x

Dual mode X-ray vehicle scanning system

A variable mode X-ray transmission system is provided that can be operated in low or high dose rate modes depending upon the area or portion of the vehicle to be screened. In one embodiment, variable dose rate is achieved by use of a novel collimator. The systems disclosed in this application enable the scanning of a vehicle cab portion (occupied by people, such as a driver) at low dose rate, which is safe for human beings, while allowing the scanning of the cargo portion (unoccupied by people) at a high dose rate. Rapid switching from low dose rate to high dose rate operating mode is provided, while striking a balance between high material penetration for cargo portion and low intensity exposure that is safe for occupants in the cab portion of the inspected vehicle.




x

Amplified backscatter x-ray inspection system

A method and apparatus for inspecting an object. A radiation generation system is configured to emit radiation. A detector system is configured to detect backscatter formed in response to the radiation encountering the object. A redirection system is positioned relative to the detector system and is configured to redirect the backscatter to the detector system.




x

Dual energy backscatter X-ray shoe scanning device

Dual-energy backscatter x-ray shoe scanning including: pre-processing input image information received from a shoe scanning device and image calibration data received from a database to output an atomic number image; detecting at least one suspect region based off the atomic number image; identifying the at least one detected suspect region as an object class using a changeable list of attributes; and classifying the object class according to a changeable list of categories.




x

Power converter, X-ray CT apparatus, and X-ray imaging apparatus

A power converter is configured to include an inverter which converts a DC output into an AC voltage of a predetermined frequency, and a high voltage generator which receives an output from output terminals of the inverter and boosts the output to a desired high DC voltage. The high voltage generator includes a transformer, and the primary windings of the transformer are connected to the output terminals of the inverter in parallel by conductive wires connected to both ends of each primary winding. Further, a current sensor is provided to detect a current flowing through each of the primary windings, and a control unit determines abnormalities of a path of the inverter and the primary windings on the basis of a value of the current sensor.




x

Transmission type X-ray tube and reflection type X-ray tube

The present invention provides a transmission type X-ray tube and a reflection type X-ray tube. The transmission type X-ray tube comprises a target and a filter material. The target has at least one element which produces X-rays as being excited. The X-rays comprise characteristic Kα and Kβ emission energies of the element for producing images of an object impinged by the X-rays. The filter material through which the X-rays pass has a k-edge absorption energy that is higher than the Kα emission energies and is lower than the Kβ emission energies. The thickness of the filter material is at least 10 microns and less than 3 millimeters.




x

Mobile X-ray unit

One embodiment of the present disclosure is directed to a mobile X-ray unit. The mobile X-ray unit may include a base and an arm associated with the base. The arm may be configured to support an X-ray applicator having an X-ray tube. The X-ray tube may be configured to generate an X-ray beam. The X-ray applicator may include an exit surface through which the X-ray beam passes in use. The X-ray unit may further include an applicator cap for covering at least the exit surface of the X-ray applicator.




x

X-ray apparatus and its adjusting method

An adjusting method of an X-ray apparatus has a reflection structure, wherein assuming that one end plane of the reflection structure is an inlet port of the X-ray and the other end plane is an outlet port of the X-ray, a pitch of the reflection substrates at the outlet port is wider than that at the inlet port. When the X-ray source exists at a position where a glancing angle at the time when the X-ray enters the inlet port exceeds a critical angle, an intensity of the X-ray emitted from each passage is detected. On the basis of the detected X-ray intensity, a relative position of the X-ray source and the reflection structure is adjusted.




x

Method and apparatus for producing an X-ray projection image in a desired direction

A method for producing an X-ray projection image of a body region of a patient using a desired spatial location of a central ray, includes positioning a pointing element relative to the patient indicating a location of a pointing line and causing the location of the pointing line to coincide with the desired central ray location. A pointing line location and a central ray location currently set on an X-ray machine are recorded. A measure for deviation between the pointing line and the currently set central ray location is determined and used to set the desired central ray location. A medical apparatus includes an X-ray machine taking an X-ray projection image along a central ray, a pointing element indicating a pointing line, an acquisition unit detecting the pointing line location and the currently set central ray location, and a control and evaluation unit implementing software carrying out the method.




x

Method for energy calibrating quantum-counting x-ray detectors in a dual-source computed-tomography scanner

