity in the Commonwealth since the declaration was announced in 2018. In addition, it will examine future challenges and potential solutions going forward.

This conference is part of the International Security Programme's project on Implementing the Commonwealth Cybersecurity Agenda and will convene a range of senior Commonwealth representatives as well as a selection of civil society and industry stakeholders. This project aims to develop a pan-Commonwealth platform to take the Commonwealth Cyber Declaration forward by means of a holistic, inclusive and representative approach.

Please see below meeting summaries from previous events on Cybersecurity in the Commonwealth:  

Attendance at this event is by invitation only. 

Esther Naylor

Research Assistant, International Security Programme
+44 (0)20 7314 3628




mo

Predictions and Policymaking: Complex Modelling Beyond COVID-19

1 April 2020

Yasmin Afina

Research Assistant, International Security Programme

Calum Inverarity

Research Analyst and Coordinator, International Security Programme
The COVID-19 pandemic has highlighted the potential of complex systems modelling for policymaking but it is crucial to also understand its limitations.

GettyImages-1208425931.jpg

A member of the media wearing a protective face mask works in Downing Street where Britain's Prime Minister Boris Johnson is self-isolating in central London, 27 March 2020. Photo by TOLGA AKMEN/AFP via Getty Images.

Complex systems models have played a significant role in informing and shaping the public health measures adopted by governments in the context of the COVID-19 pandemic. For instance, modelling carried out by a team at Imperial College London is widely reported to have driven the approach in the UK from a strategy of mitigation to one of suppression.

Complex systems modelling will increasingly feed into policymaking by predicting a range of potential correlations, results and outcomes based on a set of parameters, assumptions, data and pre-defined interactions. It is already instrumental in developing risk mitigation and resilience measures to address and prepare for existential crises such as pandemics, prospects of a nuclear war, as well as climate change.

The human factor

In the end, model-driven approaches must stand up to the test of real-life data. Modelling for policymaking must take into account a number of caveats and limitations. Models are developed to help answer specific questions, and their predictions will depend on the hypotheses and definitions set by the modellers, which are subject to their individual and collective biases and assumptions. For instance, the models developed by Imperial College came with the caveated assumption that a policy of social distancing for people over 70 will have a 75 per cent compliance rate. This assumption is based on the modellers’ own perceptions of demographics and society, and may not reflect all societal factors that could impact this compliance rate in real life, such as gender, age, ethnicity, genetic diversity, economic stability, as well as access to food, supplies and healthcare. This is why modelling benefits from a cognitively diverse team who bring a wide range of knowledge and understanding to the early creation of a model.

The potential of artificial intelligence

Machine learning, or artificial intelligence (AI), has the potential to advance the capacity and accuracy of modelling techniques by identifying new patterns and interactions, and overcoming some of the limitations resulting from human assumptions and bias. Yet, increasing reliance on these techniques raises the issue of explainability. Policymakers need to be fully aware and understand the model, assumptions and input data behind any predictions and must be able to communicate this aspect of modelling in order to uphold democratic accountability and transparency in public decision-making.

In addition, models using machine learning techniques require extensive amounts of data, which must also be of high quality and as free from bias as possible to ensure accuracy and address the issues at stake. Although technology may be used in the process (i.e. automated extraction and processing of information with big data), data is ultimately created, collected, aggregated and analysed by and for human users. Datasets will reflect the individual and collective biases and assumptions of those creating, collecting, processing and analysing this data. Algorithmic bias is inevitable, and it is essential that policy- and decision-makers are fully aware of how reliable the systems are, as well as their potential social implications.

The age of distrust

Increasing use of emerging technologies for data- and evidence-based policymaking is taking place, paradoxically, in an era of growing mistrust towards expertise and experts, as infamously surmised by Michael Gove. Policymakers and subject-matter experts have faced increased public scrutiny of their findings and the resultant policies that they have been used to justify.

This distrust and scepticism within public discourse has only been fuelled by an ever-increasing availability of diffuse sources of information, not all of which are verifiable and robust. This has caused tension between experts, policymakers and public, which has led to conflicts and uncertainty over what data and predictions can be trusted, and to what degree. This dynamic is exacerbated when considering that certain individuals may purposefully misappropriate, or simply misinterpret, data to support their argument or policies. Politicians are presently considered the least trusted professionals by the UK public, highlighting the importance of better and more effective communication between the scientific community, policymakers and the populations affected by policy decisions.

Acknowledging limitations

While measures can and should be built in to improve the transparency and robustness of scientific models in order to counteract these common criticisms, it is important to acknowledge that there are limitations to the steps that can be taken. This is particularly the case when dealing with predictions of future events, which inherently involve degrees of uncertainty that cannot be fully accounted for by human or machine. As a result, if not carefully considered and communicated, the increased use of complex modelling in policymaking holds the potential to undermine and obfuscate the policymaking process, which may contribute towards significant mistakes being made, increased uncertainty, lack of trust in the models and in the political process and further disaffection of citizens.

The potential contribution of complexity modelling to the work of policymakers is undeniable. However, it is imperative to appreciate the inner workings and limitations of these models, such as the biases that underpin their functioning and the uncertainties that they will not be fully capable of accounting for, in spite of their immense power. They must be tested against the data, again and again, as new information becomes available or there is a risk of scientific models becoming embroiled in partisan politicization and potentially weaponized for political purposes. It is therefore important not to consider these models as oracles, but instead as one of many contributions to the process of policymaking.




mo

Mohammed Abdalfatah

Asfari Foundation Academy Fellow

Biography

Mohammed’s research examines the potentials and the role of cities in driving inclusive sustainable development in the Gaza Strip and how cities can bring about innovative genuine solutions to encountered local and national challenges.

Before joining Chatham House and since 2006, Mohammed has been the director of international cooperation at the Municipality of Gaza, where he headed the planning team for the Gaza local development plan 2019-2022.

From 2002-06 he was international relations officer at the Municipality of Gaza and, prior to this, he held positions with UNDP and the Palestinian Ministry of Planning & International Cooperation.

He was a full time visiting research fellow at ICSR non-award research programme in the War Studies Department at King's College London from February-June 2014.

Mohammed holds a post-graduate diploma in Management of Local Development from the International Training Centre, ILO, Turin and earned his BA in Languages from Ain Shams University, Cairo.

Areas of expertise

  • Local development
  • Decentralized cooperation
  • International relations of the Middle East
  • Palestinian affairs with a particular focus on Gaza
  • Public policy and local governance

Past experience

2006-19Director of International Cooperation, Municipality of Gaza, Palestine
2014Visiting Research Fellow, ICSR, Department of War Studies at King's College London
2002-06International Relations Officer, Municipality of Gaza, Palestine
2001-02Programme Management Assistant, UNDP/PAPP, Gaza, Palestine
2000-01Desk Officer in Eastern Europe Dept., Palestinian Ministry of Planning & International Cooperation




mo

Expanding Sino–Maghreb Relations: Morocco and Tunisia

26 February 2020

Over the past two decades, China has increased its presence in North Africa in terms of trade and investment. This paper looks at China’s policy within the context of its Africa and Middle East policies to better understand its approach to Morocco and Tunisia.

Yahia H. Zoubir

Senior Professor of International Studies, KEDGE Business School, France and Visiting Fellow, Brookings Doha Center

2020-02-26-Xi-Jinping-King-Mohammed.jpg

Chinese President Xi Jinping and King Mohammed VI of Morocco wave during a welcoming ceremony outside the Great Hall of the People in Beijing on 11 May 2016. Photo: Getty Images.

Summary

  • China’s presence in the Maghreb has increased in recent years, raising concerns among Western powers. China has focused on bilateral relations with these countries while also working within the Forum on China–Africa Cooperation (FOCAC) and the China–Arab States Cooperation Forum (CASCF). However, this engagement has limited strategic value compared to relations China has with Saudi Arabia or the United Arab Emirates.
  • Since the launch of the Belt and Road Initiative (BRI) in 2013, China has shown greater interest in the Maghreb as an entry point to European and African markets. China has pursued commercial relations over political influence in the region. Morocco and Tunisia are still dependent on France, their former colonial power, and the European Union, which exert great political, economic, security and cultural influence over the two countries.
  • The Maghreb countries’ economic relations with China have grown exponentially, with Algeria forming the closest relationship. However, Morocco and Tunisia are keen to attract China’s investment and involvement in major construction and infrastructure projects to boost industrial and economic development. While China’s investments in Morocco and Tunisia remain at a low level, trade relations with both countries have grown steadily. Politically, China’s policy of noninterference in domestic affairs appeals to Maghreb states, which resent Western interference.
  • China’s influence in the Maghreb remains minimal. Its soft power push has struggled to promote advantages of strong relations with China beyond economics. Furthermore, Morocco and Tunisia’s populations have generally scant knowledge about China’s politics and culture. China has tried to address this lack of familiarity through the establishment of Confucius Institutes and other cultural activities. However, language and cultural barriers still impede the development of close relations, compared to those China has with other countries in Africa.




mo

Webinar: Can the Justice and Development Party Still Absorb Popular Anger in Morocco?

