so

Gas sensor and method of manufacturing thereof

In a gas sensor sensing a specific gas component contained in gas to be measured, oxygen ion conductive solid electrolyte is used in a sensing element for sensing the specific gas component. A terminal unit is used, which comprises a pair of insulators, each having an inner side surface, disposed to pinch and hold the base end portion of the sensing element on the pair of electrode-mounted surfaces of the sensing element. The terminal unit comprises two pairs of metal terminals and a spring member. The metal terminals electrically contact electrode pads of the sensing element, pair by pair, respectively, and are disposed on the inner side surfaces of the insulators. The spring members press the pair of insulators at one or more positions of electrode-mounted surfaces of the sensing element in a width direction so that the insulators are pressed to be opposed to each other.




so

Working electrode, method for fabricating the same and dye-sensitized solar cell containing the same

The present invention provides a method for fabricating a working electrode. The method comprises the following steps: providing a photoelectrode, which comprises a conductive substrate with a semiconductor material; providing a dye solution, which comprises a dye dissolved in a solvent; and applying a voltage for conducting an electrophoresis to adsorb said dye onto a surface of said semiconductor material. The method of present invention makes the dye adsorbed fast to a surface of a semiconductor material by electrophoresis, and therefore, significantly reduces the time for fabricating a dye-sensitized solar cell.




so

Soil aerator

The aerator rollers project below the frame for rolling engagement with the ground and are located in tandem relation relative to the direction of travel. Each aerator roller has teeth that penetrate the ground surface. The formations on each aerator roller are spaced apart from one another circumferentially around and longitudinally along the roller. Formations on one aerator roller are offset from those on the other roller permitting overlap of same. The aerator rollers are interconnected in drive and driven relation to rotate in a predetermined ratio. A hopper mounted on the frame dispenses seeds, fertilizer or the like. A rear depth control roller assembly using one or more rollers or wheels is pivotally mounted on the frame and can be brought into rolling engagement with the ground to control the depth of penetration of the formations of the aerator rollers into the ground.




so

Vibratory ripper having pressure sensor for selectively controlling activation of vibration mechanism

A ripping mechanism for a vehicle has a support frame. A ripping member has an engagement head that is configured for plowing a groove in the ground. The ripping member is preferably positionable in a selected working position and working orientation by adjustment of the support frame. The ripping member is preferably movable relative to the support frame to cause reciprocating movement of the engagement head at least partially longitudinally. A tilt adjustment cylinder is preferably operable to orient the ripping member in the selected orientation. A vibrator mechanism is preferably operatively connected to the ripping member and activatable to cause reciprocating movement of the engagement head at least partially longitudinally.




so

Articulated cutting head and conveyor mount for sod harvesting machines

An articulated cutting head and conveyor mount for sod harvesting machines. The invention provides a linkage design that can provide many benefits including: allowing the operator to see the cutting operation, enabling the high lifting of the cutting head for service and maneuvering, managing the vertical bending load of the ground reference roller, providing high transverse stiffness, maintaining the position of the conveyor relative to the cutting head. The linkage design can include fewer parts than previous designs while still being robust and durable. As such, cutting heads employing the linkage design of the present invention can produce higher quality slabs with less service and maintenance than when using current designs.




so

Agricultural apparatus for sensing and providing feedback of soil property changes in real time

An agricultural system includes an agricultural row unit movable on a field between a first soil condition and a second soil condition, the first soil condition having a different soil hardness than the second soil condition. A down-pressure actuator applies an initial first pressure associated with the first soil condition. A soil-hardness sensing device is positioned at a distance D forward of the row unit and outputs a soil-hardness change signal when detecting a change from the first soil condition to the second soil condition. At least one memory device stores instructions that, when executed by at least one processor, cause the down-pressure actuator to change, in response to receiving the soil-hardness change signal, the initial first pressure to a different second pressure when the row unit encounters the second soil condition.




so

Electrically operated turf stacking system for sod harvesting machine

The present invention extends to a stacking mechanism having electrical actuators for stacking slabs of sod on a sod harvesting machine. The electrical actuators allow the stacking head to be driven in three axes. The stacking mechanism also includes position feedback sensors for reporting the position of the stacking head to enable precision when operating the stacking head at a fast rate. The stacking mechanism of the present invention also provides temporary pallet support wings to enable the continued stacking of slabs of sod on one pallet even while another pallet is being dropped from the sod harvesting machine.




