search Monitoring the itinerary of lysosomal cholesterol in Niemann-Pick Type C1-deficient cells after cyclodextrin treatment [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Niemann-Pick disease type C (NPC) disease is a lipid-storage disorder that is caused by mutations in the genes encoding NPC proteins and results in lysosomal cholesterol accumulation. 2-Hydroxypropyl-β-cyclodextrin (CD) has been shown to reduce lysosomal cholesterol levels and enhance sterol homeostatic responses, but CD’s mechanism of action remains unknown. Recent work provides evidence that CD stimulates lysosomal exocytosis, raising the possibility that lysosomal cholesterol is released in exosomes. However, therapeutic concentrations of CD do not alter total cellular cholesterol, and cholesterol homeostatic responses at the ER are most consistent with increased ER membrane cholesterol. To address these disparate findings, here we used stable isotope labeling to track the movement of lipoprotein cholesterol cargo in response to CD in NPC1-deficient U2OS cells. Although released cholesterol was detectable, it was not associated with extracellular vesicles. Rather, we demonstrate that lysosomal cholesterol trafficks to the plasma membrane (PM), where it exchanges with lipoprotein-bound cholesterol in a CD-dependent manner. We found that in the absence of suitable extracellular cholesterol acceptors, cholesterol exchange is abrogated, cholesterol accumulates in the PM, and reesterification at the ER is increased. These results support a model in which CD promotes intracellular redistribution of lysosomal cholesterol, but not cholesterol exocytosis or efflux, during the restoration of cholesterol homeostatic responses. Full Article
search The citrus flavonoid nobiletin confers protection from metabolic dysregulation in high-fat-fed mice independent of AMPK [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Obesity, dyslipidemia, and insulin resistance, the increasingly common metabolic syndrome, are risk factors for CVD and type 2 diabetes that warrant novel therapeutic interventions. The flavonoid nobiletin displays potent lipid-lowering and insulin-sensitizing properties in mice with metabolic dysfunction. However, the mechanisms by which nobiletin mediates metabolic protection are not clearly established. The central role of AMP-activated protein kinase (AMPK) as an energy sensor suggests that AMPK is a target of nobiletin. We tested the hypothesis that metabolic protection by nobiletin required phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) in mouse hepatocytes, in mice deficient in hepatic AMPK (Ampkβ1–/–), in mice incapable of inhibitory phosphorylation of ACC (AccDKI), and in mice with adipocyte-specific AMPK deficiency (iβ1β2AKO). We fed mice a high-fat/high-cholesterol diet with or without nobiletin. Nobiletin increased phosphorylation of AMPK and ACC in primary mouse hepatocytes, which was associated with increased FA oxidation and attenuated FA synthesis. Despite loss of ACC phosphorylation in Ampkβ1–/– hepatocytes, nobiletin suppressed FA synthesis and enhanced FA oxidation. Acute injection of nobiletin into mice did not increase phosphorylation of either AMPK or ACC in liver. In mice fed a high-fat diet, nobiletin robustly prevented obesity, hepatic steatosis, dyslipidemia, and insulin resistance, and it improved energy expenditure in Ampkβ1–/–, AccDKI, and iβ1β2AKO mice to the same extent as in WT controls. Thus, the beneficial metabolic effects of nobiletin in vivo are conferred independently of hepatic or adipocyte AMPK activation. These studies further underscore the therapeutic potential of nobiletin and begin to clarify possible mechanisms. Full Article
search Role of angiopoietin-like protein 3 in sugar-induced dyslipidemia in rhesus macaques: suppression by fish oil or RNAi [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Angiopoietin-like protein 3 (ANGPTL3) inhibits lipid clearance and is a promising target for managing cardiovascular disease. Here we investigated the effects of a high-sugar (high-fructose) diet on circulating ANGPTL3 concentrations in rhesus macaques. Plasma ANGPTL3 concentrations increased ~30% to 40% after 1 and 3 months of a high-fructose diet (both P < 0.001 vs. baseline). During fructose-induced metabolic dysregulation, plasma ANGPTL3 concentrations were positively correlated with circulating indices of insulin resistance [assessed with fasting insulin and the homeostatic model assessment of insulin resistance (HOMA-IR)], hypertriglyceridemia, adiposity (assessed as leptin), and systemic inflammation [C-reactive peptide (CRP)] and negatively correlated with plasma levels of the insulin-sensitizing hormone adropin. Multiple regression analyses identified a strong association between circulating APOC3 and ANGPTL3 concentrations. Higher baseline plasma levels of both ANGPTL3 and APOC3 were associated with an increased risk for fructose-induced insulin resistance. Fish oil previously shown to prevent insulin resistance and hypertriglyceridemia in this model prevented increases of ANGPTL3 without affecting systemic inflammation (increased plasma CRP and interleukin-6 concentrations). ANGPTL3 RNAi lowered plasma concentrations of ANGPTL3, triglycerides (TGs), VLDL-C, APOC3, and APOE. These decreases were consistent with a reduced risk of atherosclerosis. In summary, dietary sugar-induced increases of circulating ANGPTL3 concentrations after metabolic dysregulation correlated positively with leptin levels, HOMA-IR, and dyslipidemia. Targeting ANGPTL3 expression with RNAi inhibited dyslipidemia by lowering plasma TGs, VLDL-C, APOC3, and APOE levels in rhesus macaques. Full Article
search Alirocumab, evinacumab, and atorvastatin triple therapy regresses plaque lesions and improves lesion composition in mice [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Atherosclerosis-related CVD causes nearly 20 million deaths annually. Most patients are treated after plaques develop, so therapies must regress existing lesions. Current therapies reduce plaque volume, but targeting all apoB-containing lipoproteins with intensive combinations that include alirocumab or evinacumab, monoclonal antibodies against cholesterol-regulating proprotein convertase subtilisin/kexin type 9 and angiopoietin-like protein 3, may provide more benefit. We investigated the effect of such lipid-lowering interventions on atherosclerosis in APOE*3-Leiden.CETP mice, a well-established model for hyperlipidemia. Mice were fed a Western-type diet for 13 weeks and thereafter matched into a baseline group (euthanized at 13 weeks) and five groups that received diet alone (control) or with treatment [atorvastatin; atorvastatin and alirocumab; atorvastatin and evinacumab; or atorvastatin, alirocumab, and evinacumab (triple therapy)] for 25 weeks. We measured effects on cholesterol levels, plaque composition and morphology, monocyte adherence, and macrophage proliferation. All interventions reduced plasma total cholesterol (37% with atorvastatin to 80% with triple treatment; all P < 0.001). Triple treatment decreased non-HDL-C to 1.0 mmol/l (91% difference from control; P < 0.001). Atorvastatin reduced atherosclerosis progression by 28% versus control (P < 0.001); double treatment completely blocked progression and diminished lesion severity. Triple treatment regressed lesion size versus baseline in the thoracic aorta by 50% and the aortic root by 36% (both P < 0.05 vs. baseline), decreased macrophage accumulation through reduced proliferation, and abated lesion severity. Thus, high-intensive cholesterol-lowering triple treatment targeting all apoB-containing lipoproteins regresses atherosclerotic lesion area and improves lesion composition in mice, making it a promising potential approach for treating atherosclerosis. Full Article