A method is disclosed for energy calibrating quantum-counting x-ray detectors in an x-ray installation including at least two x-ray systems turnable around a center of rotation. A target, for producing x-ray fluorescence radiation, is positioned between the first x-ray source and first x-ray detector and irradiated with x-radiation of the first x-ray source in such a way that x-ray fluorescence radiation which strikes the second x-ray detector from the target is produced by the x-radiation of the first x-ray source. The second x-ray detector is then energy calibrated by way of the x-ray fluorescence radiation of the target. The first x-ray detector can be energy calibrated in the same way with the aid of the x-radiation of the second x-ray source. With the proposed method, the x-ray detectors of a dual-source CT x-ray installation can be calibrated with little expenditure under conditions close to those of the system.




x

Nondestructive examination of structures having embedded particles

A system comprises a structure having particles embedded at a level within the structure, and X-ray imaging apparatus for capturing images of the particles at the level.




x

X-ray imaging apparatus

To provide an X-ray imaging apparatus capable of easily adjusting the sensitivity or capable of easily extracting the amount of refraction of X-rays. An X-ray imaging apparatus irradiating an object to be measured with an X-ray beam from an X-ray source that generates X-rays of a first energy and X-rays of a second energy different from the first energy to measure an image of the object to be measured includes an attenuator and a detector. The attenuator attenuates the X-ray beam transmitted through the object to be measured and is configured so as to vary the amount of attenuation of the X-rays depending on a position on which the X-ray beam is incident. The detector detects the X-ray beam transmitted through the attenuator and is configured so as to detect the X-rays of the first energy and the second energy.




x

Radiographing system, method of controlling automatic exposure in radiographing system, and radiological image detection device

A compensation circuit 76 of an AEC unit 67 of an electronic cassette 13 defines the detection signal of a detection pixel 65 of the electronic cassette 13 as a detection signal corresponding to the detection signal of an old AEC sensor 25. The compensation circuit 76 performs compensation so as to exclude the influence on the detection signal due to a difference in the configuration of an intermediate member disposed between an X-ray source 10 and an FPD 35 of the electronic cassette 13 when the detection pixel 65 is used as an AEC sensor instead of the old AEC sensor 25. The detection signal is transmitted from a detection signal I/F 80 to a detection signal I/F 26 of a source control device 11 as it is (instantaneous value) or as an accumulated value obtained using an integration circuit 77.




x

Electric field emission x-ray tube apparatus equipped with a built-in getter

The present disclosure relates to an electric field emission x-ray tube apparatus equipped with a built-in getter, and more particularly, to an electric field emission x-ray tube apparatus equipped with a built-in getter that makes it possible to reduce the size of an x-ray tube by forming a stacked structure, with electric insulation and predetermined gaps maintained for each electrode, by manufacturing an x-ray tube having a stacked structure by inserting insulating spacers (for example, ceramic) between an exhausting port, a cathode, a gate, a focusing electrode, and an anode and bonding them with an adhesive substance, and then inserting a spacer between a field emitter on a cathode substrate and a gate hole connected with a gate electrode.




x

X-ray device and X-ray sensitive camera for panoramic tomography and 3D shots

The invention relates to an X-ray device comprising an x-ray sensitive camera for creating tomograms, especially panoramic tomograms. Means for creating 3D shots of a partial volume of the mandibular arch are also provided, said 3D shots being created especially by a second image receiver for creating a 2D shot and means for taking a plurality of 2D shots from different directions and creating a 3D shot therefrom, preferably according to conebeam technology with the associated reconstruction algorithms. The x-ray sensitive camera comprises a first x-ray sensitive image receiver for creating a tomogram, and a second x-ray sensitive image receiver for creating plane shots.




x

Tridimensional modeling apparatuses, system and kit for providing a representation of an exploration network

A tridimensional modeling apparatus, system and kit is for representing an exploration network. The apparatus, system and kit include a transparent hollow cube with six plane surfaces for representing an enclosed volume, a plurality of perforations on at least two of the six plane surfaces and indicia around each opening for marking polar coordinates and orientation. The apparatus, system and kit further include a plurality of transparent rods for representing exploration channels. The plurality of perforations on the cube are arranged for receiving rods for tridimensional modeling of the exploration network and each rod is inserted into an opening with an angle and a depth, thereby resulting in a visual representation of the exploration network within the represented volume.