Webinar Research Event

8 April 2020 - 1:00pm to 2:00pm

Event participants

Mohammed Masbah, Director, Moroccan Institute for Policy Analysis; Associate Fellow, MENA Programme, Chatham House
Moderator: Lina Khatib, Director, MENA Programme, Chatham House

Ever since independence, the Moroccan monarchy has used political parties to legitimize the country’s authoritarian political process and structure, and to absorb social and political anger. The palace puts successive governments and other elected institutions, such as local and regional councils, at the frontline of public blame, and replaces them once they fail this function.

In a recent article, MENA Programme Associate Fellow, Mohammed Masbah, examines how the Moroccan monarchy has used this strategy with the ruling Justice and Development Party (PJD) so that the palace remains the centre of political power, while the PJD – and other political parties before it– takes responsibility for coping with the mounting socio-economic crisis.

In this webinar, part of the Chatham House project on The Future of the State in the Middle East and North Africa, the article’s author will discuss the risks this approach presents for the long-term stability of Morocco and what reforms are needed to increase citizens’ dwindling confidence in the political process.

You can express your interest in attending by following this link. You will receive a Zoom confirmation email should your registration be successful.




mo

Can Morocco Effectively Handle the COVID-19 Crisis?

6 April 2020

Dr Mohammed Masbah

Associate Fellow, Middle East and North Africa Programme

Anna Jacobs

Senior Research Assistant, Brookings Doha Center
The Moroccan government is capitalizing on a burst of unity, social solidarity and public support in the face of a crisis. However, if it fails to effectively mitigate the public health and economic impacts of the COVID-19 pandemic, this spirit of solidarity and cooperation will not last long.

GettyImages-1208907580.jpg

A general view of empty stores during curfew as a precaution against the new type of coronavirus (COVID-19) in Rabat, Morocco on 1 April 2020. Photo by Jalal Morchidi/Anadolu Agency via Getty Images.

In Morocco, the COVID-19 pandemic has increased public trust in government, but people still have doubts about the effectiveness of the healthcare system. According to a recent study conducted by the Moroccan Institute for Policy Analysis (MIPA), the majority of Moroccans surveyed are generally satisfied with the measures taken by the government to battle the coronavirus. However, the same survey also shows that Moroccans do not have confidence in the healthcare sector’s ability to respond to this pandemic.

The positive perceptions of the government’s response can be explained by the swift and strict measures enacted. King Mohammed VI held a high-level meeting with the prime minister, the minister of health, and top security officials on 17 March and a few days later, on 20 March, the Moroccan government declared a state of health emergency and began to implement aggressive measures to contain the virus.

This has included closing airports, schools, mosques, cafés and shops – with the exception of food markets – preventing large gatherings, as well as strict guidelines to ensure social distancing. As of 2 April, nearly 5000 people have been arrested for violating the state of health emergency.

In order to address urgent medical needs and to mitigate the economic impact of the pandemic, the King ordered the creation of an emergency fund, raising more than 32.7 billion Moroccan Dirhams ($3.2 billion). The Ministry of Finance will begin to make cash transfers to vulnerable citizens, and especially those who have lost their jobs. However, the stipulations surrounding these cash transfers will be decided in the coming weeks.

Updates about the virus are communicated daily by the Ministry of Health, despite growing criticism of its communication strategy. As of 4 April, Moroccan authorities have confirmed 883 cases and 58 deaths.

Call for national unity

In times like these, there is a call for unity in the face of a national and global crisis, and opposition groups such as Adl wal Ihssan and Rif activists have expressed their support for government measures and have encouraged people to follow the new guidelines and restrictions. However, despite calls to release political prisoners, Moroccan authorities have not indicated that they will do so. This is a missed opportunity vis-à-vis the opposition because it could have served as a way to further strengthen national unity during the crisis.

These are all promising signs and point to what is likely to be a short-term burst in unity and institutional trust. However, the institutional weaknesses in governance and the healthcare system have not disappeared, which is why this increase in institutional trust should be taken with a grain of salt.

Public trust issues

This pandemic poses tremendous challenges for governments across the globe, and this holds especially true for states in the Middle East and North Africa region, where citizens do not approve of government performance and do not trust key state institutions. The 2019 Arab Barometer survey found that Moroccans do not trust most of the country’s political institutions (notably the parliament and the Council of Ministers) and the level of satisfaction with the government’s performance remains extremely low.

On the public health front, as shown in two of MIPA’s recent surveys, trust in the healthcare system is also very low. Around three-quarters of those surveyed do not trust Moroccan hospitals, highlighting the acute structural problems in the healthcare system. In fact, there is a stark divide between private and public healthcare, as well as a huge gap in access to healthcare facilities between urban and rural areas. Most of the country’s hospitals and doctors are located in major urban areas and the only three laboratories with capabilities for COVID-19 testing are located in Rabat and Casablanca, but even there, testing capacity is very limited.

Similar to other countries, there could be a major shortage of doctors and medical equipment throughout Morocco. So far, the Ministry of Finance has said that 2 billion dirhams of the emergency fund will go towards purchasing medical equipment such as beds, ventilators, tests, prevention kits and radiology equipment, but the timeline remains unclear.

A vulnerable economy

There is significant concern about the medium- and long-term economic impact of the virus. Two of the country’s key economic sectors have already been hit hard: agriculture and tourism. The agricultural sector was already struggling due to the impact of drought, while the coronavirus pandemic is likely to impact Morocco’s tourism industry not just this year, but well into 2021. In terms of government response, the emergency fund is a strong start, but questions surrounding the management of these funds have already been raised.

The most vulnerable parts of the population have been affected by the economic crisis because of the country’s bulging informal sector – in which most people work - and a very weak private sector. In fact, two-thirds of the workforce are not covered by a pension plan, almost half of the working population does not currently benefit from medical coverage and there is no social care system for vulnerable parts of the population. As of 1 April, more than 700,000 workers have lost their jobs.

Moving forward?

Even if public perceptions of the government’s response are positive at the moment, this is most likely a short-term surge that should not be taken for granted. Despite the efforts made by the government, Morocco’s health system is not equipped to handle this crisis. Even with the new measures that have been implemented, if the spread of the virus gets out of control, more funds, more doctors, and more equipment will be needed. Given the structural weaknesses of the healthcare system, this will be an uphill battle.

Moreover, even if the government manages to mitigate the public health impact, the economic consequences will be dire—especially in the tourism industry—and will severely hurt those workers in the informal sector who are living without a safety net. In Morocco, this category represents most of the working population.

This crisis highlights that the Moroccan government must urgently tackle its large portfolio of unfinished reforms, notably in healthcare, the economy, and labour rights. So far, the government is capitalizing on the spirit of unity, social solidarity and public support. The future trajectory of the pandemic and the effectiveness of governance will determine if this spirit of solidarity will last. If the government fails to effectively mitigate the public health and economic impacts of this pandemic, this solidarity and cooperation will not last long.




mo

Can Protest Movements in the MENA Region Turn COVID-19 Into an Opportunity for Change?

29 April 2020

Dr Georges Fahmi

Associate Fellow, Middle East and North Africa Programme
The COVID-19 pandemic will not in itself result in political change in the MENA region, that depends on the ability of both governments and protest movements to capitalize on this moment. After all, crises do not change the world - people do.

2020-04-28-covid-19-protest-movement-mena.jpg

An aerial view shows the Lebanese capital Beirut's Martyrs Square that was until recent months the gathering place of anti-government demonstrators, almost deserted during the novel coronavirus crisis, on 26 March 2020. Photo by -/AFP via Getty Images.

COVID-19 has offered regimes in the region the opportunity to end popular protest. The squares of Algiers, Baghdad, and Beirut – all packed with protesters over the past few months – are now empty due to the pandemic, and political gatherings have also been suspended. In Algeria, Iraq and Lebanon, COVID-19 has achieved what snipers, pro-regime propaganda, and even the economic crisis, could not.

Moreover, political regimes have taken advantage of the crisis to expand their control over the political sphere by arresting their opponents, such as in Algeria where the authorities have cracked down on a number of active voices of the Hirak movement. Similarly, in Lebanon, security forces have used the pandemic as an excuse to crush sit-ins held in Martyr’s Square in Beirut and Nour Square in Tripoli.

However, despite the challenges that the pandemic has brought, it also offers opportunities for protest movements in the region. While the crisis has put an end to popular mobilization in the streets, it has  created new forms of activism in the shape of solidarity initiatives to help those affected by its consequences.