search Role of pyruvate kinase M2 in oxidized LDL-induced macrophage foam cell formation and inflammation [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Pyruvate kinase M2 (PKM2) links metabolic and inflammatory dysfunction in atherosclerotic coronary artery disease; however, its role in oxidized LDL (Ox-LDL)-induced macrophage foam cell formation and inflammation is unknown and therefore was studied. In recombinant mouse granulocyte-macrophage colony-stimulating factor-differentiated murine bone marrow-derived macrophages, early (1–6 h) Ox-LDL treatment induced PKM2 tyrosine 105 phosphorylation and promotes its nuclear localization. PKM2 regulates aerobic glycolysis and inflammation because PKM2 shRNA or Shikonin abrogated Ox-LDL-induced hypoxia-inducible factor-1α target genes lactate dehydrogenase, glucose transporter member 1, interleukin 1β (IL-1β) mRNA expression, lactate, and secretory IL-1β production. PKM2 inhibition significantly increased Ox-LDL-induced ABCA1 and ABCG1 protein expression and NBD-cholesterol efflux to apoA1 and HDL. PKM2 shRNA significantly inhibited Ox-LDL-induced CD36, FASN protein expression, DiI-Ox-LDL binding and uptake, and cellular total cholesterol, free cholesterol, and cholesteryl ester content. Therefore, PKM2 regulates lipid uptake and efflux. DASA-58, a PKM2 activator, downregulated LXR-α, ABCA1, and ABCG1, and augmented FASN and CD36 protein expression. Peritoneal macrophages showed similar results. Ox-LDL induced PKM2- SREBP-1 interaction and FASN expression in a PKM2-dependent manner. Therefore, this study suggests a role for PKM2 in Ox-LDL-induced aerobic glycolysis, inflammation, and macrophage foam cell formation. Full Article
search Hepatic PLIN5 signals via SIRT1 to promote autophagy and prevent inflammation during fasting [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Lipid droplets (LDs) are energy-storage organelles that are coated with hundreds of proteins, including members of the perilipin (PLIN) family. PLIN5 is highly expressed in oxidative tissues, including the liver, and is thought to play a key role in uncoupling LD accumulation from lipotoxicity; however, the mechanisms behind this action are incompletely defined. We investigated the role of hepatic PLIN5 in inflammation and lipotoxicity in a murine model under both fasting and refeeding conditions and in hepatocyte cultures. PLIN5 ablation with antisense oligonucleotides triggered a pro-inflammatory response in livers from mice only under fasting conditions. Similarly, PLIN5 mitigated lipopolysaccharide- or palmitic acid-induced inflammatory responses in hepatocytes. During fasting, PLIN5 was also required for the induction of autophagy, which contributed to its anti-inflammatory effects. The ability of PLIN5 to promote autophagy and prevent inflammation were dependent upon signaling through sirtuin 1 (SIRT1), which is known to be activated in response to nuclear PLIN5 under fasting conditions. Taken together, these data show that PLIN5 signals via SIRT1 to promote autophagy and prevent FA-induced inflammation as a means to maintain hepatocyte homeostasis during periods of fasting and FA mobilization. Full Article
search Serum amyloid A is not incorporated into HDL during HDL biogenesis [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Liver-derived serum amyloid A (SAA) is present in plasma where it is mainly associated with HDL and from which it is cleared more rapidly than are the other major HDL-associated apolipoproteins. Although evidence suggests that lipid-free and HDL-associated forms of SAA have different activities, the pathways by which SAA associates and disassociates with HDL are poorly understood. In this study, we investigated SAA lipidation by hepatocytes and how this lipidation relates to the formation of nascent HDL particles. We also examined hepatocyte-mediated clearance of lipid-free and HDL-associated SAA. We prepared hepatocytes from mice injected with lipopolysaccharide or an SAA-expressing adenoviral vector. Alternatively, we incubated primary hepatocytes from SAA-deficient mice with purified SAA. We analyzed conditioned media to determine the lipidation status of endogenously produced and exogenously added SAA. Examining the migration of lipidated species, we found that SAA is lipidated and forms nascent particles that are distinct from apoA-I-containing particles and that apoA-I lipidation is unaltered when SAA is overexpressed or added to the cells, indicating that SAA is not incorporated into apoA-I-containing HDL during HDL biogenesis. Like apoA-I formation, generation of SAA-containing particles was dependent on ABCA1, but not on scavenger receptor class B type I. Hepatocytes degraded significantly more SAA than apoA-I. Taken together, our results indicate that SAA’s lipidation and metabolism by the liver is independent of apoA-I and that SAA is not incorporated into HDL during HDL biogenesis. Full Article
search Model systems for studying the assembly, trafficking, and secretion of apoB lipoproteins using fluorescent fusion proteins [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 apoB exists as apoB100 and apoB48, which are mainly found in hepatic VLDLs and intestinal chylomicrons, respectively. Elevated plasma levels of apoB-containing lipoproteins (Blps) contribute to coronary artery disease, diabetes, and other cardiometabolic conditions. Studying the mechanisms that drive the assembly, intracellular trafficking, secretion, and function of Blps remains challenging. Our understanding of the intracellular and intraorganism trafficking of Blps can be greatly enhanced, however, with the availability of fusion proteins that can help visualize Blp transport within cells and between tissues. We designed three plasmids expressing human apoB fluorescent fusion proteins: apoB48-GFP, apoB100-GFP, and apoB48-mCherry. In Cos-7 cells, transiently expressed fluorescent apoB proteins colocalized with calnexin and were only secreted if cells were cotransfected with microsomal triglyceride transfer protein. The secreted apoB-fusion proteins retained the fluorescent protein and were secreted as lipoproteins with flotation densities similar to plasma HDL and LDL. In a rat hepatoma McA-RH7777 cell line, the human apoB100 fusion protein was secreted as VLDL- and LDL-sized particles, and the apoB48 fusion proteins were secreted as LDL- and HDL-sized particles. To monitor lipoprotein trafficking in vivo, the apoB48-mCherry construct was transiently expressed in zebrafish larvae and was detected throughout the liver. These experiments show that the addition of fluorescent proteins to the C terminus of apoB does not disrupt their assembly, localization, secretion, or endocytosis. The availability of fluorescently labeled apoB proteins will facilitate the exploration of the assembly, degradation, and transport of Blps and help to identify novel compounds that interfere with these processes via high-throughput screening. Full Article
