the

Citrus Vascular Proteomics Highlights the Role of Peroxidases and Serine Proteases during Huanglongbing Disease Progression

Jessica Y. Franco
Dec 1, 2020; 19:1936-1951
Research




the

Global lysine acetylation and 2-hydroxyisobutyrylation reveal the metabolism conversion mechanism in Giardia lamblia

Wenhe Zhu
Dec 29, 2020; 0:RA120.002353v1-mcp.RA120.002353
Research




the

Novel Proteomic Profiling of Epididymal Extracellular Vesicles in the Domestic Cat Reveals Proteins Related to Sequential Sperm Maturation with Differences Observed between Normospermic and Teratospermic Individuals

Tricia Rowlison
Dec 1, 2020; 19:2090-2103
Research




the

Kinome Profiling of Primary Endometrial Tumors Using Multiplexed Inhibitor Beads and Mass Spectrometry Identifies SRPK1 as Candidate Therapeutic Target

Alison M. Kurimchak
Dec 1, 2020; 19:2068-2089
Research




the

The role of Data-Independent Acquisition for Glycoproteomics

Zilu Ye
Dec 28, 2020; 0:R120.002204v1-mcp.R120.002204
Review




the

Unraveling the MAX2 Protein Network in Arabidopsis thaliana: Identification of the Protein Phosphatase PAPP5 as a Novel MAX2 Interactor

Sylwia Struk
Dec 28, 2020; 0:RA119.001766v1-mcp.RA119.001766
Research




the

Systematic identification of P. falciparum sporozoite membrane protein interactions reveals an essential role for the p24 complex in host infection

Julia Knöckel
Dec 22, 2020; 0:RA120.002432v1-mcp.RA120.002432
Research




the

In depth characterization of the Staphylococcus aureus phosphoproteome reveals new targets of Stk1

Nadine Prust
Dec 17, 2020; 0:RA120.002232v1-mcp.RA120.002232
Research




the

On the robustness of graph-based clustering to random network alterations

R. Greg Stacey
Nov 4, 2020; 0:RA120.002275v1-mcp.RA120.002275
Research




the

A potential role for the Gsdf-eEF1{alpha} complex in inhibiting germ cell proliferation: A protein-interaction analysis in medaka (Oryzias latipes) from a proteomics perspective

Xinting Zhang
Dec 8, 2020; 0:RA120.002306v1-mcp.RA120.002306
Research




the

Proteogenomic characterization of the pathogenic fungus Aspergillus flavus reveals novel genes involved in aflatoxin production

Mingkun Yang
Nov 24, 2020; 0:RA120.002144v1-mcp.RA120.002144
Research




the

Proteomic analyses identify differentially expressed proteins and pathways between low-risk and high-risk subtypes of early-stage lung adenocarcinoma and their prognostic impacts

Juntuo Zhou
Nov 30, 2020; 0:RA120.002384v1-mcp.RA120.002384
Research




the

A proteomic approach to understand the clinical significance of acute myeloid leukemia-derived extracellular vesicles reflecting essential characteristics of leukemia

Ka-Won Kang
Nov 30, 2020; 0:RA120.002169v1-mcp.RA120.002169
Research




the

The Mechanism of NEDD8 Activation of CUL5 Ubiquitin E3 Ligases

Ryan J Lumpkin
Dec 2, 2020; 0:RA120.002414v1-mcp.RA120.002414
Research




the

Spatially Resolved Activity-based Proteomic Profiles of the Murine Small Intestinal Lipases

Matthias Schittmayer
Dec 1, 2020; 19:2104-2114
Research




the

Proteomic identification of Coxiella burnetii effector proteins targeted to the host cell mitochondria during infection

Laura F Fielden
Nov 11, 2020; 0:RA120.002370v1-mcp.RA120.002370
Research




the

The peptide vaccine of the future

Annika Nelde
Dec 7, 2020; 0:R120.002309v1-mcp.R120.002309
Review




the

Proteome Turnover in the Spotlight: Approaches, Applications & Perspectives

Alison B. Ross
Nov 30, 2020; 0:R120.002190v1-mcp.R120.002190
Review




the

Accelerating the field of epigenetic histone modification through mass spectrometry-based approaches

Congcong Lu
Nov 17, 2020; 0:R120.002257v1-mcp.R120.002257
Review




the

Protein modification characteristics of the malaria parasite Plasmodium falciparum and the infected erythrocytes