In Iraq, for example, protest groups have directed their work towards awareness-raising and sharing essential food to help mitigate the problem of food shortages and rising prices across the country. In Algeria, Hirak activists have run online campaigns to raise awareness about the virus and have encouraged people to stay at home. Others have been cleaning and disinfecting public spaces. These initiatives increase the legitimacy of the protest movement, and if coupled with political messages, could offer these movements an important chance to expand their base of popular support.

Exposes economic vulnerability

Economic grievances, corruption and poor provision of public services have been among the main concerns of this recent wave of protests. This pandemic only further exposes the levels of economic vulnerability in the region. COVID-19 is laying bare the socio-economic inequalities in MENA countries; this is particularly evident in the numbers of people engaged in the informal economy with no access to social security, including health insurance and pensions.

Informal employment, approximately calculated by the share of the labour force not contributing to social security, is estimated to amount to 65.5% of total employment in Lebanon, 64.4% in Iraq, and 63.3% in Algeria. The crisis has underscored the vulnerability of this large percentage of the labour force who have been unable to afford the economic repercussions of following state orders to stay at home.

The situation has also called attention to the vital need for efficient public services and healthcare systems. According to the fifth wave of the Arab Barometer, 74.4% of people in Lebanon are dissatisfied with their country’s healthcare services, as are 67.8% of people in Algeria and 66.5% in Iraq.

Meanwhile, 66.2% of people in Lebanon believe it is necessary to pay a bribe in order to receive better healthcare, as do 56.2% of people in Iraq and 55.9% in Algeria. The COVID-19 crisis has highlighted the need for more government investment in public healthcare systems to render them more efficient and less corrupt, strengthening the protesters’ case for the need for radical socio-economic reforms.

On the geopolitical level, the crisis puts into question the stability-focused approach of Western powers towards the region. For years, Western powers have directed their aid towards security forces in the interests of combating terrorism but COVID-19 has proved itself to be a much more lethal challenge to both the region and the West.

Facing this new challenge requires international actors to reconsider their approach to include supporting health and education initiatives, as well as freedom of expression and transparency. As argued by Western policymakers themselves, it was China’s lack of transparency and slow response that enabled the proliferation of the virus, when it could have been contained in Wuhan back in December 2019.

This crisis therefore offers regional protest movements the opportunity to capitalize on this moment and push back against the policies of Western powers that have invested in regional stability only to the extent of combating Islamic jihad. 

But crises do not change the world, people do. The COVID-19 pandemic will not in itself result in political change in the MENA region. Rather, it brings opportunities and risks that, when exploited, will allow political actors to advance their own agendas. While the crisis has put an end to popular mobilization and allowed regimes to tighten their grip over the political sphere, behind these challenges lie real opportunities for protest movements.

The current situation represents a possibility for them to expand their popular base through solidarity initiatives and has exposed more widely the importance of addressing socio-economic inequalities. Finally, it offers the chance to challenge the stability-focused approach of Western powers towards the region which until now has predominantly focused on combating terrorism.




mo

Basem Mahmoud

Project Manager, Middle East and North Africa Programme

Biography

Basem Mahmoud is a project manager with the Middle East and North Africa Programme at Chatham House.

Basem joined Chatham House in 2019 and has contributed to the projects Future of Statehood in the MENA Region, Transformative Policies towards Syria, and Post-Conflict State Dynamics in Syria.

Prior to joining Chatham House, Basem worked in managing wide range of projects and programmes with the Anna Lindh Euro-Mediterranean Foundation, Freedom House, and Friedrich Naumann Foundation.

Basem has an MA in conflict, security, and development from the University of Bradford.

+44 (0) 20 7314 3658




mo

Mohamed El Dahshan

Associate Fellow, Middle East and North Africa Programme

Biography

Mohamed El Dahshan is an associate fellow with the Chatham House Middle East and North Africa Programme, where he focuses on economic development, regional cooperation, and fragile states.

He is also managing director of OXCON, a public sector consulting firm, advising governments and international organisations on Africa and the Middle East. Prior to this, he was senior cooperation advisor at the African Development Bank, and senior research fellow at Harvard University.

He is an award-winning writer and columnist, and the co-author of Diaries of the Revolution (2012), a memoir of the Egyptian revolution, as well as several book chapters, academic papers, and more than 100 media articles for outlets such as Foreign Policy the New York Times, and the Guardian, among others.

He was honoured as an Archbishop Desmond Tutu fellow, a fellow of the United Nations Alliance of Civilisations, and is listed among the 100 Africa Future Economic Leaders by the Institut Choiseul.

Mohamed holds Master degrees from Oxford, Harvard and Sciences-Po Paris.

Areas of expertise

  • Economic development
  • Egypt
  • SMEs and private sector development
  • Fragile states

Past experience

2017 - presentManaging director, OXCON Frontier Markets & Fragile States Consulting
2014-15Regional economist / Senior cooperation officer, African Development Bank
2012-13Middle East manager, Senior research fellow, Center for International Development, Harvard University




mo

The National Oncology PET Registry (NOPR): A monumental effort by a few leaders




mo

PARP-1-targeted Auger emitters display high-LET cytotoxic properties in vitro but show limited therapeutic utility in solid tumor models of human neuroblastoma

The currently available therapeutic radiopharmaceutical for high-risk neuroblastoma, 131I-MIBG, is ineffective at targeting micrometastases due to the low linear energy transfer (LET) properties of high-energy beta particles. In contrast, Auger radiation has high-LET properties with nanometer ranges in tissue, efficiently causing DNA damage when emitted in close proximity to DNA. The aim of this study was to evaluate the cytotoxicity of targeted Auger therapy in pre-clinical models of high-risk neuroblastoma. Methods: Using a radiolabeled poly(ADP-ribose) polymerase (PARP) inhibitor, 125I-KX1, we delivered an Auger emitter iodine-125 to PARP-1: a chromatin-binding enzyme overexpressed in neuroblastoma. In vitro cytotoxicity of 125I-KX1 was assessed in nineteen neuroblastoma cell lines, followed by in-depth pharmacological analysis in a sensitive and resistant pair of cell lines. Immunofluorescence microscopy was used to characterize 125I-KX1-induced DNA damage. Finally, in vitro/in vivo microdosimetry was modeled from experimentally derived pharmacological variables. Results: 125I-KX1 was highly cytotoxic in vitro across a panel of neuroblastoma cell lines, directly causing double strand DNA breaks. Based on subcellular dosimetry, 125I-KX1 was approximately twice as effective compared to 131I-KX1, whereas cytoplasmic 125I-MIBG demonstrated low biological effectiveness. Despite the ability to deliver focused radiation dose to the cell nuclei, 125I-KX1 remained less effective than its alpha-emitting analog 211At-MM4, and required significantly higher activity for equivalent in vivo efficacy based on tumor microdosimetry. Conclusion: Chromatin-targeted Auger therapy is lethal to high-risk neuroblastoma cells with potential use in micrometastatic disease. This study provides the first evidence for cellular lethality from a PARP-1 targeted Auger emitter, calling for further investigation into targeted Auger therapy.




mo

Head-to-head comparison of 68Ga-DOTA-JR11 and 68Ga-DOTATATE PET/CT in patients with metastatic, well-differentiated neuroendocrine tumors: a prospective study

Purpose: 68Ga-DOTA-JR11 is an antagonist for somatostatin receptor used in neuroendocrine imaging. The purpose of this study is to compare 68Ga-DOTA-JR11 and 68Ga-DOTATATE PET/CT in patients with metastatic, well-differentiated neuroendocrine tumors. Methods: Patients with histologically-proven, metastatic and/or unresectable, well-differentiated neuroendocrine tumors were prospectively recruited in this study. They received an intravenous injection of 68Ga-DOTATATE (4.0 ± 1.3 mCi) on the first day and 68Ga-DOTA-JR11 (4.0 ± 1.4 mCi) on the second day. Whole-body PET/CT scans were performed at 40 to 60 minutes after injection on the same scanner. Physiologic uptake of normal organs, lesion numbers, and lesion uptake were compared. Results: Twenty-nine patients were prospectively enrolled in the study. The SUVmax of the spleen, renal cortex, adrenal glands, pituitary glands, stomach wall, normal liver parenchyma, small intestine, pancreas, and bone marrow were significantly lower on 68Ga-DOTA-JR11 than on 68Ga-DOTATATE PET/CT (P<0.001). 68Ga-DOTA-JR11 detected significantly more liver lesions (539 vs. 356, P = 0.002), but fewer bone lesions (156 vs. 374, P = 0.031, Figure 3) than 68Ga-DOTATATE. The tumor-to-background ratio of liver lesions was significantly higher on 68Ga-DOTA-JR11 (7.6 ± 5.1 vs. 3.4 ± 2.0, P<0.001). 68Ga-DOTA-JR11 and 68Ga-DOTATATE PET/CT showed comparable results for primary tumors and lymph node metastases based on either patient-based or lesion-based comparison. Conclusion: 68Ga-DOTA-JR11 performs better in the detection ability and TBR of liver metastases. However, 68Ga-DOTATATE outperforms 68Ga-DOTA-JR11 in the detection of bone metastases. The differential affinity of different metastatic sites provides key information for patient selection in imaging and peptide receptor radionuclide therapy.




mo

Combined Visual and Semi-quantitative Evaluation Improves Outcome Prediction by Early Mid-treatment 18F-fluoro-deoxi-glucose Positron Emission Tomography in Diffuse Large B-cell Lymphoma.