search Composition-function analysis of HDL subpopulations: influence of lipid composition on particle functionality [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 The composition-function relationship of HDL particles and its effects on the mechanisms driving coronary heart disease (CHD) is poorly understood. We tested the hypothesis that the functionality of HDL particles is significantly influenced by their lipid composition. Using a novel 3D-separation method, we isolated five different-sized HDL subpopulations from CHD patients who had low preβ-1 functionality (low-F) (ABCA1-dependent cholesterol-efflux normalized for preβ-1 concentration) and controls who had either low-F or high preβ-1 functionality (high-F). Molecular numbers of apoA-I, apoA-II, and eight major lipid classes were determined in each subpopulation by LC-MS. The average number of lipid molecules decreased from 422 in the large spherical α-1 particles to 57 in the small discoid preβ-1 particles. With decreasing particle size, the relative concentration of free cholesterol (FC) decreased in α-mobility but not in preβ-1 particles. Preβ-1 particles contained more lipids than predicted; 30% of which were neutral lipids (cholesteryl ester and triglyceride), indicating that these particles were mainly remodeled from larger particles not newly synthesized. There were significant correlations between HDL-particle functionality and the concentrations of several lipids. Unexpectedly, the phospholipid:FC ratio was significantly correlated with large-HDL-particle functionality but not with preβ-1 functionality. There was significant positive correlation between particle functionality and total lipids in high-F controls, indicating that the lipid-binding capacity of apoA-I plays a major role in the cholesterol efflux capacity of HDL particles. Functionality and lipid composition of HDL particles are significantly correlated and probably both are influenced by the lipid-binding capacity of apoA-I. Full Article
search A human-like bile acid pool induced by deletion of hepatic Cyp2c70 modulates effects of FXR activation in mice [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Bile acids (BAs) facilitate intestinal absorption of lipid-soluble nutrients and modulate various metabolic pathways through the farnesoid X receptor (FXR) and Takeda G-protein-coupled receptor 5. These receptors are targets for therapy in cholestatic and metabolic diseases. However, dissimilarities in BA metabolism between humans and mice complicate translation of preclinical data. Cytochrome P450 family 2 subfamily c polypeptide 70 (CYP2C70) was recently proposed to catalyze the formation of rodent-specific muricholic acids (MCAs). With CRISPR/Cas9-mediated somatic genome editing, we generated an acute hepatic Cyp2c70 knockout mouse model (Cyp2c70ako) to clarify the role of CYP2C70 in BA metabolism in vivo and evaluate whether its activity modulates effects of pharmacologic FXR activation on cholesterol homeostasis. In Cyp2c70ako mice, chenodeoxycholic acid (CDCA) increased at the expense of βMCA, resulting in a more hydrophobic human-like BA pool. Tracer studies demonstrated that, in vivo, CYP2C70 catalyzes the formation of βMCA primarily by sequential 6β-hydroxylation and C7-epimerization of CDCA, generating αMCA as an intermediate metabolite. Physiologically, the humanized BA composition in Cyp2c70ako mice blunted the stimulation of fecal cholesterol disposal in response to FXR activation compared with WT mice, predominantly due to reduced stimulation of transintestinal cholesterol excretion. Thus, deletion of hepatic Cyp2c70 in adult mice translates into a human-like BA pool composition and impacts the response to pharmacologic FXR activation. This Cyp2c70ako mouse model may be a useful tool for future studies of BA signaling and metabolism that informs human disease development and treatment. Full Article
search Tissue-specific analysis of lipid species in Drosophila during overnutrition by UHPLC-MS/MS and MALDI-MSI [Research Articles] By feedproxy.google.com Published On :: 2020-03-01T00:06:33-08:00 Diets high in calories can be used to model metabolic diseases, including obesity and its associated comorbidities, in animals. Drosophila melanogaster fed high-sugar diets (HSDs) exhibit complications of human obesity including hyperglycemia, hyperlipidemia, insulin resistance, cardiomyopathy, increased susceptibility to infection, and reduced longevity. We hypothesize that lipid storage in the high-sugar-fed fly’s fat body (FB) reaches a maximum capacity, resulting in the accumulation of toxic lipids in other tissues or lipotoxicity. We took two approaches to characterize tissue-specific lipotoxicity. Ultra-HPLC-MS/MS and MALDI-MS imaging enabled spatial and temporal localization of lipid species in the FB, heart, and hemolymph. Substituent chain length was diet dependent, with fewer odd chain esterified FAs on HSDs in all sample types. By contrast, dietary effects on double bond content differed among organs, consistent with a model where some substituent pools are shared and others are spatially restricted. Both di- and triglycerides increased on HSDs in all sample types, similar to observations in obese humans. Interestingly, there were dramatic effects of sugar feeding on lipid ethers, which have not been previously associated with lipotoxicity. Taken together, we have identified candidate endocrine mechanisms and molecular targets that may be involved in metabolic disease and lipotoxicity. Full Article
search Heritability of 596 lipid species and genetic correlation with cardiovascular traits in the Busselton Family Heart Study [Patient-Oriented and Epidemiological Research] By feedproxy.google.com Published On :: 2020-04-01T00:05:29-07:00 CVD is the leading cause of death worldwide, and genetic investigations into the human lipidome may provide insight into CVD risk. The aim of this study was to estimate the heritability of circulating lipid species and their genetic correlation with CVD traits. Targeted lipidomic profiling was performed on 4,492 participants from the Busselton Family Heart Study to quantify the major fatty acids of 596 lipid species from 33 classes. We estimated narrow-sense heritabilities of lipid species/classes and their genetic correlations with eight CVD traits: BMI, HDL-C, LDL-C, triglycerides, total cholesterol, waist-hip ratio, systolic blood pressure, and diastolic blood pressure. We report heritabilities and genetic correlations of new lipid species/subclasses, including acylcarnitine (AC), ubiquinone, sulfatide, and oxidized cholesteryl esters. Over 99% of lipid species were significantly heritable (h2: 0.06–0.50) and all lipid classes were significantly heritable (h2: 0.14–0.50). The monohexosylceramide and AC classes had the highest median heritabilities (h2 = 0.43). The largest genetic correlation was between clinical triglycerides and total diacylglycerol (rg = 0.88). We observed novel positive genetic correlations between clinical triglycerides and phosphatidylglycerol species (rg: 0.64–0.82), and HDL-C and alkenylphosphatidylcholine species (rg: 0.45–0.74). Overall, 51% of the 4,768 lipid species-CVD trait genetic correlations were statistically significant after correction for multiple comparisons. This is the largest lipidomic study to address the heritability of lipids and their genetic correlation with CVD traits. Future work includes identifying putative causal genetic variants for lipid species and CVD using genome-wide SNP and whole-genome sequencing data. Full Article