Jianhua Wang
Nov 4, 2020; 0:RA120.002375v1-mcp.RA120.002375
Research




the

VBP1 modulates Wnt/{beta}-catenin signaling by mediating the stability of the transcription factors TCF/LEFs [Signal Transduction]

The Wnt/β-catenin pathway is one of the major pathways that regulates embryonic development, adult homeostasis, and stem cell self-renewal. In this pathway, transcription factors T-cell factor and lymphoid enhancer factor (TCF/LEF) serve as a key switch to repress or activate Wnt target gene transcription by recruiting repressor molecules or interacting with the β-catenin effector, respectively. It has become evident that the protein stability of the TCF/LEF family members may play a critical role in controlling the activity of the Wnt/β-catenin signaling pathway. However, factors that regulate the stability of TCF/LEFs remain largely unknown. Here, we report that pVHL binding protein 1 (VBP1) regulates the Wnt/β-catenin signaling pathway by controlling the stability of TCF/LEFs. Surprisingly, we found that either overexpression or knockdown of VBP1 decreased Wnt/β-catenin signaling activity in both cultured cells and zebrafish embryos. Mechanistically, VBP1 directly binds to all four TCF/LEF family members and von Hippel-Lindau tumor-suppressor protein (pVHL). Either overexpression or knockdown of VBP1 increases the association between TCF/LEFs and pVHL and then decreases the protein levels of TCF/LEFs via proteasomal degradation. Together, our results provide mechanistic insights into the roles of VBP1 in controlling TCF/LEFs protein stability and regulating Wnt/β-catenin signaling pathway activity.




the

Angiostatic cues from the matrix: Endothelial cell autophagy meets hyaluronan biology [Glycobiology and Extracellular Matrices]

The extracellular matrix encompasses a reservoir of bioactive macromolecules that modulates a cornucopia of biological functions. A prominent body of work posits matrix constituents as master regulators of autophagy and angiogenesis and provides molecular insight into how these two processes are coordinated. Here, we review current understanding of the molecular mechanisms underlying hyaluronan and HAS2 regulation and the role of soluble proteoglycan in affecting autophagy and angiogenesis. Specifically, we assess the role of proteoglycan-evoked autophagy in regulating angiogenesis via the HAS2-hyaluronan axis and ATG9A, a novel HAS2 binding partner. We discuss extracellular hyaluronan biology and the post-transcriptional and post-translational modifications that regulate its main synthesizer, HAS2. We highlight the emerging group of proteoglycans that utilize outside-in signaling to modulate autophagy and angiogenesis in cancer microenvironments and thoroughly review the most up-to-date understanding of endorepellin signaling in vascular endothelia, providing insight into the temporal complexities involved.




the

The amphipathic helices of Arfrp1 and Arl14 are sufficient to determine subcellular localizations [Cell Biology]

The subcellular localization of Arf family proteins is generally thought to be determined by their corresponding guanine nucleotide exchange factors. By promoting GTP binding, guanine nucleotide exchange factors induce conformational changes of Arf proteins exposing their N-terminal amphipathic helices, which then insert into the membranes to stabilize the membrane association process. Here, we found that the N-terminal amphipathic motifs of the Golgi-localized Arf family protein, Arfrp1, and the endosome- and plasma membrane–localized Arf family protein, Arl14, play critical roles in spatial determination. Exchanging the amphipathic helix motifs between these two Arf proteins causes the switch of their localizations. Moreover, the amphipathic helices of Arfrp1 and Arl14 are sufficient for cytosolic proteins to be localized into a specific cellular compartment. The spatial determination mediated by the Arfrp1 helix requires its binding partner Sys1. In addition, the residues that are required for the acetylation of the Arfrp1 helix and the myristoylation of the Arl14 helix are important for the specific subcellular localization. Interestingly, Arfrp1 and Arl14 are recruited to their specific cellular compartments independent of GTP binding. Our results demonstrate that the amphipathic motifs of Arfrp1 and Arl14 are sufficient for determining specific subcellular localizations in a GTP-independent manner, suggesting that the membrane association and activation of some Arf proteins are uncoupled.




the

Site-specific contacts enable distinct modes of TRPV1 regulation by the potassium channel Kv{beta}1 subunit [Molecular Biophysics]