The purpose of this study was to assess the predictive and prognostic value of interim FDG PET (iPET) in evaluating early response to immuno-chemotherapy after two cycles (PET-2) in diffuse large B-cell lymphoma (DLBCL) by applying two different methods of interpretation: the Deauville visual five-point scale (5-PS) and a change in standardised uptake value by semi-quantitative evaluation. Methods: 145 patients with newly diagnosed DLBCL underwent pre-treatment PET (PET-0) and PET-2 assessment. PET-2 was classified according to both the visual 5-PS and percentage SUV changes (SUV). Receiver operating characteristic (ROC) analysis was performed to compare the accuracy of the two methods for predicting progression-free survival (PFS). Survival estimates, based on each method separately and combined, were calculated for iPET-positive (iPET+) and iPET-negative (iPET–) groups and compared. Results: Both with visual and SUV-based evaluations significant differences were found between the PFS of iPET– and iPET+ patient groups (p<0.001). Visually the best negative (NPV) and positive predictive value (PPV) occurred when iPET was defined as positive if Deauville score 4-5 (89% and 59%, respectively). Using the 66% SUV cut-off value, reported previously, NPV and PPV were 80 and 76%, respectively. SUV at 48.9% cut-off point, reported for the first time here, produced 100% specificity along with the highest sensitivity (24%). Visual and semi-quantitative SUV<48.9% assessment of each PET-2 gave the same PET-2 classification (positive or negative) in 70% (102/145) of all patients. This combined classification delivered NPV and PPV of 89% and 100% respectively, and all iPET+ patients failed to achieve or remain in remission. Conclusion: In this large consistently treated and assessed series of DLBCL, iPET had good prognostic value interpreted either visually or semi-quantitatively. We determined that the most effective SUV cut-off was at 48.9%, and that when combined with visual 5-PS assessment, a positive PET-2 was highly predictive of treatment failure.




mo

Initial studies with [11C]vorozole positron emission tomography detect over-expression of intra-tumoral aromatase in breast cancer

Introduction: Aromatase inhibitors are the mainstay of hormonal therapy in estrogen receptor positive, postmenopausal breast cancer, although response rate is just over 50%. The goal of the present study was to validate and optimize positron emission tomography (PET) with 11C-vorozole for measuring aromatase expression in postmenopausal breast cancer. Methods: Ten newly diagnosed, postmenopausal women with biopsy confirmed breast cancer were administered 11C-vorozole intravenously and PET emission data collected between 40 – 90 minutes post-injection. Tracer injection and scanning were repeated 2 hours after ingestion of 2.5mg letrozole p.o. Mean and maximal standard uptake values and ratios to non-tumor tissue (SUVs, SUVRs) were calculated for tumor and non-tumor regions at baseline and after letrozole. Biopsy specimens from the same tumors were stained for aromatase using immunohistochemistry and evaluated for stain intensity and the percentage of immune-positive cells. Results: Seven of the 10 women (70%) demonstrated increased focal uptake of tracer (SUVR>1.1) coinciding with the mammographic location of the lesion. The other 3 women (30%) did not show increased uptake in the tumor (SUVR <1.0). All of the cases with SUVR above 1.1 had SUVs above 2.4 and there was no overlap in SUV between the two groups, with mean SUV in tumors overexpressing aromatase (SUVR>1.1) ranging from 2.47 to 13.6, while tumors not overexpressing aromatase (SUVR<1) ranged from 0.8 to 1.8. Pretreatment with letrozole reduced tracer uptake in the majority of subjects; although the %blocking varied across and within tumors. Tumors with high SUV in vivo also showed high staining intensity on IHC. Conclusion: PET with 11C-vorozole is a useful technique for measuring aromatase expression in individual breast lesions, enabling a non-invasive quantitative measurement of baseline and post-treatment aromatase availability in primary tumors and metastatic lesions.




mo

SUV25 and {micro}PERCIST: Precision Imaging of Response to Therapy in Co-Clinical FDG-PET Imaging of Triple Negative Breast Cancer (TNBC) Patient-Derived Tumor Xenografts (PDX)

Numerous recent works highlight the limited utility of established tumor cell lines in recapitulating the heterogeneity of tumors in patients. More realistic preclinical cancer models are thought to be provided by transplantable, patient-derived tumor xenografts (PDX). Inter- and intra-tumor heterogeneity of PDX, however, present several challenges in developing optimal quantitative pipelines to assess response to therapy. The objective of this work was to develop and optimize image metrics of FDG-PET to assess response to combination docetaxel/carboplatin therapy in a co-clinical trial involving triple negative breast cancer (TNBC) PDX. We characterize the reproducibility of SUV metrics to assess response to therapy and optimize a preclinical PERCIST (µPERCIST) paradigm to complement clinical standards. Considerations in this effort included variability in tumor growth rate and tumor size; solid tumor vs. tumor heterogeneity and necrotic phenotype; and optimal selection of tumor slice versus whole tumor. A test-retest protocol was implemented to optimize the reproducibility of FDG-PET SUV thresholds, SUVpeak metrics, and µPERCIST parameters. In assessing response to therapy, FDG-PET imaging was performed at baseline and +4 days following therapy. The reproducibility, accuracy, variability, and performance of imaging metrics to assess response to therapy were determined. We defined an index—"Quantitative Response Assessment Score (QRAS)"—to integrate parameters of prediction and precision, and thus aid in selecting optimal image metrics of response to therapy. Our data suggests that a threshold value of 25% (SUV25) of SUVmax was highly reproducible (<9% variability). Concordance and reproducibility of µPERCIST were maximized at α=0.7 and β=2.8 and exhibited high correlation to SUV25 measures of tumor uptake. QRAS scores favor SUV25 followed by SUVP14 as optimal metrics of response to therapy. Additional studies are warranted to fully characterize the utility of SUV25 and µPERCIST SUVP14 as image metrics of response to therapy across a wide range of therapeutic regiments and PDX models.




mo

Differential expression of glucose transporters and hexokinases in prostate cancer with a neuroendocrine gene signature: a mechanistic perspective for FDG imaging of PSMA-suppressed tumors

Purpose: Although the incidence of de novo neuroendocrine prostate cancer (NEPC) is rare, recent data suggests that low expression of prostate-specific membrane antigen (PSMA) is associated with a spectrum of neuroendocrine (NE) hallmarks and androgen receptor (AR)-suppression in prostate cancer (PC). Previous clinical reports indicate that PCs with a phenotype similar to NE tumors can be more amenable to imaging by 18F-Fluorodeoxyglucose (FDG) rather than PSMA-targeting radioligands. In this study, we evaluated the association between NE gene signature and FDG uptake-associated genes including glucose transporters (GLUTs) and hexokinases, with the goal of providing a genomic signature to explain the reported FDG-avidity of PSMA-suppressed tumors. Methods: Data mining approaches, cell lines and patient-derived xenograft (PDX) models were used to study the levels of 14 members of the SLC2A family (encoding GLUT proteins), 4 members of the hexokinase family (genes: HK1 to 3 and GCK) and PSMA (FOLH1 gene) following AR-inhibition and in correlation with NE hallmarks. Also, we characterize a NE-like PC (NELPC) subset among a cohort of primary and metastatic PC samples with no NE histopathology. We measured glucose uptake in a NE-induced in vitro model and a zebrafish model by non-radioactive imaging of glucose uptake using fluorescent glucose bioprobe, GB2-Cy3. Results: This work demonstrates that a NE gene signature associates with differential expression of genes encoding GLUT and hexokinase proteins. In NELPC, elevated expression of GCK (encoding glucokinase protein) and decreased expression of SLC2A12 correlated with earlier biochemical recurrence. In tumors treated with AR-inhibitors, high expression of GCK and low expression of SLC2A12 correlated with NE histopathology and PSMA gene suppression. GLUT12-suppression and amplification of glucokinase was observed in NE-induced PC cell lines and PDX models. A higher glucose uptake was confirmed in low-PSMA tumors using a GB2-Cy3 probe in a zebrafish model. Conclusion: NE gene signature in NEPC and NELPC associates with a distinct transcriptional profile of GLUTs and HKs. PSMA-suppression correlates with GLUT12-suppression and glucokinase-amplification. Alteration of FDG uptake-associated genes correlated positively with higher glucose uptake in AR and PSMA-suppressed tumors. Zebrafish xenograft tumor models are an accurate and efficient pre-clinical method for monitoring non-radioactive glucose uptake.