so

Oxide-based semiconductor non-linear element having gate electrode electrically connected to source or drain electrode

A non-linear element (e.g., a diode) with small reverse saturation current is provided. A non-linear element includes a first electrode provided over a substrate, an oxide semiconductor film provided on and in contact with the first electrode, a second electrode provided on and in contact with the oxide semiconductor film, a gate insulating film covering the first electrode, the oxide semiconductor film, and the second electrode, and a third electrode provided in contact with the gate insulating film and adjacent to a side surface of the oxide semiconductor film with the gate insulating film interposed therebetween or a third electrode provided in contact with the gate insulating film and surrounding the second electrode. The third electrode is connected to the first electrode or the second electrode.




so

Semiconductor devices including a stressor in a recess and methods of forming the same

Semiconductor devices including a stressor in a recess and methods of forming the semiconductor devices are provided. The methods may include forming a trench in an active region and the trench may include a notched portion of the active region. The methods may also include forming an embedded stressor in the trench. The embedded stressor may include a lower semiconductor layer and an upper semiconductor layer, which has a width narrower than a width of the lower semiconductor layer. A side of the upper semiconductor layer may not be aligned with a side of the lower semiconductor layer and an uppermost surface of the upper semiconductor layer may be higher than an uppermost surface of the active region.




so

Solder bump for ball grid array

A solder bump structure for a ball grid array (BGA) includes at least one under bump metal (UBM) layer and a solder bump formed over the at least one UBM layer. The solder bump has a bump width and a bump height and the ratio of the bump height over the bump width is less than 1.




so

Transistors having features which preclude straight-line lateral conductive paths from a channel region to a source/drain region

Some embodiments include transistors having a channel region under a gate, having a source/drain region laterally spaced from the channel region by an active region, and having one or more dielectric features extending through the active region in a configuration which precludes any straight-line lateral conductive path from the channel region to the source/drain region. The dielectric features may be spaced-apart islands in some configurations. The dielectric features may be multi-branched interlocking structures in some configurations.




so

Accessory cart

In the specification and drawings an accessory cart is described and shown with a base, a housing element that is connected to the base and extends upward from the base, and a platform, which is connected to the housing element with the height of the platform being automatically adjustable.




so

Convertible ski systems having toe binding mounts and associated quick-release locking mechanisms

A ski system includes a ski, a heel binding provided on an upper surface of the ski, a toe binding mount provided on the upper surface of the ski forward of the heel binding, a toe binding releasably mounted to the toe binding mount, and a quick-release locking mechanism for locking the toe binding to the toe binding mount. The quick-release locking mechanism is configured for release by hand.




so

Chair to assist physically challenged persons in swimming

The present invention relates to a swim chair that allows a mobility challenged individual to be transported across the sand with exceptional ease, to lounge on the chair and enjoy the company and sights, to be pulled into the water and, if able, to slip off the chair to go for a swim, remount the chair and return to shore. The chair includes a main frame, defined by a top frame member and two side frame members; two axle support plates, at or in communication with the side frame members of the main frame, the axle support plates having a plurality of openings to receive a wheel axle and optionally a pull rod axle; a wheel assembly; a drop seat; a footrest and a backrest.




so

Drill bit assembly having electrically isolated gap joint for measurement of reservoir properties

A drill bit assembly for measuring reservoir formation properties comprises a bit head and a pin body, and an electrically insulated gap joint between two conductive parts of the drill bit assembly. The bit head has a cutting end and an opposite connecting end with an engagement section. The pin body comprises a connecting end with an engagement section. The pin connecting end is connected to the bit head connecting end such that the engagement sections overlap. The electrically insulating gap joint can fill a gap between the bit head and pin body engagement sections such that the bit head and pin body are mechanically connected together at the connecting ends but electrically separated. Alternatively or additionally, the pin body can have two pieces which are separated by an electrically insulating gap joint. An electrical conductor is electrically connected at a first end to the bit head and is communicable at a second end with an alternating current signal to transmit an alternating current into the bit head, thereby inducing an electric current into a reservoir formation adjacent the bit head. Electronic equipment includes measurement circuitry configured to determine the alternating current at the bit head, the alternating current being inversely proportional to a bit resistivity of the formation.