search Hexacosenoyl-CoA is the most abundant very long-chain acyl-CoA in ATP binding cassette transporter D1-deficient cells [Patient-Oriented and Epidemiological Research] By feedproxy.google.com Published On :: 2020-04-01T00:05:29-07:00 X-linked adrenoleukodystrophy (X-ALD) is an inherited disorder caused by deleterious mutations in the ABCD1 gene. The ABCD1 protein transports very long-chain FAs (VLCFAs) from the cytosol into the peroxisome where the VLCFAs are degraded through β-oxidation. ABCD1 dysfunction leads to VLCFA accumulation in individuals with X-ALD. FAs are activated by esterification to CoA before metabolic utilization. However, the intracellular pools and metabolic profiles of individual acyl-CoA esters have not been fully analyzed. In this study, we profiled the acyl-CoA species in fibroblasts from X-ALD patients and in ABCD1-deficient HeLa cells. We found that hexacosenoyl (26:1)-CoA, but not hexacosanoyl (26:0)-CoA, was the most abundantly concentrated among the VLCFA-CoA species in these cells. We also show that 26:1-CoA is mainly synthesized from oleoyl-CoA, and the metabolic turnover rate of 26:1-CoA was almost identical to that of oleoyl-CoA in both WT and ABCD1-deficient HeLa cells. The findings of our study provide precise quantitative and metabolic information of each acyl-CoA species in living cells. Our results suggest that VLCFA is endogenously synthesized as VLCFA-CoA through a FA elongation pathway and is then efficiently converted to other metabolites, such as phospholipids, in the absence of ABCD1. Full Article
search Dynamics of sphingolipids and the serine palmitoyltransferase complex in rat oligodendrocytes during myelination [Research Articles] By feedproxy.google.com Published On :: 2020-04-01T00:05:29-07:00 Myelin is a unique lipid-rich membrane structure that accelerates neurotransmission and supports neuronal function. Sphingolipids are critical myelin components. Yet sphingolipid content and synthesis have not been well characterized in oligodendrocytes, the myelin-producing cells of the CNS. Here, using quantitative real-time PCR, LC-MS/MS-based lipid analysis, and biochemical assays, we examined sphingolipid synthesis during the peak period of myelination in the postnatal rat brain. Importantly, we characterized sphingolipid production in isolated oligodendrocytes. We analyzed sphingolipid distribution and levels of critical enzymes and regulators in the sphingolipid biosynthetic pathway, with focus on the serine palmitoyltransferase (SPT) complex, the rate-limiting step in this pathway. During myelination, levels of the major SPT subunits increased and oligodendrocyte maturation was accompanied by extensive alterations in the composition of the SPT complex. These included changes in the relative levels of two alternative catalytic subunits, SPTLC2 and -3, in the relative levels of isoforms of the small subunits, ssSPTa and -b, and in the isoform distribution of the SPT regulators, the ORMDLs. Myelination progression was accompanied by distinct changes in both the nature of the sphingoid backbone and the N-acyl chains incorporated into sphingolipids. We conclude that the distribution of these changes among sphingolipid family members is indicative of a selective channeling of the ceramide backbone toward specific downstream metabolic pathways during myelination. Our findings provide insights into myelin production in oligodendrocytes and suggest how dysregulation of the biosynthesis of this highly specialized membrane could contribute to demyelinating diseases. Full Article
search HDL inhibits endoplasmic reticulum stress-induced apoptosis of pancreatic {beta}-cells in vitro by activation of Smoothened [Research Articles] By feedproxy.google.com Published On :: 2020-04-01T00:05:29-07:00 Loss of pancreatic β-cell mass and function as a result of sustained ER stress is a core step in the pathogenesis of diabetes mellitus type 2. The complex control of β-cells and insulin production involves hedgehog (Hh) signaling pathways as well as cholesterol-mediated effects. In fact, data from studies in humans and animal models suggest that HDL protects against the development of diabetes through inhibition of ER stress and β-cell apoptosis. We investigated the mechanism by which HDL inhibits ER stress and apoptosis induced by thapsigargin, a sarco/ER Ca2+-ATPase inhibitor, in β-cells of a rat insulinoma cell line, INS1e. We further explored effects on the Hh signaling receptor Smoothened (SMO) with pharmacologic agonists and inhibitors. Interference with sterol synthesis or efflux enhanced β-cell apoptosis and abrogated the anti-apoptotic activity of HDL. During ER stress, HDL facilitated the efflux of specific oxysterols, including 24-hydroxycholesterol (OHC). Supplementation of reconstituted HDL with 24-OHC enhanced and, in cells lacking ABCG1 or the 24-OHC synthesizing enzyme CYP46A1, restored the protective activity of HDL. Inhibition of SMO countered the beneficial effects of HDL and also LDL, and SMO agonists decreased β-cell apoptosis in the absence of ABCG1 or CYP46A1. The translocation of the SMO-activated transcription factor glioma-associated oncogene GLI-1 was inhibited by ER stress but restored by both HDL and 24-OHC. In conclusion, the protective effect of HDL to counter ER stress and β-cell death involves the transport, generation, and mobilization of oxysterols for activation of the Hh signaling receptor SMO Full Article
search Of mice and men: murine bile acids explain species differences in the regulation of bile acid and cholesterol metabolism [Research Articles] By feedproxy.google.com Published On :: 2020-04-01T00:05:29-07:00 Compared with humans, rodents have higher synthesis of cholesterol and bile acids (BAs) and faster clearance and lower levels of serum LDL-cholesterol. Paradoxically, they increase BA synthesis in response to bile duct ligation (BDL). Another difference is the production of hydrophilic 6-hydroxylated muricholic acids (MCAs), which may antagonize the activation of FXRs, in rodents versus humans. We hypothesized that the presence of MCAs is key for many of these metabolic differences between mice and humans. We thus studied the effects of genetic deletion of the Cyp2c70 gene, previously proposed to control MCA formation. Compared with WT animals, KO mice created using the CRISPR/Cas9 system completely lacked MCAs, and displayed >50% reductions in BA and cholesterol synthesis and hepatic LDL receptors, leading to a marked increase in serum LDL-cholesterol. The doubling of BA synthesis following BDL in WT animals was abolished in KO mice, despite extinguished intestinal fibroblast growth factor (Fgf)15 expression in both groups. Accumulation of cholesterol-enriched particles ("Lp-X") in serum was almost eliminated in KO mice. Livers of KO mice were increased 18% in weight, and serum markers of liver function indicated liver damage. The human-like phenotype of BA metabolism in KO mice could not be fully explained by the activation of FXR-mediated changes. In conclusion, the presence of MCAs is critical for many of the known metabolic differences between mice and humans. The Cyp2c70-KO mouse should be useful in studies exploring potential therapeutic targets for human disease. Full Article
search SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect FA translocation [Research Articles] By feedproxy.google.com Published On :: 2020-05-01T00:05:28-07:00 Membrane-bound proteins have been proposed to mediate the transport of long-chain FA (LCFA) transport through the plasma membrane (PM). These proposals are based largely on reports that PM transport of LCFAs can be blocked by a number of enzymes and purported inhibitors of LCFA transport. Here, using the ratiometric pH indicator (2',7'-bis-(2-carboxyethyl)-5-(and-6-)-carboxyfluorescein and acrylodated intestinal FA-binding protein-based dual fluorescence assays, we investigated the effects of nine inhibitors of the putative FA transporter protein CD36 on the binding and transmembrane movement of LCFAs. We particularly focused on sulfosuccinimidyl oleate (SSO), reported to be a competitive inhibitor of CD36-mediated LCFA transport. Using these assays in adipocytes and inhibitor-treated protein-free lipid vesicles, we demonstrate that rapid LCFA transport across model and biological membranes remains unchanged in the presence of these purported inhibitors. We have previously shown in live cells that CD36 does not accelerate the transport of unesterified LCFAs across the PM. Our present experiments indicated disruption of LCFA metabolism inside the cell within minutes upon treatment with many of the "inhibitors" previously assumed to inhibit LCFA transport across the PM. Furthermore, using confocal microscopy and a specific anti-SSO antibody, we found that numerous intracellular and PM-bound proteins are SSO-modified in addition to CD36. Our results support the hypothesis that LCFAs diffuse rapidly across biological membranes and do not require an active protein transporter for their transmembrane movement. Full Article
search Hepatic monoamine oxidase B is involved in endogenous geranylgeranoic acid synthesis in mammalian liver cells [Research Articles] By feedproxy.google.com Published On :: 2020-05-01T00:05:28-07:00 Geranylgeranoic acid (GGA) originally was identified in some animals and has been developed as an agent for preventing second primary hepatoma. We previously have also identified GGA as an acyclic diterpenoid in some medicinal herbs. Recently, we reported that in human hepatoma-derived HuH-7 cells, GGA is metabolically labeled from 13C-mevalonate. Several cell-free experiments have demonstrated that GGA is synthesized through geranylgeranial by oxygen-dependent oxidation of geranylgeraniol (GGOH), but the exact biochemical events giving rise to GGA in hepatoma cells remain unclear. Monoamine oxidase B (MOAB) has been suggested to be involved in GGOH oxidation. Here, using two human hepatoma cell lines, we investigated whether MAOB contributes to GGA biosynthesis. Using either HuH-7 cell lysates or recombinant human MAOB, we found that: 1) the MAO inhibitor tranylcypromine dose-dependently downregulates endogenous GGA levels in HuH-7 cells; and 2) siRNA-mediated MAOB silencing reduces intracellular GGA levels in HuH-7 and Hep3B cells. Unexpectedly, however, CRISPR/Cas9-generated MAOB-KO human hepatoma Hep3B cells had GGA levels similar to those in MAOB-WT cells. A sensitivity of GGA levels to siRNA-mediated MAOB downregulation was recovered when the MAOB-KO cells were transfected with a MAOB-expression plasmid, suggesting that MAOB is the enzyme primarily responsible for GGOH oxidation and that some other latent metabolic pathways may maintain endogenous GGA levels in the MAOB-KO hepatoma cells. Along with the previous findings, these results provide critical insights into the biological roles of human MAOB and provide evidence that hepatic MAOB is involved in endogenous GGA biosynthesis via GGOH oxidation. Full Article
search A novel GPER antagonist protects against the formation of estrogen-induced cholesterol gallstones in female mice [Research Articles] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Many clinical studies and epidemiological investigations have clearly demonstrated that women are twice as likely to develop cholesterol gallstones as men, and oral contraceptives and other estrogen therapies dramatically increase that risk. Further, animal studies have revealed that estrogen promotes cholesterol gallstone formation through the estrogen receptor (ER) α, but not ERβ, pathway. More importantly, some genetic and pathophysiological studies have found that G protein-coupled estrogen receptor (GPER) 1 is a new gallstone gene, Lith18, on chromosome 5 in mice and produces additional lithogenic actions, working independently of ERα, to markedly increase cholelithogenesis in female mice. Based on computational modeling of GPER, a novel series of GPER-selective antagonists were designed, synthesized, and subsequently assessed for their therapeutic effects via calcium mobilization, cAMP, and ERα and ERβ fluorescence polarization binding assays. From this series of compounds, one new compound, 2-cyclohexyl-4-isopropyl-N-(4-methoxybenzyl)aniline (CIMBA), exhibits superior antagonism and selectivity exclusively for GPER. Furthermore, CIMBA reduces the formation of 17β-estradiol-induced gallstones in a dose-dependent manner in ovariectomized mice fed a lithogenic diet for 8 weeks. At 32 μg/day/kg CIMBA, no gallstones are found, even in ovariectomized ERα (–/–) mice treated with 6 μg/day 17β-estradiol and fed the lithogenic diet for 8 weeks. In conclusion, CIMBA treatment protects against the formation of estrogen-induced cholesterol gallstones by inhibiting the GPER signaling pathway in female mice. CIMBA may thus be a new agent for effectively treating cholesterol gallstone disease in women. Full Article
search Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids [Research Articles] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 The formation and properties of liquid-ordered (Lo) lipid domains (rafts) in the plasma membrane are still poorly understood. This limits our ability to manipulate ordered lipid domain-dependent biological functions. Giant plasma membrane vesicles (GPMVs) undergo large-scale phase separations into coexisting Lo and liquid-disordered lipid domains. However, large-scale phase separation in GPMVs detected by light microscopy is observed only at low temperatures. Comparing Förster resonance energy transfer-detected versus light microscopy-detected domain formation, we found that nanodomains, domains of nanometer size, persist at temperatures up to 20°C higher than large-scale phases, up to physiologic temperature. The persistence of nanodomains at higher temperatures is consistent with previously reported theoretical calculations. To investigate the sensitivity of nanodomains to lipid composition, GPMVs were prepared from mammalian cells in which sterol, phospholipid, or sphingolipid composition in the plasma membrane outer leaflet had been altered by cyclodextrin-catalyzed lipid exchange. Lipid substitutions that stabilize or destabilize ordered domain formation in artificial lipid vesicles had a similar effect on the thermal stability of nanodomains and large-scale phase separation in GPMVs, with nanodomains persisting at higher temperatures than large-scale phases for a wide range of lipid compositions. This indicates that it is likely that plasma membrane nanodomains can form under physiologic conditions more readily than large-scale phase separation. We also conclude that membrane lipid substitutions carried out in intact cells are able to modulate the propensity of plasma membranes to form ordered domains. This implies lipid substitutions can be used to alter biological processes dependent upon ordered domains. Full Article