mo

Inflammation-based index and 68Ga-DOTATOC PET-derived uptake and volumetric parameters predict outcome in neuroendocrine tumor patients treated with 90Y-DOTATOC

We performed post-hoc analyses on the utility of pre-therapeutic and early interim 68Ga-DOTA-Tyr3-octreotide (68Ga-DOTATOC) positron emission tomography (PET) tumor uptake and volumetric parameters and a recently proposed biomarker, the inflammation-based index (IBI), for peptide receptor radionuclide therapy (PRRT) in neuroendocrine tumor (NET) patients treated with 90Y-DOTATOC in the setting of a prospective phase II trial. Methods: Forty-three NET patients received up to four cycles of 1.85 GBq/m²/cycle 90Y-DOTATOC with a maximal kidney biologic effective dose of 37 Gy. All patients underwent a 68Ga-DOTATOC PET/computed tomography (CT) at baseline and seven weeks after the first PRRT cycle. 68Ga-DOTATOC-avid tumor lesions were semi-automatically delineated using a customized standardized uptake value (SUV) threshold-based approach. PRRT response was assessed on CT using RECIST 1.1. Results: Median progression-free survival (PFS) and overall survival (OS) were 13.9 and 22.3 months, respectively. An SUVmean higher than 13.7 (75th percentile (P75)) was associated with better survival (hazard ratio (HR) 0.45; P = 0.024), whereas a 68Ga-DOTATOC-avid tumor volume higher than 578 ml (P75) was associated with worse OS (HR 2.18; P = 0.037). Elevated baseline IBI was associated with worse OS (HR 3.90; P = 0.001). Multivariate analysis corroborated independent associations between OS and SUVmean (P = 0.016) and IBI (P = 0.015). No significant correlations with PFS were found. A composite score based on SUVmean and IBI allowed to further stratify patients in three categories with significantly different survival. On early interim PET, a decrease in SUVmean of more than 17% (P75) was associated with worse survival (HR 2.29; P = 0.024). Conclusion: Normal baseline IBI and high 68Ga-DOTATOC tumor uptake predict better outcome in NET patients treated with 90Y-DOTATOC. This can be used for treatment personalization. Interim 68Ga-DOTATOC PET does not provide information for treatment personalization.




mo

Quantitative test-retest measurement of 68Ga-PSMA-HBED-CC (PSMA-11) in tumor and normal tissue

The PET radiotracer 68Ga-PSMA-HBED-CC (68Ga-PSMA-11) shows potential as an imaging biomarker for recurrent and metastatic prostate cancer. The purpose of this study was to determine repeatability of 68Ga-PSMA-HBED-CC in a test-retest trial in subjects with metastatic prostate adenocarcinoma. Methods: Subjects with metastatic prostate cancer underwent two PET/CT scans with 68Ga-PSMA-HBED-CC within 14 days (mean 6 ± 4 d). Lesions in bone, nodes, prostate/bed, and visceral organs as well as representative normal tissues (salivary glands and spleen) were segmented separately by two readers. Absolute and percent differences in SUVmax and SUVmean were calculated for all test-retest regions. Repeatability was assessed using percentage difference, within-subject coefficient of variation (wCV), repeatability coefficient (RC), and Bland-Altman analysis. Results: 18 subjects were evaluated, 16 of which demonstrated local or metastatic disease on 68Ga-PSMA-HBED-CC PET/CT. A total of 136 lesions were segmented in bone (n = 99), nodes (n = 27), prostate/bed (n = 7), and viscera (n = 3). The wCV for SUVmax was 11.7% for bone lesions and 13.7% for nodes. The RC was ±32.5% SUVmax for bone lesions and ±37.9% SUVmax for nodal lesions, meaning 95% of the normal variability between two measurements will be within these numbers, so larger differences are likely attributable to true biological changes in tumor rather than normal physiologic or measurement variability. wCV in the salivary glands and spleen was 8.9% and 10.7% SUVmean, respectively. Conclusion: Repeatability measurements for PET/CT test-retest with 68Ga-PSMA-HBED-CC show a wCV 12-14% SUVmax and RC ±33-38% SUVmax in bone and nodal lesions. These estimates are an important aspect of 68Ga-PSMA-HBED-CC as a quantitative imaging biomarker. These estimates are similar to those reported for 18F-FDG, suggesting that 68Ga-PSMA-HBED-CC PET/CT may be useful in monitoring response to therapy.




mo

Imaging P-glycoprotein Induction at the Blood-Brain Barrier of a Beta-Amyloidosis Mouse Model with 11C-Metoclopramide PET

P-glycoprotein (ABCB1) plays an important role at the blood-brain barrier (BBB) in promoting the clearance of neurotoxic beta-amyloid (Aß) peptides from the brain into the blood. ABCB1 expression and activity were found to be decreased in the brains of Alzheimer disease (AD) patients. Treatment with drugs which induce cerebral ABCB1 activity may be a promising approach to delay the build-up of Aß deposits in the brain by enhancing the clearance of Aß peptides from the brain. The aim of this study was to investigate whether PET with the weak ABCB1 substrate radiotracer 11C-metoclopramide can measure ABCB1 induction at the BBB in a beta-amyloidosis mouse model (APP/PS1-21 mice) and in wild-type mice. Methods: Groups of wild-type and APP/PS1-21 mice aged 50 or 170 days underwent 11C-metoclopramide baseline PET scans or scans after intraperitoneal treatment with the rodent pregnane X receptor (PXR) activator 5-pregnen-3β-ol-20-one-16α-carbonitrile (PCN, 25 mg/kg) or its vehicle over 7 days. At the end of the PET scans, brains were harvested for immunohistochemical analysis of ABCB1 and Aß levels. In separate groups of mice, radiolabeled metabolites of 11C-metoclopramide were determined in plasma and brain at 15 min after radiotracer injection. As an outcome parameter of cerebral ABCB1 activity, the elimination slope of radioactivity washout from the brain (kE,brain) was calculated. Results: PCN treatment resulted in an increased clearance of radioactivity from the brain as reflected by significant increases in kE,brain (from +26% to +54% relative to baseline). Immunohistochemical analysis confirmed ABCB1 induction in the brains of PCN-treated APP/PS1-21 mice with a concomitant decrease in Aß levels. There was a significant positive correlation between kE,brain values and ABCB1 levels in the brain. In wild-type mice, a significant age-related decrease in kE,brain values was found. Metabolite analysis showed that the majority of radioactivity in the brain was composed of unmetabolized 11C-metoclopramide in all animal groups. Conclusion: 11C-metoclopramide can measure ABCB1 induction in the mouse brain without the need to consider an arterial input function and may find potential application in AD patients to non-invasively evaluate strategies to enhance the clearance properties of the BBB.




mo

18F-Fluorodeoxyglucose Positron Emission Tomography / Computed Tomography in Left-Ventricular Assist Device Infection: Initial Results Supporting the Usefulness of Image-Guided Therapy

Background: Accurate definition of the extent and severity of left-ventricular assist device (LVAD) infection may facilitate therapeutic decision making and targeted surgical intervention. Here, we explore the value of 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for guidance of patient management. Methods: Fifty-seven LVAD-carrying patients received 85 whole-body 18F-FDG PET/CT scans for the work-up of device infection. Clinical follow-up was obtained over a period of up to two years. Results: PET/CT showed various patterns of infectious involvement of the 4 LVAD components: driveline entry point (77% of cases), subcutaneous driveline path (87%), pump pocket (49%) and outflow tract (58%). Driveline smears revealed staphylococcus or pseudomonas strains as the underlying pathogen in a majority of cases (48 and 34%, respectively). At receiver-operating characteristics analysis, an 18F-FDG standardized uptake value (SUV) >2.5 was most accurate to identify smear-positive driveline infection. Infection of 3 or all 4 LVAD components showed a trend towards lower survival vs infection of 2 or less components (P = 0.089), while involvement of thoracic lymph nodes was significantly associated with adverse outcome (P = 0.001 for nodal SUV above vs below median). Finally, patients that underwent early surgical revision within 3 months after PET/CT (n = 21) required significantly less inpatient hospital care during follow-up when compared to those receiving delayed surgical revision (n = 11; p<0.05). Conclusion: Whole-body 18F-FDG PET/CT identifies the extent of LVAD infection and predicts adverse outcome. Initial experience suggests that early image-guided surgical intervention may facilitate a less complicated subsequent course.