x

Apparatus and method of simulating a somatosensory experience in space

A method of providing a user with an extra-terrestrial somatosensory experience includes equipping the user with an underwater breathing apparatus, having the user occupy an underwater environment, such environment providing buoyancy to the user, and while the user occupies the underwater environment, using a computer-implemented virtual reality system to present to the user a virtual reality environment modeling an extra-terrestrial setting. The virtual reality system inhibits visual perception by the user of items outside of the virtual reality environment so that the user experiences the virtual reality environment under a buoyancy condition provided by the underwater environment. The buoyancy condition enhances the experience of the virtual reality environment.




x

Matrix tabulating and alignment tool




x

Wideband multi-channel receiver with fixed-frequency notch filter for interference rejection

A wideband multi-channel receiver comprises an antenna configured to receive a radio frequency band. A band-pass filter is in signal communication with the antenna, and a low-noise amplifier is in signal communication with the band-pass filter. A mixer is in signal communication with the low-noise amplifier and is configured to translate a radio frequency band to an intermediate frequency (IF) band. A tunable local oscillator is in signal communication with the mixer. At least one fixed-frequency notch filter is in signal communication with the mixer, with the notch filter configured to reject at least one interference signal in the IF band while passing remaining signals in the IF band. An analog-to-digital converter is in signal communication with the notch filter and is configured to convert the remaining signals in the IF band to digital signals.




x

Noise suppression in a hybrid fiber coaxial network

A coupling device for use in a hybrid fiber coaxial (HFC) network may be configured to disable an upstream path through it when there is only noise incident on the upstream path, and enable the upstream path through it when a desired transmission from a cable modem downstream of the coupling device is incident on the upstream path. The coupling device may be a trunk amplifier, a distribution amplifier, a splitter, or the like. The coupling device may comprise a single upstream interface coupled to a plurality of downstream interfaces. The enabling and/or disabling may be in response to a signal strength indicated by the SSI being below a threshold and/or in response to one or more control messages indicating whether any downstream cable modem is, or will be, transmitting.




x

Characteristic response extraction for non-linear transmit channels

Techniques for extracting the characteristic response of a non-linear channel are presented. In various implementations of the invention, a channel's characteristic response may be determined by identifying a first input sequence, determining the ones compliment of the first input sequence and then determining the response of the channel to these two input sequences. Subsequently, two input matrices and two response matrices may be generated based upon the two input sequences and their corresponding responses. Given these four matrices, a symmetrical response component may be determined by iteratively solving a system of equations formed from the columns of each matrix. Subsequently, given the symmetric component and these four matrices, an asymmetrical response component may be determined by again iteratively solving the system of equations for the columns of each matrix.




x

Methods for external display resolution selection

A user may couple an external display to an electronic device using a communications path. Extended display identification data or other information on the capabilities of the external display may be provided to the electronic device over the communications path. The extended display identification data may include a list of timing elements including display parameters such as a horizontal active pixel count, a vertical active pixel count, and a pixel clock. The electronic device may tag the timing elements with their type and may flag certain timing elements as being native to the display. A scoring function may then be used to rate each timing element. A scored list of timing elements may be sorted by score. The sorted scored list may be filtered to remove inappropriate timing elements. The electronic device may automatically use a selected one of the filtered timing elements in displaying information on the external display.




x

Liquid crystal pixel correction using pixel boundary detection

A video processing circuit detects a risk boundary that is a part of a boundary between a dark pixel and a bright pixel, and is determined in accordance with the tilt azimuth of liquid crystal molecules from a boundary changed over the previous frame to the current frame and, for at least one side of dark pixels and bright pixels brought into contact with the detected risk boundary, corrects a video signal designating the application voltage of a liquid crystal element corresponding to the pixel of the frame brought into contact with the risk boundary out of a plurality of frames from the current frame to k frames (here, k is a natural number) following the current frame such that a lateral direction electric field generated between the dark pixel and the bright pixel decreases.




x

Pixel circuit and display device

A pixel circuit able to prevent a spread of the terminal voltages of drive transistors inside a panel and in turn able to reliably prevent deterioration of uniformity, wherein a source of a TFT serving as a drive transistor is connected to an anode of a light emitting element, a drain is connected to a power source potential, a capacitor is connected between a gate and source of the TFT, and a source potential of the TFT is connected to a fixed potential through a TFT serving as a switch transistor and wherein pixel circuit lines are connected by an upper line and bottom line and are arranged in parallel with pixel circuit power source voltage lines so as not to have intersecting parts.