Transient receptor potential vanilloid 1 (TRPV1) channel is a multimodal receptor that is responsible for nociceptive, thermal, and mechanical sensations. However, which biomolecular partners specifically interact with TRPV1 remains to be elucidated. Here, we used cDNA library screening of genes from mouse dorsal root ganglia combined with patch-clamp electrophysiology to identify the voltage-gated potassium channel auxiliary subunit Kvβ1 physically interacting with TRPV1 channel and regulating its function. The interaction was validated in situ using endogenous dorsal root ganglia neurons, as well as a recombinant expression model in HEK 293T cells. The presence of Kvβ1 enhanced the expression stability of TRPV1 channels on the plasma membrane and the nociceptive current density. Surprisingly, Kvβ1 interaction also shifted the temperature threshold for TRPV1 thermal activation. Using site-specific mapping, we further revealed that Kvβ1 interacted with the membrane-distal domain and membrane-proximal domain of TRPV1 to regulate its membrane expression and temperature-activation threshold, respectively. Our data therefore suggest that Kvβ1 is a key element in the TRPV1 signaling complex and exerts dual regulatory effects in a site-specific manner.




the

Wildtype {sigma}1 receptor and the receptor agonist improve ALS-associated mutation-induced insolubility and toxicity [Neurobiology]

Genetic mutations related to ALS, a progressive neurological disease, have been discovered in the gene encoding σ-1 receptor (σ1R). We previously reported that σ1RE102Q elicits toxicity in cells. The σ1R forms oligomeric states that are regulated by ligands. Nevertheless, little is known about the effect of ALS-related mutations on oligomer formation. Here, we transfected NSC-34 cells, a motor neuronal cell line, and HEK293T cells with σ1R-mCherry (mCh), σ1RE102Q-mCh, or nontagged forms to investigate detergent solubility and subcellular distribution using immunocytochemistry and fluorescence recovery after photobleaching. The oligomeric state was determined using crosslinking procedure. σ1Rs were soluble to detergents, whereas the mutants accumulated in the insoluble fraction. Within the soluble fraction, peak distribution of mutants appeared in higher sucrose density fractions. Mutants formed intracellular aggregates that were co-stained with p62, ubiquitin, and phosphorylated pancreatic eukaryotic translation initiation factor-2-α kinase in NSC-34 cells but not in HEK293T cells. The aggregates had significantly lower recovery in fluorescence recovery after photobleaching. Acute treatment with σ1R agonist SA4503 failed to improve recovery, whereas prolonged treatment for 48 h significantly decreased σ1RE102Q-mCh insolubility and inhibited apoptosis. Whereas σ1R-mCh formed monomers and dimers, σ1RE102Q-mCh also formed trimers and tetramers. SA4503 reduced accumulation of the four types in the insoluble fraction and increased monomers in the soluble fraction. The σ1RE102Q insolubility was diminished by σ1R-mCh co-expression. These results suggest that the agonist and WT σ1R modify the detergent insolubility, toxicity, and oligomeric state of σ1RE102Q, which may lead to promising new treatments for σ1R-related ALS.




the

PTPN2 regulates the activation of KRAS and plays a critical role in proliferation and survival of KRAS-driven cancer cells [Signal Transduction]

RAS genes are the most commonly mutated in human cancers and play critical roles in tumor initiation, progression, and drug resistance. Identification of targets that block RAS signaling is pivotal to develop therapies for RAS-related cancer. As RAS translocation to the plasma membrane (PM) is essential for its effective signal transduction, we devised a high-content screening assay to search for genes regulating KRAS membrane association. We found that the tyrosine phosphatase PTPN2 regulates the plasma membrane localization of KRAS. Knockdown of PTPN2 reduced the proliferation and promoted apoptosis in KRAS-dependent cancer cells, but not in KRAS-independent cells. Mechanistically, PTPN2 negatively regulates tyrosine phosphorylation of KRAS, which, in turn, affects the activation KRAS and its downstream signaling. Consistently, analysis of the TCGA database demonstrates that high expression of PTPN2 is significantly associated with poor prognosis of patients with KRAS-mutant pancreatic adenocarcinoma. These results indicate that PTPN2 is a key regulator of KRAS and may serve as a new target for therapy of KRAS-driven cancer.




the

Therapeutic targeting of pancreatic cancer stem cells by dexamethasone modulation of the MKP-1-JNK axis [Cell Biology]