search Schnyder corneal dystrophy-associated UBIAD1 is defective in MK-4 synthesis and resists autophagy-mediated degradation [Research Articles] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 The autosomal dominant disorder Schnyder corneal dystrophy (SCD) is caused by mutations in UbiA prenyltransferase domain-containing protein-1 (UBIAD1), which uses geranylgeranyl pyrophosphate (GGpp) to synthesize the vitamin K2 subtype menaquinone-4 (MK-4). SCD is characterized by opacification of the cornea, owing to aberrant build-up of cholesterol in the tissue. We previously discovered that sterols stimulate association of UBIAD1 with ER-localized HMG-CoA reductase, which catalyzes a rate-limiting step in the synthesis of cholesterol and nonsterol isoprenoids, including GGpp. Binding to UBIAD1 inhibits sterol-accelerated ER-associated degradation (ERAD) of reductase and permits continued synthesis of GGpp in cholesterol-replete cells. GGpp disrupts UBIAD1-reductase binding and thereby allows for maximal ERAD of reductase as well as ER-to-Golgi translocation of UBIAD1. SCD-associated UBIAD1 is refractory to GGpp-mediated dissociation from reductase and remains sequestered in the ER to inhibit ERAD. Here, we report development of a biochemical assay for UBIAD1-mediated synthesis of MK-4 in isolated membranes and intact cells. Using this assay, we compared enzymatic activity of WT UBIAD1 with that of SCD-associated variants. Our studies revealed that SCD-associated UBIAD1 exhibited reduced MK-4 synthetic activity, which may result from its reduced affinity for GGpp. Sequestration in the ER protects SCD-associated UBIAD1 from autophagy and allows intracellular accumulation of the mutant protein, which amplifies the inhibitory effect on reductase ERAD. These findings have important implications not only for the understanding of SCD etiology but also for the efficacy of cholesterol-lowering statin therapy, which becomes limited, in part, because of UBIAD1-mediated inhibition of reductase ERAD. Full Article
search Slc43a3 is a regulator of free fatty acid flux [Research Articles] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Adipocytes take up long chain FAs through diffusion and protein-mediated transport, whereas FA efflux is considered to occur by diffusion. To identify potential membrane proteins that are involved in regulating FA flux in adipocytes, the expression levels of 55 membrane transporters without known function were screened in subcutaneous adipose samples from obese patients before and after bariatric surgery using branched DNA methodology. Among the 33 solute carrier (SLC) transporter family members screened, the expression of 14 members showed significant changes before and after bariatric surgery. One of them, Slc43a3, increased about 2.5-fold after bariatric surgery. Further investigation demonstrated that Slc43a3 is highly expressed in murine adipose tissue and induced during adipocyte differentiation in primary preadipocytes and in OP9 cells. Knockdown of Slc43a3 with siRNA in differentiated OP9 adipocytes reduced both basal and forskolin-stimulated FA efflux, while also increasing FA uptake and lipid droplet accumulation. In contrast, overexpression of Slc43a3 decreased FA uptake in differentiated OP9 cells and resulted in decreased lipid droplet accumulation. Therefore, Slc43a3 seems to regulate FA flux in adipocytes, functioning as a positive regulator of FA efflux and as a negative regulator of FA uptake. Full Article
search The grease trap: uncovering the mechanism of the hydrophobic lid in Cutibacterium acnes lipase [Research Articles] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Acne is one of the most common dermatological conditions, but the details of its pathology are unclear, and current management regimens often have adverse effects. Cutibacterium acnes is known as a major acne-associated bacterium that derives energy from lipase-mediated sebum lipid degradation. C. acnes is commensal, but lipase activity has been observed to differ among C. acnes types. For example, higher populations of the type IA strains are present in acne lesions with higher lipase activity. In the present study, we examined a conserved lipase in types IB and II that was truncated in type IA C. acnes strains. Closed, blocked, and open structures of C. acnes ATCC11828 lipases were elucidated by X-ray crystallography at 1.6–2.4 Å. The closed crystal structure, which is the most common form in aqueous solution, revealed that a hydrophobic lid domain shields the active site. By comparing closed, blocked, and open structures, we found that the lid domain-opening mechanisms of C. acnes lipases (CAlipases) involve the lid-opening residues, Phe-179 and Phe-211. To the best of our knowledge, this is the first structure-function study of CAlipases, which may help to shed light on the mechanisms involved in acne development and may aid in future drug design. Full Article
search Vitamin E does not prevent Western diet-induced NASH progression and increases metabolic flux dysregulation in mice [Research Articles] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Fatty liver involves ectopic lipid accumulation and dysregulated hepatic oxidative metabolism, which can progress to a state of elevated inflammation and fibrosis referred to as nonalcoholic steatohepatitis (NASH). The factors that control progression from simple steatosis to NASH are not fully known. Here, we tested the hypothesis that dietary vitamin E (VitE) supplementation would prevent NASH progression and associated metabolic alterations induced by a Western diet (WD). Hyperphagic melanocortin-4 receptor-deficient (MC4R–/–) mice were fed chow, chow+VitE, WD, or WD+VitE starting at 8 or 20 weeks of age. All groups exhibited extensive hepatic steatosis by the end of the study (28 weeks of age). WD feeding exacerbated liver disease severity without inducing proportional changes in liver triglycerides. Eight weeks of WD accelerated liver pyruvate cycling, and 20 weeks of WD extensively upregulated liver glucose and oxidative metabolism assessed by 2H/13C flux analysis. VitE supplementation failed to reduce the histological features of NASH. Rather, WD+VitE increased the abundance and saturation of liver ceramides and accelerated metabolic flux dysregulation compared with 8 weeks of WD alone. In summary, VitE did not limit NASH pathogenesis in genetically obese mice, but instead increased some indicators of metabolic dysfunction. Full Article
search Myeloid-specific deficiency of pregnane X receptor decreases atherosclerosis in LDL receptor-deficient mice [Research Articles] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 The pregnane X receptor (PXR) is a nuclear receptor that can be activated by numerous drugs and xenobiotic chemicals. PXR thereby functions as a xenobiotic sensor to coordinately regulate host responses to xenobiotics by transcriptionally regulating many genes involved in xenobiotic metabolism. We have previously reported that PXR has pro-atherogenic effects in animal models, but how PXR contributes to atherosclerosis development in different tissues or cell types remains elusive. In this study, we generated an LDL receptor-deficient mouse model with myeloid-specific PXR deficiency (PXRMyeLDLR–/–) to elucidate the role of macrophage PXR signaling in atherogenesis. The myeloid PXR deficiency did not affect metabolic phenotypes and plasma lipid profiles, but PXRMyeLDLR–/– mice had significantly decreased atherosclerosis at both aortic root and brachiocephalic arteries compared with control littermates. Interestingly, the PXR deletion did not affect macrophage adhesion and migration properties, but reduced lipid accumulation and foam cell formation in the macrophages. PXR deficiency also led to decreased expression of the scavenger receptor CD36 and impaired lipid uptake in macrophages of the PXRMyeLDLR–/– mice. Further, RNA-Seq analysis indicated that treatment with a prototypical PXR ligand affects the expression of many atherosclerosis-related genes in macrophages in vitro. These findings reveal a pivotal role of myeloid PXR signaling in atherosclerosis development and suggest that PXR may be a potential therapeutic target in atherosclerosis management. Full Article