x

Duplexer, communication module component, and communication device

A duplexer has an antenna terminal, a first terminal, and second terminals and provided with a first filter arranged between the antenna terminal and first terminal and including a parallel resonator for forming a ladder type filter circuit, a second filter arranged between the antenna terminal and the second terminal and having a passband higher than a passband of the first filter, and an electromagnetic coupling element arranged between the parallel resonator of the first filter and a ground part and electromagnetically coupled with the antenna terminal.




x

Ladder filter, duplexer and module

A ladder filter includes at least one series resonator connected in series between an input terminal and an output terminal, at least one parallel resonator connected in parallel with the at least one series resonator, an additional resonator connected in series between the at least one series resonator and one of the input terminal and the output terminal, and an inductor connected in series to the additional resonator, the additional resonator having a resonance frequency higher than an anti-resonance frequency of the at least one series resonator.




x

Attenuation reduction control structure for high-frequency signal transmission lines of flexible circuit board

An attenuation reduction control structure for high-frequency signal transmission lines of a flexible circuit board includes an impedance control layer formed on a surface of a substrate. The impedance control layer includes an attenuation reduction pattern that is arranged in an extension direction of the high-frequency signal transmission lines of the substrate and corresponds to bottom angle structures of the high-frequency signal transmission lines in order to improve attenuation of a high-frequency signal transmitted through the high-frequency signal transmission lines. An opposite surface of the substrate includes a conductive shielding layer formed thereon. The conductive shielding layer is formed with an attenuation reduction pattern corresponding to top angle structures of the high-frequency signal transmission lines.




x

Ladder type surface acoustic wave filter and duplexer using same

An object of the present invention is to improve the passing characteristic at high temperature in a ladder-type elastic wave filter and a duplexer including the filter. The ladder-type elastic wave filter of the present invention includes a piezoelectric substrate, a first series elastic-wave resonator formed on the piezoelectric substrate and connected in series between the input and output terminals of the filter, a parallel elastic-wave resonator formed on the piezoelectric substrate and connected in parallel between the series elastic-wave resonator and the ground terminal, and a dielectric film formed on the piezoelectric substrate so as to cover the first series elastic-wave resonator. The piezoelectric substrate is formed of a material with a negative temperature coefficient. The dielectric film is formed of a material with a positive temperature coefficient and its film thickness is formed thicker than that with which the frequency-temperature coefficient of the first series elastic-wave resonator becomes 0.




x

Surface acoustic wave filter and duplexer using same

An SAW filter and a duplexer excellent in electrical characteristics will be provided. An SAW filter has a piezoelectric substrate 40, a surface acoustic wave element 10 having a first IDT electrode 1 on the piezoelectric substrate 40, a first signal line 31 electrically connected to the first IDT electrode 1, and a ring-shaped reference potential line 9 which has a first intersecting portion intersecting with the first signal line 31 through an insulation member 41 and surrounds the surface acoustic wave element 10.




x

Signal transmission cable and flexible printed board

A signal transmission cable includes a multi-layer parallel transmission path, a single-layer parallel transmission path, and a single-layer/multi-layer conversion section. The multi-layer parallel transmission path includes two or more dielectric waveguides stacked in upper and lower directions. Each dielectric waveguide includes a dielectric layer formed of a dielectric substance, two conductive layers formed to sandwich the dielectric layer, and two quasi-conductive walls. The two quasi-conductive walls include a plurality of via-holes electrically connected to the two conductive layers. The dielectric waveguides are arranged sharing the conductive layers in contact in the upper and lower directions. The single-layer parallel transmission path includes the two or more dielectric waveguides arranged in left- and right-hand directions on the same dielectric layer and conductive layer. The single-layer/multi-layer conversion section transmits a signal transmitted by each dielectric waveguide in the single-layer parallel transmission path to each dielectric waveguide in the multi-layer parallel transmission path.




x

Minimal intrusion very low insertion loss technique to insert a device to a semi-rigid coaxial transmission line

A signal conditioning apparatus can include a coaxial cable having at least one slot formed therein. A conductive film can be applied to the coaxial cable so as to cover each slot. A device mounting surface can be formed within the slot and a protection device can be mounted on the device mounting surface. A housing consisting of one or more interlockable portions can be coupled to the coaxial cable.