Postoperative recurrence from microscopic residual disease must be prevented to cure intractable cancers, including pancreatic cancer. Key to this goal is the elimination of cancer stem cells (CSCs) endowed with tumor-initiating capacity and drug resistance. However, current therapeutic strategies capable of accomplishing this are insufficient. Using in vitro models of CSCs and in vivo models of tumor initiation in which CSCs give rise to xenograft tumors, we show that dexamethasone induces expression of MKP-1, a MAPK phosphatase, via glucocorticoid receptor activation, thereby inactivating JNK, which is required for self-renewal and tumor initiation by pancreatic CSCs as well as for their expression of survivin, an anti-apoptotic protein implicated in multidrug resistance. We also demonstrate that systemic administration of clinically relevant doses of dexamethasone together with gemcitabine prevents tumor formation by CSCs in a pancreatic cancer xenograft model. Our study thus provides preclinical evidence for the efficacy of dexamethasone as an adjuvant therapy to prevent postoperative recurrence in patients with pancreatic cancer.




the

Distant coupling between RNA editing and alternative splicing of the osmosensitive cation channel Tmem63b [Cell Biology]

Post-transcriptional modifications of pre-mRNAs expand the diversity of proteomes in higher eukaryotes. In the brain, these modifications diversify the functional output of many critical neuronal signal molecules. In this study, we identified a brain-specific A-to-I RNA editing that changed glutamine to arginine (Q/R) at exon 20 and an alternative splicing of exon 4 in Tmem63b, which encodes a ubiquitously expressed osmosensitive cation channel. The channel isoforms lacking exon 4 occurred in ∼80% of Tmem63b mRNAs in the brain but were not detected in other tissues, suggesting a brain-specific splicing. We found that the Q/R editing was catalyzed by Adar2 (Adarb1) and required an editing site complementary sequence located in the proximal 5' end of intron 20. Moreover, the Q/R editing was almost exclusively identified in the splicing isoform lacking exon 4, indicating a coupling between the editing and the splicing. Elimination of the Q/R editing in brain-specific Adar2 knockout mice did not affect the splicing efficiency of exon 4. Furthermore, transfection with the splicing isoform containing exon 4 suppressed the Q/R editing in primary cultured cerebellar granule neurons. Thus, our study revealed a coupling between an RNA editing and a distant alternative splicing in the Tmem63b pre-mRNA, in which the splicing plays a dominant role. Finally, physiological analysis showed that the splicing and the editing coordinately regulate Ca2+ permeability and osmosensitivity of channel proteins, which may contribute to their functions in the brain.




the

BMP-9 and LDL crosstalk regulates ALK-1 endocytosis and LDL transcytosis in endothelial cells [Signal Transduction]

Bone morphogenetic protein-9 (BMP-9) is a circulating cytokine that is known to play an essential role in the endothelial homeostasis and the binding of BMP-9 to the receptor activin-like kinase 1 (ALK-1) promotes endothelial cell quiescence. Previously, using an unbiased screen, we identified ALK-1 as a high-capacity receptor for low-density lipoprotein (LDL) in endothelial cells that mediates its transcytosis in a nondegradative manner. Here we examine the crosstalk between BMP-9 and LDL and how it influences their interactions with ALK-1. Treatment of endothelial cells with BMP-9 triggers the extensive endocytosis of ALK-1, and it is mediated by caveolin-1 (CAV-1) and dynamin-2 (DNM2) but not clathrin heavy chain. Knockdown of CAV-1 reduces BMP-9–mediated internalization of ALK-1, BMP-9–dependent signaling and gene expression. Similarly, treatment of endothelial cells with LDL reduces BMP-9–induced SMAD1/5 phosphorylation and gene expression and silencing of CAV-1 and DNM2 diminishes LDL-mediated ALK-1 internalization. Interestingly, BMP-9–mediated ALK-1 internalization strongly re-duces LDL transcytosis to levels seen with ALK-1 deficiency. Thus, BMP-9 levels can control cell surface levels of ALK-1, via CAV-1, to regulate both BMP-9 signaling and LDL transcytosis.




the

HIV-1 Gag release from yeast reveals ESCRT interaction with the Gag N-terminal protein region [Molecular Bases of Disease]