mo

18F-fluorodexyglucose Position Emission Tomography identifies altered brain metabolism in patients with Cri du Chat syndrome

Cri-Du-Chat Syndrome (CdCs) is a rare genetic disease caused by a deletion in the short arm of chromosome 5 (5p) with a variable clinical spectrum. To date no study in literature has ever investigated the alterations of brain glucose metabolism in these subjects by means of [18F]fluoro-2-deoxy-d-glucose Positron Emission Tomography/Computed Tomography (18F-FDG PET/CT). The aims of this study were to detect difference in brain FDG metabolism in patients affected by CdCs with different clinical presentations and identify possible "brain metabolic phenotypes" of this syndrome. Methods: 6 patients (age: 5 M and 1 F, age range: 10-27) with CdCs were assessed for presence of cognitive and behavioral symptoms with a battery of neuropsychological tests and then classified as patient with a severe or mild phenotype. Then, patients underwent a brain 18F-FDG PET/CT scan. PET/CT findings were compared to a control group, matched for age and sex, by using statistical parametric mapping (SPM). Association of different clinical phenotypes and 18F-FDG PET/CT findings was investigated. Results: Four patients presented a severe phenotype, whereas 2 patients demonstrated mild phenotype. SPM single subject and group analysis compared to the control cohort revealed a significant hypometabolism in the left temporal lobe (BAs 20, 36 and 38), in the right frontal subcallosal gyrus (BA 34) and caudate body, and in the cerebellar tonsils (p<0.001). Hypermetabolism (P = 0.001) was revealed in the right superior and precentral frontal gyrus (BA 6) in patient group compared to the control cohort. In SPM single subject analysis the hypermetabolic areas were detected only in patients with a severe phenotype. Conclusion: This study revealed different patterns of brain glucose metabolism in patients with severe and mild phenotype compared to control subjects. In particular, the hypermetabolic abnormalities in the brain, evaluated by18F-FDG PET/CT, seem to correlate with the severe phenotype in patients with CdCs.




mo

What You See Is Not What You Get - On the Accuracy of Voxel-Based Dosimetry in Molecular Radiotherapy

Due to improvements in quantitative SPECT/CT, voxel-based dosimetry for radionuclide therapies has aroused growing interest as it promises the visualization of absorbed doses at a voxel level. In this work, SPECT/CT-based voxel-based dosimetry of a 3D printed 2-compartment kidney phantom was performed, and the resulting absorbed dose distributions were examined. Additionally, the potential of the PETPVC partial-volume correction tool was investigated. Methods: Both kidney compartments (70% cortex, 30% medulla) were filled with different activity concentrations and SPECT/CT imaging was performed. The images were reconstructed using varying reconstruction settings (iterations, subsets, and post-filtering). Based on these activity concentration maps, absorbed dose distributions were calculated with pre-calculated 177Lu voxel S values and an empirical kidney half-life. An additional set of absorbed doses was calculated after applying PETPVC for partial-volume correction of the SPECT reconstructions. Results: SPECT/CT imaging blurs the two discrete sub-organ absorbed dose values into a continuous distribution. While this effect is slightly improved by applying more iterations, it is enhanced by additional post-filtering. By applying PETPVC, the absorbed dose values are separated into 2 peaks. Although this leads to a better agreement between SPECT/CT-based and nominal values, considerable discrepancies remain. In contrast to the calculated nominal absorbed doses of 7.8/1.6 Gy (cortex/medulla), SPECT/CT-based voxel-level dosimetry resulted in mean absorbed doses ranging from 3.0-6.6 Gy (cortex) and 2.7-5.1 Gy (medulla). PETPVC led to improved ranges of 6.1-8.9 Gy (cortex) and 2.1-5.4 Gy (medulla). Conclusion: Our study shows that 177Lu quantitative SPECT/CT imaging leads to voxel-based dose distributions largely differing from the real organ distribution. SPECT/CT imaging and reconstruction deficiencies might directly translate into unrealistic absorbed dose distributions, thus questioning the reliability of SPECT-based voxel-level dosimetry. Therefore, SPECT/CT reconstructions should be adapted to ensure an accurate quantification of the underlying activity and, therefore, absorbed dose in a volume-of-interest of the expected object size (e.g. organs, organ sub-structures, lesions or voxels). As an example, PETPVC largely improves the match between SPECT/CT-based and nominal dose distributions. In conclusion, the concept of voxel-based dosimetry should be treated with caution. Specifically, it should be kept in mind that the absorbed dose distribution is mainly a convolved version of the underlying SPECT reconstruction.




mo

Quantitative 3D assessment of 68Ga-DOTATOC PET/MRI with diffusion-weighted imaging to assess imaging markers for gastroendopancreatic neuroendocrine tumors: Preliminary results

68Ga-DOTATOC-PET/MRI (68Gallium-DOTATOC-positron emission tomography/magnetic resonance imaging) combines the advantages of PET in the acquisition of metabolic-functional information with the high soft tissue contrast of MRI. Standardized uptake values (SUV) in tumors were suggested as a measure of somatostatin receptor expression. A challenge with receptor ligands is, that the distribution volume is confined to tissues with tracer-uptake, potentially limiting SUV quantification. In this study, different functional, three-dimensional (3D) SUV, apparent diffusion coefficient (ADC) parameters and arterial tumor enhancement were tested for the characterization of gastroendopancreatic neuroendocrine tumors (GEP-NET). Methods: For this single-center, cross-sectional study, 22 patients with 24 histologically confirmed GEP-NET lesions (15 men/7 women; median, 61 years, range, 43-81 years), who received hybrid 68Ga-DOTA-PET/MRI examinations at 3T between January 2017 and July 2019 met eligibility criteria. SUVs, tumor-to-background ratios (TBR), the total functional tumor volume (TFTV), ADCmean and ADCmin were measured based on volumes of interest (VOI) and examined with receiver operating characteristic analysis to determine cut-off values for differentiation between low and intermediate grade GEP-NET. Spearman’s rank correlation coefficients were used to assess correlations between functional imaging parameters. Results: The ratio of PET-derived SUVmean and diffusion-weighted imaging (DWI)-derived ADCmin was introduced as a combined variable to predict tumor grade, outperforming single predictors. Based on a threshold ratio of 0.03 to be exceeded, tumors could be classified as grade 2 with a sensitivity of 86% and specificity of 100%. SUV and functional ADC values as well as arterial contrast enhancement parameters showed non-significant and mostly negligible correlations. Conclusion: As receptor density and tumor cellularity appear to be independent, potentially complementary phenomena, the combined PET/MRI ratio SUVmean/ADCmin may be used as a novel biomarker, allowing to differentiate between grade 1 and 2 GEP-NET.




mo

Early Detection in a Mouse Model of Pancreatic Cancer by Imaging DNA Damage Response Signalling

Rationale: Despite its widespread use in oncology, the PET radiotracer 18F-FDG is ineffective for improving early detection of pancreatic ductal adenocarcinoma (PDAC). An alternative strategy for early detection of pancreatic cancer involves visualisation of high-grade pancreatic intraepithelial neoplasias (PanIN-3), generally regarded as the non-invasive precursors of PDAC. The DNA damage response is known to be hyper-activated in late-stage PanINs. Therefore, we investigated whether the SPECT imaging agent, 111In-anti-H2AX-TAT, allows visualisation of the DNA damage repair marker H2AX in PanIN-3s in an engineered mouse model of PDAC, to facilitate early detection of PDAC. Methods: Genetically engineered KPC mice (KRasLSL.G12D/+; p53LSL.R172H/+; PdxCre) were imaged with 18F-FDG and 111In-anti-H2AX-TAT. PanIN/PDAC presence visualised by histology was compared with autoradiography and immunofluorescence. Separately, the survival of KPC mice imaged with 111In-anti-H2AX-TAT was evaluated. Results: In KPC mouse pancreata, H2AX expression was increased in high-grade PanINs, but not in PDAC, corroborating earlier results obtained from human pancreas sections. Uptake of 111In-anti-H2AX-TAT, but not 111In-IgG-TAT or 18F-FDG, within the pancreas was positively correlated with the age of KPC mice, which was correlated with the number of high-grade PanINs. 111In-anti-H2AX-TAT localises preferentially in high-grade PanIN lesions, but not in established PDAC. Younger, non-tumour-bearing KPC mice that show uptake of 111In-anti-H2AX-TAT in the pancreas survive significantly shorter than mice with physiological 111In-anti-H2AX-TAT uptake. Conclusion: 111In-anti-H2AX-TAT imaging allows non-invasive detection of DNA damage repair signalling upregulation in pre-invasive PanIN lesions and is a promising new tool to aid in the early detection and staging of pancreatic cancer.