x

Duplexer

A duplexer includes: a reception filter connected between a reception terminal and an antenna terminal; a transmission filter connected between a transmission terminal and the antenna terminal; and a wiring substrate including the reception filter and the transmission filter on an upper surface, the reception terminal, the transmission terminal and the antenna terminal being formed on a lower surface, and a reception electrode electrically connected to the reception terminal, a transmission electrode electrically connected to the transmission terminal, an antenna electrode electrically connected to the antenna terminal, and a circular metal layer surrounding the reception, transmission and antenna electrodes, and electrically connected to a ground being formed on an upper surface, wherein a shortest distance between a side of the circular metal layer closest to the reception and transmission terminals and the reception electrode is larger than a width of the side of the circular metal layer.




x

Filter, duplexer, communication module and communication device

A filter includes a plurality of primary resonators connected to a serial arm, a plurality of secondary resonators connected to a parallel arm, a primary inductor connected to at least one of the plurality of primary resonators and a secondary inductor connected to at least one of the plurality of secondary resonators. The primary inductor is arranged so as not to be connected to a path between the secondary resonator to which the secondary inductor is connected in parallel and the primary resonator that is connected to the secondary resonator to which the secondary inductor is connected in parallel.




x

Textile sleeve with twisted hybrid fill yarn and method of construction thereof

A textile sleeve for routing and protecting elongate members and method of construction thereof is provided. The sleeve includes an elongate wall having opposite edges extending parallel to a central axis. The wall is woven with warp yarns extending parallel to the axis and hybrid fill yarns extending transversely to the warp yarns. The hybrid fill yarns are provided having a yarn filament core and non-metallic first and second yarn filaments overlying the yarn filament core. The first yarn filament is twisted about the yarn filament core in a first helical direction and the second multifilament yarn is twisted over the first yarn filament and about the yarn filament core in a second helical direction. The first helical direction and the second helical direction being opposite one another to provide a resultant zero torque on the yarn filament core.




x

Manufacturing method of medical textiles woven from chitosan containing high wet modulus rayon fibre

An anti-“Methicillin-Resistant Staphylococcus Aureus (MRSA)” chitosan containing antibacterial High Wet Modulus (HWM) rayon fiber textile for medical usage is made of the steps as following: chitin flakes made from natural shrimp or crab shells are deacetylated to generate chitosan with a high deacetylation degree of 90% or more. Next chitosan is dissolved in acetic acid and regenerated by caustic soda to form a chitosan antibacterial nanoparticles slurry, then added to HWM viscose rayon process, and spinning to produce a chitosan containing antibacterial HWM rayon fiber. The antibacterial amino groups of chitosan and the hydroxyl groups of rayon cellulose combine together via hydrogen bonding. Therefore, the fiber becomes the anti-MRSA antibacterial HWM rayon fiber containing amino groups (—NH3+). Finally the resulting HWM rayon fiber is conducted via a yarn spinning or/and weaving process to procure a medical textile with chitosan content.




x

X weave of composite material and method of weaving thereof

An X weave of composite material has multiple latitudinal fibers, multiple longitudinal fibers, and a woven center. Each longitudinal fiber is layered on two of the latitudinal fibers and then is woven through and layered under two of the latitudinal fibers. The longitudinal fibers are each woven by shifting in relative alignment position from one of the latitudinal fibers sequentially and woven radially with respect to the woven center, such that the longitudinal fibers form an X woven structure. Therefore, the intensity of the X weave can be enhanced by the X woven structure.




x

Flexible, abrasion resistant textile sleeve and method of construction thereof

A textile sleeve for routing and protecting elongate members and method of construction thereof is provided. The sleeve includes an elongate wall having opposite edges extending parallel to a central axis of the sleeve. The wall is woven with warp yarns extending parallel to the axis and fill yarns extending transverse to the warp yarns. The warp yarns include monofilament yarns within an intermediate region of the wall and multifilament yarns within opposite edge regions of the wall to enhance abrasion resistance and curl, respectively, and the fill yarns include monofilament yarns larger in diameter than the fill monofilament yarns to provide further abrasion resistance, enhanced curl strength and multifilament yarns to provide increased coverage, maintain flexibility, and to maintain the warp monofilaments in their intended position.




x

Multilayer protective textile sleeve and method of construction

A multilayer textile sleeve and method of construction thereof is provided. The sleeve has an outer layer constructed at least in part from a first warp yarn extending along a length direction of the sleeve and a weft yarn extending transversely to the length direction. The sleeve further includes an inner layer constructed at least in part from a second warp yarn extending along the length direction and a weft yarn extending transversely to the length direction, with the second warp yarn being a different type of yarn than the first warp yarn. The outer layer and inner layer are connected to one another by interlinking the weft yarn of the outer layer with at least some of the second warp yarns of the inner layer and by interlinking the weft yarn of the inner layer with at least some of the first warp yarns of the outer layer.