The HIV-1 protein Gag assembles at the plasma membrane and drives virion budding, assisted by the cellular endosomal complex required for transport (ESCRT) proteins. Two ESCRT proteins, TSG101 and ALIX, bind to the Gag C-terminal p6 peptide. TSG101 binding is important for efficient HIV-1 release, but how ESCRTs contribute to the budding process and how their activity is coordinated with Gag assembly is poorly understood. Yeast, allowing genetic manipulation that is not easily available in human cells, has been used to characterize the cellular ESCRT function. Previous work reported Gag budding from yeast spheroplasts, but Gag release was ESCRT-independent. We developed a yeast model for ESCRT-dependent Gag release. We combined yeast genetics and Gag mutational analysis with Gag-ESCRT binding studies and the characterization of Gag-plasma membrane binding and Gag release. With our system, we identified a previously unknown interaction between ESCRT proteins and the Gag N-terminal protein region. Mutations in the Gag-plasma membrane–binding matrix domain that reduced Gag-ESCRT binding increased Gag-plasma membrane binding and Gag release. ESCRT knockout mutants showed that the release enhancement was an ESCRT-dependent effect. Similarly, matrix mutation enhanced Gag release from human HEK293 cells. Release enhancement partly depended on ALIX binding to p6, although binding site mutation did not impair WT Gag release. Accordingly, the relative affinity for matrix compared with p6 in GST-pulldown experiments was higher for ALIX than for TSG101. We suggest that a transient matrix-ESCRT interaction is replaced when Gag binds to the plasma membrane. This step may activate ESCRT proteins and thereby coordinate ESCRT function with virion assembly.




the

Exploitation of dihydroorotate dehydrogenase (DHODH) and p53 activation as therapeutic targets: A case study in polypharmacology [Computational Biology]

The tenovins are a frequently studied class of compounds capable of inhibiting sirtuin activity, which is thought to result in increased acetylation and protection of the tumor suppressor p53 from degradation. However, as we and other laboratories have shown previously, certain tenovins are also capable of inhibiting autophagic flux, demonstrating the ability of these compounds to engage with more than one target. In this study, we present two additional mechanisms by which tenovins are able to activate p53 and kill tumor cells in culture. These mechanisms are the inhibition of a key enzyme of the de novo pyrimidine synthesis pathway, dihydroorotate dehydrogenase (DHODH), and the blockage of uridine transport into cells. These findings hold a 3-fold significance: first, we demonstrate that tenovins, and perhaps other compounds that activate p53, may activate p53 by more than one mechanism; second, that work previously conducted with certain tenovins as SirT1 inhibitors should additionally be viewed through the lens of DHODH inhibition as this is a major contributor to the mechanism of action of the most widely used tenovins; and finally, that small changes in the structure of a small molecule can lead to a dramatic change in the target profile of the molecule even when the phenotypic readout remains static.




the

A kinetic dissection of the fast and superprocessive kinesin-3 KIF1A reveals a predominant one-head-bound state during its chemomechanical cycle [Molecular Biophysics]

The kinesin-3 family contains the fastest and most processive motors of the three neuronal transport kinesin families, yet the sequence of states and rates of kinetic transitions that comprise the chemomechanical cycle and give rise to their unique properties are poorly understood. We used stopped-flow fluorescence spectroscopy and single-molecule motility assays to delineate the chemomechanical cycle of the kinesin-3, KIF1A. Our bacterially expressed KIF1A construct, dimerized via a kinesin-1 coiled-coil, exhibits fast velocity and superprocessivity behavior similar to WT KIF1A. We established that the KIF1A forward step is triggered by hydrolysis of ATP and not by ATP binding, meaning that KIF1A follows the same chemomechanical cycle as established for kinesin-1 and -2. The ATP-triggered half-site release rate of KIF1A was similar to the stepping rate, indicating that during stepping, rear-head detachment is an order of magnitude faster than in kinesin-1 and kinesin-2. Thus, KIF1A spends the majority of its hydrolysis cycle in a one-head-bound state. Both the ADP off-rate and the ATP on-rate at physiological ATP concentration were fast, eliminating these steps as possible rate-limiting transitions. Based on the measured run length and the relatively slow off-rate in ADP, we conclude that attachment of the tethered head is the rate-limiting transition in the KIF1A stepping cycle. Thus, KIF1A's activity can be explained by a fast rear-head detachment rate, a rate-limiting step of tethered-head attachment that follows ATP hydrolysis, and a relatively strong electrostatic interaction with the microtubule in the weakly bound post-hydrolysis state.




the

High resolution structure of human apolipoprotein (a) kringle IV type 2: beyond the lysine binding site

Alice Santonastaso
Dec 1, 2020; 61:1687-1696
Research Articles




the

Sterol regulatory element-binding protein Sre1 regulates carotenogenesis in the red yeast Xanthophyllomyces dendrorhous

Melissa Gómez
Dec 1, 2020; 61:1658-1674
Research Articles




the

Hsa-miRNA-23a-3p promotes atherogenesis in a novel mouse model of atherosclerosis

Jiayan Guo
Dec 1, 2020; 61:1764-1775
Research Articles




the

Progression of chronic kidney disease in familial LCAT deficiency: a follow-up of the Italian cohort