mo

Head to head prospective comparison of quantitative lung scintigraphy and segment counting in predicting pulmonary function of lung cancer patients undergoing video-assisted thoracoscopic lobectomy

Prediction of post-operative pulmonary function in lung cancer patients before tumor resection is essential for patient selection for surgery and is conventionally done with a non-imaging segment counting method (SC) or a two-dimensional planar lung perfusion scintigraphy (PS). The purpose of this study was to compare quantitative analysis of PS to single photon emission computed tomography/computed tomography (SPECT/CT) and to estimate the accuracy of SC, PS and SPECT/CT in predicting post-operative pulmonary function in patients undergoing lobectomy. Methods: Seventy-five non-small cell lung cancer (NSCLC) patients planned for lobectomy were prospectively enrolled (68% males, average age 68.1±8 years ). All patients completed pre-operative forced expiratory volume capacity (FEV1), diffusing capacity of the lung for carbon monoxide (DLCO), Tc99m-MAA lung perfusion scintigraphy with PS and SPECT/CT quantification. A subgroup of 60 patients underwent video-assisted thoracoscopic (VATS) lobectomy and measurement of post-operative FEV1 and DLCO. Relative uptake of the lung lobes estimated by PS and SPECT/CT were compared. Predicted post-operative FEV1 and DLCO were derived from SC, PS and SPECT/CT. Prediction results were compared between the different methods and the true post-operative measurements in patients who underwent lobectomy. Results: Relative uptake measurements differed significantly between PS and SPECT/CT in right lung lobes, with a mean difference of -8.2±3.8, 18.0±5.0 and -11.5±6.1 for right upper, middle and lower lobes respectively (p<0.001). The differences between the methods in the left lung lobes were minor with a mean difference of -0.4±4.4 (p>0.05) and -2.0±4.0 (p<0.001) for left upper and lower lobes respectively. No significant difference and strong correlation (R=0.6-0.76, p<0.001) were found between predicted post-operative lung function values according to SC, PS, SPECT/CT and the actual post-operative FEV1 and DLCO. Conclusion: Although lobar quantification parameters differed significantly between PS and SPECT/CT, no significant differences were found between the predicted post-operative lung function results derived from these methods and the actual post-operative results. The additional time and effort of SPECT/CT quantification may not have an added value in patient selection for surgery. SPECT/CT may be advantageous in patients planned for right lobectomies but further research is warranted.




mo

177Lu-NM600 targeted radionuclide therapy extends survival in syngeneic murine models of triple-negative breast cancer

Triple negative breast cancer (TNBC) remains the most aggressive subtype of breast cancer leading to the worst prognosis. Because current therapeutic approaches lack efficacy, there is a clinically unmet need for effective treatment alternatives. Herein, we demonstrate a promising strategy utilizing a tumor-targeting alkylphosphocholine (NM600) radiolabeled with 177Lu for targeted radionuclide therapy (TRT) of TNBC. In two murine syngeneic models of TNBC, we confirmed excellent tumor targeting and rapid normal tissue clearance of the PET imaging analog 86Y-NM600. Based on longitudinal PET/CT data acquired with 86Y-NM600, we estimated the dosimetry of therapeutic 177Lu-NM600, which showed larger absorbed doses in the tumor compared to normal tissues. Administration of 177Lu-NM600 resulted in significant tumor growth inhibition and prolonged overall survival in mice bearing syngeneic 4T07 and 4T1 tumors. Complete response was attained in 60% of 4T07 bearing mice, but animals carrying aggressive 4T1 tumor grafts succumbed to metastatic progression. The injected activities used for treatment (9.25 and 18.5 MBq) were well tolerated, and only mild transient cytopenia was noted. Overall, our results suggest that 177Lu-NM600 TRT has potential for treatment of TNBC and merits further exploration in a clinical setting.




mo

SUVmax-V for assessing treatment response in FDG-PET Imaging of Patient-Derived Tumor Xenografts involving Triple-Negative Breast Cancer




mo

Improved Alignment of PET and CT Images in Whole-Body PET/CT in Cases of Respiratory Motion During CT

Respiratory motion during the CT and PET parts of a PET/CT scan leads to imperfect alignment of anatomical features seen by the two modalities. In this work, we concentrate on the effects of motion during CT. We propose a novel approach for improving the alignment. Methods: Respiratory waveform data were gathered during the CT and PET parts of 28 PET/CT scans of cancer patients with 40 lesions up to 3 cm size in the lung or upper abdomen. PET list-mode data were reconstructed by three reconstruction methods: PET/static, PET/EX or end of expiration (OncoFreeze), and a novel PET/matched method that used both waveforms. The three methods were compared. The distance between tumor positions in PET and CT were characterized in visual interpretation by physicians as well as quantitatively. Tumor standardized uptake values (SUVmax and SUVpeak) were determined relative to SUV based on the static method. Image noise was evaluated in the liver and compared to PET/static. Results: In visual interpretation, the rate of good alignment was 13/21, 13/23 and 18/21 for PET/static, PET/EX and PET/matched methods, respectively, and the mean PET-CT distances were 3.5, 5.1 and 2.8 mm. In visual comparison with PET/EX, the rate of good alignment was increased in 1/10 and 7/10 cases for PET/static and PET/matched. SUVmax was on average 21% higher than PET/static when either PET/EX or PET/matched was used. SUVpeak was 12% higher. Image noise in the liver was 15% higher than static for the PET/EX method, and 40% higher for PET/matched; that is, noise was much lower than in gated PET. Conclusion: Acquiring respiratory waveforms both in PET (as in the current state of the art) and in CT (an unusual key step in this approach) has the potential to improve the alignment of PET and CT images. A proposed method for using this information was tested. Improved alignment was demonstrated.




mo

64Cu-DOTATATE PET/CT for Imaging Patients with Known or Suspected Somatostatin Receptor-Positive Neuroendocrine Tumors: Results of the First US Prospective, Reader-Blinded Clinical Trial

Studies demonstrate that the investigational 64Cu-DOTATATE radiopharmaceutical may provide diagnostic and logistical benefits over available imaging agents for patients with somatostatin receptor (SSTR)-positive neuroendocrine tumors (NETs). Accordingly, we aimed to prospectively determine the lowest dose of 64Cu-DOTATATE that facilitates diagnostic quality scans and evaluated the diagnostic performance and safety in a phase III study of patients with SSTR-expressing NETs. Methods: A dose-ranging study was conducted in 12 patients divided into 3 dose groups (111 MBq [3.0 mCi], 148 MBq [4.0 mCi], and 185 MBq [5.0 mCi] ± 10%) to determine the lowest dose of 64Cu-DOTATATE that produced diagnostic quality PET/CT images. Using the 64Cu-DOTATATE dose identified in the dose-ranging study, 3 independent nuclear medicine physicians who were blinded to all clinical information read PET/CT scans from 21 healthy volunteers and 42 NET-positive patients to determine those with "Disease" and "No Disease," as well as "Localized" versus "Metastatic" status. Blinded-reader evaluations were compared to a patient-specific standard of truth (SOT), which was established by an independent oncologist who used all previously available pathology, clinical, and conventional imaging data. Diagnostic performance calculated for 64Cu-DOTATATE included sensitivity, specificity, negative predictive value, positive predictive value, and accuracy. Inter- and intra-reader reliability, as well as ability to differentiate between localized and metastatic disease, was also determined. Adverse events (AEs) were recorded from 64Cu-DOTATATE injection through 48 hours post-injection. Results: The dose-ranging study identified 148 MBq (4.0 mCi) as the optimal dose to obtain diagnostic quality PET/CT images. Following database lock, diagnostic performance from an initial majority read of the 3 independent readers showed a significant 90.9% sensitivity (P = 0.0042) and 96.6% specificity (P < 0.0001) for detecting NETs, which translated to a 100.0% sensitivity and 96.8% specificity after correcting for an initial SOT misread. Excellent inter- and intra-reader reliability, as well as ability to distinguish between localized and metastatic disease, was also noted. No AEs were related to 64Cu-DOTATATE, and no serious AEs were observed. Conclusion: 64Cu-DOTATATE PET/CT is a safe imaging technique that provides high-quality and accurate images at a dose of 148 MBq (4.0 mCi) for the detection of somatostatin-expressing NETs.




mo

PET/CT imaging with a 18F-labeled galactodendritic unit in a galectin-1 overexpressing orthotopic bladder cancer model