x

Standby battery box for electric cylinder

A standby battery box for an electric cylinder is electrically connected to a control box for driving the electric cylinder and includes a charge-discharge device and a rechargeable battery. The charge-discharge device includes a protection unit, a power conversion unit, a voltage detection unit, a control unit, a discharge unit, a display unit, and a switch unit. The rechargeable battery is electrically connected to the charge-discharge device. When a startup switch of the switch unit is pressed, the charge-discharge device delivers the electricity of the rechargeable battery into the control box. When a shutoff switch of the switch unit is pressed, the charge-discharge device does not supply power, thereby protecting the standby battery box from being exhausted.




x

System and method for non-sinusoidal current waveform excitation of electrical generators

An electrical generator includes a stator having fractional-slot concentrated windings and a rotor having field windings. A drive is provided having a circuit to control current flow to the field windings and a controller to input an initial DC field current demand to the circuit to cause the circuit to output an initial DC field current representative of a DC field current demand that would cause an electrical generator having sinusoidal stator windings to output a desired AC power. The controller receives feedback on the magnetic field generated by the initial DC field current, isolates an ideal fundamental component of the magnetic field based on the feedback and to generate a modified DC field current demand, and inputs the modified DC field current demand to the circuit, thereby causing the circuit to output an instantaneous non-sinusoidal current to the field windings to generate a sinusoidal rotating air gap magnetic field.




x

EPGS architecture with multi-channel synchronous generator and common unregulated PMG exciter

A generator system includes a generator having a stationary portion and a rotating portion. The generator includes a permanent magnet based exciter with permanent magnets disposed on the stationary portion. A first channel includes a first main field winding and a first main field power converter disposed on a rotating portion. The first main field power converter selectively delivers voltage from the exciter winding to the first main field winding. A second channel includes a second main field winding and a second main field power converter disposed on the rotating portion. The second main field power converter selectively delivers voltage from the exciter winding to the second main field winding. A generator control unit is connected to the first channel and the second channel. The generator control unit monitors an output voltage at each of the first channel and the second channel and generates the first and second control signals based on the output voltage.




x

Mixed mode power generation architecture

An electric power generation system (EPGS) employs both a wild-source generator and a variable and/or constant frequency generator. The wild-source generator is coupled to receive mechanical power from a low-pressure spool on an aircraft engine and to generate in response a wild-source output for consumption by voltage and frequency-tolerant loads. The variable and/or constant frequency generator is coupled to receive mechanical power from a high-pressure spool on the aircraft engine and to generate in response a variable and/or constant frequency output for consumption by voltage and frequency-intolerant loads.




x

Acyclic exciter for an alternator

A self-excited alternator for generating electrical energy. The alternator includes a stator, a rotor, and an exciter. The rotor includes conductors which are integrated within the rotor via one of a casting process, a welding process, or a fastening process. The exciter includes a magnet producing a static magnetic field, and a rotatable conductive member coupled to the shaft and electrically coupled to the one or more conductors. The rotatable conductive member is operable to output the direct current to the one or more conductors upon rotation within the static magnetic field, thus exciting the alternator.




x

Methods and systems for monitoring excitation of a generator based on a faulty status of a generator breaker

Systems and methods for monitoring excitation of a generator based on a faulty status of a generator breaker are provided. According to one embodiment, a system may include a controller and a processor communicatively coupled to the controller. The processor may be configured to receive, from a contact associated with a generator breaker, a reported status of the generator breaker, receive operational data associated with one or more parameters of a generator associated with the generator breaker, and correlate the reported status of the generator breaker and the operational data. Based on the correlation, the processor may establish an actual status of the generator breaker, and, based on the actual status, selectively modify a mode of excitation of the generator.




x

Rotary electrical machine with excitation provided with a digital regulator device