search GPIHBP1, a partner protein for lipoprotein lipase, is expressed only in capillary endothelial cells [Images In Lipid Research] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Full Article
search Images in Lipid Research [Editorials] By feedproxy.google.com Published On :: 2020-05-01T00:05:27-07:00 Full Article
search Problem Notes for SAS®9 - 65031: Grid options set mappings are returned based on which option set is the first in the metadata search chain By feedproxy.google.com Published On :: Tue, 5 May 2020 15:04:46 EST When users are defined in multiple groups associated with grid options set mappings, the first grid option set that is returned by the metadata search chain takes precedence. Only one grid options set mapping is used Full Article GRIDMGR+SAS+Grid+Manager
search Risks of duloxetine for stress incontinence outweigh benefits, say researchers By feeds.bmj.com Published On :: Tuesday, November 15, 2016 - 06:30 Full Article
search In Search of the American State By feedproxy.google.com Published On :: Mon, 06 Apr 2020 12:42:29 +0000 6 April 2020 Dr Leslie Vinjamuri Dean, Queen Elizabeth II Academy for Leadership in International Affairs; Director, US and the Americas Programme @londonvinjamuri Google Scholar The urgent need for US leadership to drive forward a coordinated international response to coronavirus is developing rapidly alongside snowballing demands for Washington to step up its efforts at home. 2020-04-06-US-covid-washington Exercising in front of a deserted Lincoln Memorial in Washington, DC. Photo by Win McNamee/Getty Images. As the US surgeon general warns Americans to brace for ‘our Pearl Harbor moment’, the US faces a week in which it may see the worst of the global pandemic. The absence of US leadership at the global level has enabled the Security Council’s inaction. And at the G7, President Trump actively obstructed efforts to agree a joint statement.US efforts to increase its support of international aid to the tune of $274million are minimal, not least in light of a 50% reduction in its support for the World Health Organization (WHO) and radically diminished support for other global health programmes as well. International coordination is essential to mitigate unregulated competition for critical medical supplies, manage border closures, and guarantee international economic stability.True, it won’t be possible to control the epidemic at home if the global effort to defeat the pandemic fails. But the absence of leadership from Washington at home is palpable. And what happens at home sets a natural limit on America’s internationalism.Both solution and problemIn response to the coronavirus crisis, the US state is proving to be a solution - and a problem. The dramatic response to the economic crisis is evident with the $2.3trillion stimulus package signed into law by President Trump boldly supported by both Democrats and Republicans in the most significant piece of bipartisan legislation passed in decades.America’s political economy is unrecognisable, moving left and looking increasingly more European each week as Congress and the executive branch agree a series of stimulus packages designed to protect citizens and businesses. Some elements of this legislation were more familiar to Americans, notably $200bn in corporate tax breaks.But Congress also agreed unemployment insurance, and cheques - one in April, one in May – to be sent directly to those Americans most directly hit by the economic impact of COVID-19. In effect, this is adopting a temporary universal basic income.The stimulus plan also dedicated $367bn to keep small businesses afloat for as long as the economy is shuttered. Already the government is negotiating a fourth stimulus package, but the paradox is that without rigorous steps to halt the health crisis, no level of state intervention designed to solve the economic response will be sufficient.The scale of the state’s economic intervention is unprecedented, but it stands in stark contrast to Washington’s failure to coordinate a national response to America’s health crisis. An unregulated market for personal protective equipment and ventilators is driving up competition between cities, states, and even the federal government.In some cases, cities and states are reaching out directly beyond national borders to international organisations, foreign firms and even America’s geopolitical competitors as they search for suppliers. In late March, the city of New York secured a commitment from the United Nations to donate 250,000 protective face masks.Now Governor Cuomo has announced New York has secured a shipment of 140 ventilators from the state of Oregon, and 1,000 ventilators from China. The Patriots even sent their team plane to China to pick up medical supplies for the state of Massachusetts. And following a phone call between President Putin and President Trump, Russia sent a plane with masks and medical equipment to JFK airport in New York.Networks of Chinese-Americans in the United States are rapidly mobilising their networks to access supplies and send them to doctors and nurses in need. And innovative and decisive action by governors, corporates, universities and mayors drove America’s early response to coronavirus.This was critical to slowing the spread of COVID-19 by implementing policies that rapidly drove social distancing. But the limits of decentralized and uncoordinated action are now coming into sharp focus. President Trump has so far refused to require stay-at-home orders across all states, leaving this authority to individual governors. Unregulated competition has driven up prices with the consequence that critical supplies are going to the highest bidder, not those most in need.Governor Cuomo’s call for a nationwide buying consortium has so far gone unheeded and, although the Federal Emergency Management Agency has attempted to deliver supplies to states most in need, the Strategic National Stockpile is depleting fast. Without critical action, the federal government risks hindering the ability of cities and states to get the supplies they need.But President Trump is reluctant to fully deploy his powers under the Defense Production Act (DPA). In March, he did invoke the DPA to require certain domestic manufacturers to produce ventilators. But calls for it to be used to require manufacturers to produce PPE (personal protective equipment), control costs, and manage allocations has so far gone unheeded by a president generally opposed to state interventions for managing the economy.It is true that federalism and a deep belief in competition are critical to the fabric of US history and politics, and innovations made possible by market values of entrepreneurism and competition cannot be underestimated. In the search for a vaccine, this could still prove to be key.But with current estimates that more Americans will die from coronavirus than were killed in the Korean and Vietnam wars combined, it is clear now is the time to reimagine and reinvent the role of the American state.In the absence of a coordinated effort driven by the White House, governors are working together to identify the areas of greatest need. Whether this will lead to a recasting of the American state and greater demand for a deeper and more permanent social safety net is a key question in the months ahead.In the short-term the need for coordinated state action at the national level is self-evident. US leadership globally, to manage the health crisis and its economic impacts, is also vital. But this is unlikely to be forthcoming until America gets its own house in order. Full Article