Galectins are carbohydrate-binding proteins overexpressed in bladder cancer (BCa) cells. Dendritic galactose moieties have a high affinity for galectin-expressing tumor cells. We radiolabeled a dendritic galactose carbohydrate with fluorine-18 – 18F-labeled galactodendritic unit 4 – and examined its potential in imaging urothelial malignancies. Methods: The 18F-labeled 1st generation galactodendritic unit 4 was obtained from its tosylate precursor. We conducted in vivo studies in galectin-expressing UMUC3 orthotopic BCa model to determine the ability of 18F-labeled galactodendritic unit 4 to image BCa. Results: Intravesical administration of 18F-labeled galactodendritic unit 4 allowed specific accumulation of the carbohydrate radiotracer in galectin-1 overexpressing UMUC3 orthotopic tumors when imaged with PET. The 18F-labeled galactodendritic unit 4 was not found to accumulate in non-tumor murine bladders. Conclusion: The 18F-labeled galactodendritic unit 4 and similar analogs may be clinically relevant and exploitable for PET imaging of galectin-1 overexpressing bladder tumors.




mo

Tobacco smoking in people is not associated with altered 18 kDa-translocator protein levels: A Positron Emission Tomography study

Rationale: The effects of tobacco smoking on the brain’s immune system are not well elucidated. While nicotine is immunosuppressive, other constituents in tobacco smoke have inflammatory effects. Positron Emission Tomography (PET) imaging of the 18-kDa translocator protein (TSPO) provide a biomarker for microglia, the brain’s primary immunocompetent cells. This work compared brain TSPO levels in 20 tobacco smokers (abstinent for at least 2 hours) and 20 nonsmokers using a fully quantitative modeling approach for the first time. Methods: [11C]PBR28 PET scans were acquired with arterial blood sampling to estimate the metabolite-corrected input function. [11C]PBR28 volumes of distribution (VT) were estimated throughout the brain with multilinear analysis. Results: Statistical analyses revealed no evidence for significant differences in regional [11C]PBR28 VT between smokers and non-smokers (whole-brain Cohen’s d=0.09) despite adequate power to detect medium effect sizes. Conclusion: These findings inform previous PET studies reporting lower TSPO radiotracer concentrations in brain (measured as standardized uptake value, SUV) of tobacco smokers compared to nonsmokers by demonstrating the importance of accounting for radiotracer concentrations in plasma. These findings suggest that compared to nonsmokers, smokers have comparable TSPO levels in brain. Additional work with other biomarkers is needed to fully characterize effects of tobacco smoking on the brain’s immune system.




mo

Data-driven motion detection and event-by-event correction for brain PET: Comparison with Vicra

Head motion degrades image quality and causes erroneous parameter estimates in tracer kinetic modeling in brain PET studies. Existing motion correction methods include frame-based image-registration (FIR) and correction using real-time hardware-based motion tracking (HMT) information. However, FIR cannot correct for motion within one predefined scan period while HMT is not readily available in the clinic since it typically requires attaching a tracking device to the patient. In this study, we propose a motion correction framework with a data-driven algorithm, i.e., using the PET raw data itself, to address these limitations. Methods: We propose a data-driven algorithm, Centroid of Distribution (COD), to detect head motion. In COD, the central coordinates of the line of response (LOR) of all events are averaged over 1-sec intervals to generate a COD trace. A point-to-point change in the COD trace in one direction that exceeded a user-defined threshold was defined as a time point of head motion, which was followed by manually adding additional motion time points. All the frames defined by such time points were reconstructed without attenuation correction and rigidly registered to a reference frame. The resulting transformation matrices were then used to perform the final motion compensated reconstruction. We applied the new COD framework to 23 human dynamic datasets, all containing large head motions, with 18F-FDG (N = 13) and 11C-UCB-J (N = 10), and compared its performance with FIR and with HMT using the Vicra, which can be considered as the "gold standard". Results: The COD method yielded 1.0±3.2% (mean ± standard deviation across all subjects and 12 grey matter regions) SUV difference for 18F-FDG (3.7±5.4% for 11C-UCB-J) compared to HMT while no motion correction (NMC) and FIR yielded -15.7±12.2% (-20.5±15.8%) and -4.7±6.9% (-6.2±11.0%), respectively. For 18F-FDG dynamic studies, COD yielded differences of 3.6±10.9% in Ki value as compared to HMT, while NMC and FIR yielded -18.0±39.2% and -2.6±19.8%, respectively. For 11C-UCB-J, COD yielded 3.7±5.2% differences in VT compared to HMT, while NMC and FIR yielded -20.0±12.5% and -5.3±9.4%, respectively. Conclusion: The proposed COD-based data-driven motion correction method outperformed FIR and achieved comparable or even better performance as compared to the Vicra HMT method in both static and dynamic studies.




mo

Clinical evaluation of a data-driven respiratory gating algorithm for whole-body positron emission tomography with continuous bed motion

Respiratory gating is the standard to overcome respiration effects degrading image quality in positron emission tomography (PET). Data-driven gating (DDG) using signals derived from PET raw data are promising alternatives to gating approaches requiring additional hardware. However, continuous bed motion (CBM) scans require dedicated DDG approaches for axially-extended PET, compared to DDG for conventional step-and-shoot scans. In this study, a CBM-capable DDG algorithm was investigated in a clinical cohort, comparing it to hardware-based gating using gated and fully motion-corrected reconstructions. Methods: 56 patients with suspected malignancies in thorax or abdomen underwent whole-body 18F-FDG CBM-PET/CT imaging using DDG and hardware-based respiratory gating (pressure-sensitive belt gating, BG). Correlation analyses were performed on both gating signals. Besides static reconstructions, BG and DDG were used for optimally-gated PET (BG-OG, DDG-OG) and fully motion-corrected PET (elastic motion correction; BG-EMOCO, DDG-EMOCO). Metabolic volumes, SUVmax and SUVmean of lesions were compared amongst the reconstructions. Additionally, the quality of lesion delineation in different PET reconstructions was independently evaluated by three experts. Results: Global correlation coefficients between BG and DDG signals amounted to 0.48±0.11, peaking at 0.89±0.07 when scanning the kidney and liver region. In total, 196 lesions were analyzed. SUV measurements were significantly higher in BG-OG, DDG-OG, BG-EMOCO and DDG-EMOCO compared to static images (P<0.001; median SUVmax: static, 14.3±13.4; BG-EMOCO, 19.8±15.7; DDG-EMOCO, 20.5±15.6; BG-OG, 19.6±17.1; DDG-OG, 18.9±16.6). No significant differences between BG-OG and DDG-OG, and BG-EMOCO and DDG-EMOCO, respectively, were found. Visual lesion delineation was significantly better in BG-EMOCO and DDG-EMOCO than in static reconstructions (P<0.001); no significant difference was found comparing BG and DDG (EMOCO, OG, respectively). Conclusion: DDG-based motion-compensation of CBM-PET acquisitions outperforms static reconstructions, delivering qualities comparable to hardware-based approaches. The new algorithm may be a valuable alternative for CBM-PET systems.




mo

High Resolution Depth-Encoding PET Detector Module with Prismatoid Light Guide Array

Depth-encoding detectors with single-ended readout provide a practical, cost-effective approach for constructing high resolution and high sensitivity PET scanners. However, the current iteration of such detectors utilizes a uniform glass light guide to achieve depth-encoding, resulting in non-uniform performance throughout the detector array due to suboptimal intercrystal light sharing. We introduce Prism-PET, a single-ended readout PET detector module with a segmented light guide composed of an array of prismatoids that introduces enhanced, deterministic light sharing. Methods: High resolution PET detector modules were fabricated with single-ended readout of polished multicrystal lutetium yttrium orthosilicate (LYSO) scintillator arrays directly coupled 4-to-1 and 9-to-1 to arrays of 3.2 x 3.2 mm2 silicon photomultiplier pixels. Each scintillator array was coupled at the non-readout side to a light guide (one 4-to-1 module with a uniform glass light guide, one 4-to-1 Prism-PET module and one 9-to-1 Prism-PET module) to introduce intercrystal light sharing, which closely mimics the behavior of dual-ended readout with the additional benefit of improved crystal identification. Flood histogram data was acquired using a 3 MBq Na-22 source to characterize crystal identification and energy resolution. Lead collimation was used to acquire data at specific depths to determine depth-of-interaction (DOI) resolution. Results: The flood histogram measurements showed excellent and uniform crystal separation throughout the Prism-PET modules while the uniform glass light guide module had performance degradation at the edges and corners. A DOI resolution of 5.0 mm full width at half maximum (FWHM) and energy resolution of 13% were obtained in the uniform glass light guide module. By comparison, the 4-to-1 coupled Prism-PET module achieved 2.5 mm FWHM DOI resolution and 9% energy resolution. Conclusion: PET scanners based on our Prism-PET modules with segmented prismatoid light guide arrays can achieve high and uniform spatial resolution (9-to-1 coupling with ~ 1 mm crystals), high sensitivity, good energy and timing resolutions (using polished crystals and after applying DOI-correction), and compact size (depth-encoding eliminates parallax error and permits smaller ring-diameter).