The rotary electrical machine is capable of functioning as a generator and outputs a continuous output voltage (Ub+) that is adjustable by an excitation current. The digital regulator (2) of the machine comprises an excitation current control means (7) and a control loop (6) that includes a device (10) for measurement, by sampling, of the output voltage (Ub+), the measurement device generating a signal sampled at a predetermined first sampling frequency (F1 e). The machine has a bandwidth that is limited by a predetermined first cutoff frequency (F1 c). The measurement device includes an apparatus for oversampling such that the first sampling frequency (F1 e) is greater than twice the first cutoff frequency (F1 c), and the control loop also includes an apparatus (12) for decimating the sampled signal.




x

Auxiliary and motive electric power pick-up structure for land vehicles

An auxiliary and motive electric power pick-up structure for articulated and non-articulated land vehicles, such as electric public transport vehicles, that pass close to a collector-shoe-type power supply member mounted on a stationary support (17) along the route of the vehicle and positioned at intervals along the length of the route in order to provide auxiliary and motive electric power to the vehicle by way of the shoe (16). The structure comprises at least one conductor rail mounted on insulating supports (11) attached to the vehicle by suspension points (34), each including an elastic suspension unit (30) and a pneumatic, hydraulic or other type active suspension unit (33). In the case of articulated vehicles, the pick-up structure is divided into power supply segments (14) separated by a conducting link (19) at each articulated unit of the vehicle.




x

Upper lateral structure for the occasional or continuous collection of main-drive or auxiliary electrical power by a land vehicle

The upper lateral collection structure (8) is mounted on a land vehicle (1), notably an urban public transport vehicle, and cooperates, for the purpose of overhead electrical power supply to the vehicle, with fixed contact slippers (16) located along its route. This structure comprises: a conducting track (14) arranged longitudinally (NEW) the upper lateral part of the vehicle and comprising a contact region (15) for the contact slipper; an electrical connection connecting the conducting track to the electrical circuit of the vehicle; an insulating support (24) on which the conducting track is mounted; a means of mechanical connection of the collecting structure to the vehicle; and a damping device which damps out the shocks resulting from the contact slipper and ensures satisfactory contact between the conducting track and the contact slipper. This invention is of benefit to the manufacturers of electrically powered public transport vehicles.




x

Tubesheet walker for heat exchanger inspections

A robotic tubesheet walker having two rails connected by a central hinge, wherein the central hinge can be opened or closed by an actuation device. Upon each rail is mounted a carriage, wherein each carriage can move along its respective rail toward or away from the central hinge by means of a drive mechanism. Each carriage further contains at least two “gripper” attachment mechanisms, such as camlocks, to grip the tubesheet. The grippers either insert into tube holes within the tubesheet to fasten the respective carriage to the tubesheet, or retract to disengage. Further attached to the central hinge is a tool support fixture, and attached to the tool support fixture is a coupler that holds maintenance or inspection tools.




x

Building heat exchange system

The building heat exchange system is suited for installation in areas having warmer seasonal climates. The system can include an external solar heated water supply, and an indoor water heater. An enclosure extends around the water heater, with indoor air flowing between the enclosure and water heater to a duct for distribution. During cooler conditions the water heater heats incoming water from the relatively cool external water supply, with the warmth of the water heater warming the air for distribution into the bathroom or other area as desired. In warmer times, the water supplied from the water supply can be sufficiently hot that additional heating is not needed, and can be hotter than desired. In such warmer conditions, the water heater can serve as a radiator, with heat radiated from the water heater being absorbed by air flowing past the water heater and expelled to the external environment.




x

Ultra low NOx burner using distributed direct fuel injection

A burner box includes a housing, a fuel tube and a porous heat dissipating surface. The housing is bounded by a sidewall and has a top and an opposite bottom that are each open so that the sidewall defines an open passage that allows unimpeded vertical airflow. The fuel tube extends into the passage and defines a plurality of spaced apart orifices that distribute fuel into the open passage. The fuel tube is at a distance from the top of the housing so that substantially all of the fuel is entrained by the combustion air before the fuel reaches the top. The heat dissipating surface is disposed across the top of the housing and supports a flame. The heat dissipating surface includes enough open area so that the fuel/air mixture passes through the porous heat dissipating surface unimpeded. The heat dissipating surface dissipates heat from the flame and prevents flashback.




x

Animal defensive barrier and exercise device

An animal defensive barrier device comprising a hand-grip portion having end caps; a strap connected to the hand-grip through one of the end caps; a loop portion distal at one end of the hand-grip and a loop portion distal from the first loop end; a plurality of knots between the hand-grip and the distal loop portion; and a plurality of sleeves on the strap between the hand-grip portion and the distal loop portion.