search Cow’s milk allergy guidelines are not evidence based and are beset by conflicts of interest, researchers warn By feeds.bmj.com Published On :: Wednesday, May 6, 2020 - 16:26 Full Article
search Unexpected findings, with uncertain implications, in research imaging By feeds.bmj.com Published On :: Fri, 13 Nov 2015 16:20:27 +0000 When healthy volunteers are scanned as part of a research project, unexpected findings, with uncertain implications, can be thrown up. Joanna Wardlaw, professor of applied neuroimaging and honorary consultant neuroradiologist at the University of Edinburgh, joins us to discuss how her group deals with these incidental findings, and what... Full Article
search The big (research) book of British teeth By feeds.bmj.com Published On :: Tue, 15 Dec 2015 20:59:35 +0000 Despite what hollywood says, science has proven that British teeth are actually better than American. Richard Watt, head of the Research Department of Epidemiology and Public Health at UCL explains how they came to that conclusion. Read the full research: http://www.bmj.com/cgi/doi/10.1136/bmj.h6543 Full Article
search Future Earth - linking health and environmental research By feeds.bmj.com Published On :: Fri, 02 Jun 2017 15:02:50 +0000 The rapid changes in the global environment have led many scientists to conclude that we are living in a new geological epoch—the Anthropocene—in which human activities have become the dominant driving force transforming the Earth’s natural systems. A recent joint publication by the World Health Organization and Convention on Biological Diversity... Full Article
search Patient's rights in research - moving beyond participation By feeds.bmj.com Published On :: Thu, 25 Jul 2019 14:54:57 +0000 At EBM live recently, we ran a workshop with researchers, patients and clinicians to talk about patient rights in research - should patients be setting the full research agenda? Should they be full participants and authors? Helen Macdonald, BMJ’s UK research editor and co-host of our talk evidence podcast sat down to Paul Wicks, researcher and... Full Article
search Talking up your research - Sex makes a difference By feeds.bmj.com Published On :: Fri, 20 Dec 2019 15:50:09 +0000 As editors, we feel like we’re spending a lot of time taking the superlatives out from articles - amazing, novel, important… But new research on BMJ.com suggests that we might not be doing that great a job, and that for some reason, papers authored by men tend to have more of them - because men put more in, or maybe a bias against woman writing in... Full Article
search Big Tan - Is the sunbed industry targeting research? By feeds.bmj.com Published On :: Mon, 10 Feb 2020 17:42:30 +0000 In 2012, Eleni Linos, professor of dermatology at Stanford university, published a systematic review and meta-analysis of the link between non-melanoma cancer and sun-beds. That bit of pretty standard research, and a particular rapid response to it, has kicked of years of work - and in this podcast I talk to Eleni and her colleagues Stanton... Full Article
search Diabetes: precision approach will improve outcomes, says research director By feeds.bmj.com Published On :: Friday, January 11, 2019 - 13:51 Full Article
search Covid-19’s impact on US medical research—shifting money, easing rules By feeds.bmj.com Published On :: Friday, May 1, 2020 - 13:37 Full Article
search Research Uses Artificial Intelligence to Measure Human Emotions By feeds.socialpsychology.org Published On :: 2020-05-08T02:06:17-04:00 Source: Psych CentralNew research presented online at the Cognitive Neuroscience Society annual meeting shows how data-driven computational methods are being used to understand and detect emotions. Investigators believe their findings have the potential to overturn old ideas about the structure of emotions across humanity. Full Article
search The Use of Areas Under Curves in Diabetes Research By care.diabetesjournals.org Published On :: 1995-02-01 David B AllisonFeb 1, 1995; 18:245-250Technical Article Full Article
search HHS releases video tutorial for searching list of excluded individuals/entities By www.ada.org Published On :: Thu, 09 Jan 2020 10:12:00 -0600 The Department of Health and Human Services released Nov. 25 a five-minute video explaining how to search its list of excluded individuals and entities, called LEIE. Full Article
search NIDCR seeks comments on research proposal By www.ada.org Published On :: Thu, 20 Feb 2020 09:55:00 -0600 The National Institute of Dental and Craniofacial Research is seeking comments on a proposed research initiative on dental fear and anxiety. Full Article
search Illinois orthodontist wins ADA Stanford Award for retainer research By www.ada.org Published On :: Fri, 06 Mar 2020 15:11:00 -0600 An Illinois orthodontist won the American Dental Association's 2019 John W. Stanford New Investigator Award for her research paper evaluating the effects of eight cleaning methods on copolyester polymer, a material commonly used in clear thermoplastic retainers. Full Article
search Association launches new ADA Science & Research Institute By www.ada.org Published On :: Thu, 12 Mar 2020 08:07:00 -0500 The American Dental Association launched the new ADA Science & Research Institute LLC on Jan. 1, bringing together the Science Institute in Chicago and research group in Gaithersburg, Maryland, that previously reported to the ADA Foundation. Full Article
search ADA Board authorizes two national searches for editors of JADA, JADA Open By www.ada.org Published On :: Fri, 27 Mar 2020 18:29:00 -0500 The ADA Board of Trustees has authorized the searches for the next editor of The Journal of the American Dental Association and the founding editor of JADA Open, a new peer-reviewed, open-access journal spanning basic and clinical sciences to advance research in oral health. Full Article
search Researcher remembered for contributions to dentistry succumbs to COVID-19 complications By www.ada.org Published On :: Fri, 10 Apr 2020 10:11:00 -0500 Dr. Leo M. Sreebny, Ph.D., who had a long and distinguished career in academia as a professor of dentistry and researcher, particularly in issues related to saliva and dry mouth, died April 5 from complications of COVID-19 at age 98. Full Article
search Dental materials research 'icon' who developed Bis-GMA resin dies By www.ada.org Published On :: Thu, 30 Apr 2020 22:59:00 -0500 Dr. Rafael "Ray" Bowen, who made significant contributions to dental materials research and retired in 2018 after 62 years at the American Dental Association, has died. Full Article
search ADASRI manuscript wins 2020 William J. Gies Award in clinical research By www.ada.org Published On :: Mon, 04 May 2020 13:19:00 -0500 A manuscript authored by the American Dental Association Science & Research Institute and Council on Scientific Affairs won the 2020 William J. Gies Award in clinical research from the American and International Associations for Dental Research. Full Article
search UCLA dental school researchers create nanoparticle that could improve bone defect treatment By www.ada.org Published On :: Tue, 05 May 2020 10:25:00 -0500 A team of researchers at the University of California, Los Angeles School of Dentistry has developed a nanoparticle that could improve treatment for bone defects. Full Article