Chiara Pavanello
Dec 1, 2020; 61:1784-1788
Patient-Oriented and Epidemiological Research




the

Bioavailability and spatial distribution of fatty acids in the rat retina after dietary omega-3 supplementation

Elisa Vidal
Dec 1, 2020; 61:1733-1746
Research Articles




the

Myeloid deletion and therapeutic activation of AMPK do not alter atherosclerosis in male or female mice

Nicholas D. LeBlond
Dec 1, 2020; 61:1697-1706
Research Articles




the

Lipid signature of advanced human carotid atherosclerosis assessed by mass spectrometry imaging

Astrid M. Moerman
Dec 23, 2020; 0:jlr.RA120000974v1-jlr.RA120000974
Research Articles




the

The anti-tubercular activity of simvastatin is mediated by cholesterol-driven autophagy via the AMPK-mTORC1-TFEB axis

Natalie Bruiners
Dec 1, 2020; 61:1617-1628
Research Articles




the

Mutation in the distal NPxY motif of LRP1 alleviates dietary cholesterol-induced dyslipidemia and tissue inflammation

Anja Jaeschke
Dec 9, 2020; 0:jlr.RA120001141v1-jlr.RA120001141
Research Articles




the

Membrane-bound sn-1,2-diacylglycerols explain the dissociation of hepatic insulin resistance from hepatic steatosis in MTTP knockout mice

Abudukadier Abulizi
Dec 1, 2020; 61:1565-1576
Research Articles




the

Structure dynamics of ApoA-I amyloidogenic variants in small HDL increase their ability to mediate cholesterol efflux

Oktawia Nilsson
Nov 17, 2020; 0:jlr.RA120000920v1-jlr.RA120000920
Research Articles




the

rHDL modelling and the anchoring mechanism of LCAT activation

Tommaso Laurenzi
Dec 2, 2020; 0:jlr.RA120000843v1-jlr.RA120000843
Research Articles




the

Insights on the kinetics and dynamics of the furin-cleaved form of PCSK9

Carlota Oleaga
Nov 17, 2020; 0:jlr.RA120000964v1-jlr.RA120000964
Research Articles




the

Apolipoprotein C3 and apolipoprotein B colocalize in proximity to macrophages in atherosclerotic lesions in diabetes

Jenny E. Kanter
Dec 8, 2020; 0:jlr.ILR120001217v1-jlr.ILR120001217
Images in Lipid Research




the

Generation and validation of a conditional knockout mouse model for the study of the Smith-Lemli-Opitz Syndrome

Babunageswararao Kanuri
Nov 17, 2020; 0:jlr.RA120001101v1-jlr.RA120001101
Research Articles




the

Perilipin 5 S155 phosphorylation by PKA is required for the control of hepatic lipid metabolism and glycemic control

Stacey N Keenan
Dec 17, 2020; 0:jlr.RA120001126v1-jlr.RA120001126
Research Articles




the

Adiponectin forms a complex with atherogenic LDL and inhibits its downstream effects

Akemi Kakino
Nov 3, 2020; 0:jlr.RA120000767v1-jlr.RA120000767
Research Articles




the

Mass spectrometry characterization of light chain fragmentation sites in cardiac AL amyloidosis: insights into the timing of proteolysis [Genomics and Proteomics]

Amyloid fibrils are polymeric structures originating from aggregation of misfolded proteins. In vivo, proteolysis may modulate amyloidogenesis and fibril stability. In light chain (AL) amyloidosis, fragmented light chains (LCs) are abundant components of amyloid deposits; however, site and timing of proteolysis are debated. Identification of the N and C termini of LC fragments is instrumental to understanding involved processes and enzymes. We investigated the N and C terminome of the LC proteoforms in fibrils extracted from the hearts of two AL cardiomyopathy patients, using a proteomic approach based on derivatization of N- and C-terminal residues, followed by mapping of fragmentation sites on the structures of native and fibrillar relevant LCs. We provide the first high-specificity map of proteolytic cleavages in natural AL amyloid. Proteolysis occurs both on the LC variable and constant domains, generating a complex fragmentation pattern. The structural analysis indicates extensive remodeling by multiple proteases, largely taking place on poorly folded regions of the fibril surfaces. This study adds novel important knowledge on amyloid LC processing: although our data do not exclude that proteolysis of native LC dimers may destabilize their structure and favor fibril formation, the data show that LC deposition largely precedes the proteolytic events documentable in mature AL fibrils.