so

Vibration detection in a drill string based on multi-positioned sensors

In some example embodiments, a system includes a drill string having a drill bit. The drill string extends through at least part of a well bore. The system also includes a first vibrational sensor, positioned on the drill bit to measure, at a first location on the drill string, an amplitude of one or more of an axial vibration and a lateral vibration. The system also includes a second vibrational sensor, positioned above the drill bit and on the drill string. The second vibration sensor is to measure, at a second location on the drill string, one or more of an axial vibration and a lateral vibration. The system includes a processor unit to determine a type of vibration based on a comparison of the amplitude at the first location to the amplitude at the second location, wherein the type of vibration is at least one of bit whirl of the drill bit and a while of a bottom hole assembly that is part of the drill string.




so

Nozzles including secondary passages, drill assemblies including same and associated methods

Nozzles for drilling tools, such as rotary-type drag bits and roller cone bits, a drilling tool and drilling assembly comprising nozzles, and methods of conveying drilling fluid through a nozzle for use in drilling subterranean formations are provided. A nozzle may include a substantially cylindrical nozzle body having an axis and an inlet port with a primary passage extending therethrough, and at least one secondary passage that diverges from the primary passage at an exit port.




so

Charge sensors using inverted lateral bipolar junction transistors

A sensor includes a collector, an emitter and a base-region barrier formed as an inverted bipolar junction transistor having a base substrate forming a base electrode to activate the inverted bipolar junction transistor. A level surface is formed by the collector, the emitter and the base-region barrier opposite the base substrate such that when the level surface is exposed to charge, the charge is measured during operation of the bipolar junction transistor.




so

External cavity laser source

A tunable laser source that includes multiple gain elements and uses a spatial light modulator in an external cavity to produce spectrally tunable output is claimed. Several designs of the external cavity are described, targeting different performance characteristics and different manufacturing costs for the device. Compared to existing devices, the tunable laser source produces high output power, wide tuning range, fast tuning rate, and high spectral resolution.




so

Detection apparatus configured to detect soft X-ray radiation and detection system configured to detect soft X-ray radiation

A detection apparatus configured to detect soft X-ray radiation, includes a conversion unit and a circuit unit disposed on a semiconductor substrate. The conversion unit has a plurality of conversion elements that convert the soft X-ray radiation incident on the semiconductor substrate into electric charge. The circuit unit has an amplifier transistor that amplifies and outputs a signal supplied from the conversion unit. A shielding unit is disposed above the circuit unit. The shielding unit blocks the soft X-ray radiation incident on the circuit unit. Preferably, the soft X-ray shielding coefficient of a material that forms the shielding unit is higher than the soft X-ray shielding coefficient of each of aluminum and copper. Alternatively, a material that forms the shielding unit has an atomic number higher than or equal to 70.




so

A/D converter and solid-state imaging apparatus with offset voltage correction

Provided is an A/D converter including an input terminal, a reference signal line for supplying a reference signal which changes temporally, a comparator, a correction capacitor connected to an inverting input terminal of the comparator; and an output circuit which outputs digital data corresponding to an analog signal input to the input terminal. In a first state in which a total voltage of a first analog signal and an offset voltage of the comparator is held in the correction capacitor, a second analog signal input to the input terminal is supplied to a non-inverting input terminal of the comparator, and the second analog signal or the total voltage is changed using the reference signal, thereby outputting, from the output circuit, digital data.




so

Image sensors having variable voltage-current characteristics and methods of operating the same

Image sensors and methods of operating the same. An image sensor includes a pixel array including a plurality of pixels. Each of the plurality of pixels includes a photo sensor, the voltage-current characteristics of which vary according to energy of incident light, and that generates a sense current determined by the energy of the incident light; a reset unit that is activated to generate a reference current, according to a reset signal for resetting at least one of the plurality of pixels; and a conversion unit that converts the sense current and the reference current into a sense voltage and a reference voltage, respectively.




so

Solid state imaging device, portable information terminal device and method for manufacturing solid state imaging device

According to one embodiment, a solid state imaging device includes a sensor substrate having a plurality of pixels formed on an upper face, a microlens array substrate having a plurality of microlenses formed and a connection post with one end bonded to a region between the microlenses on the microlens array substrate and with the other end bonded to the upper face.




so

Image capture based on scanning resolution setting compared to determined scanning resolution relative to target distance in barcode reading

An arrangement for, and a method of, electro-optically reading a target by image capture, employ an aiming assembly for projecting an aiming light pattern on the target that is located within a range of working distances relative to a housing, an imaging assembly for capturing an image of the target and of the aiming light pattern over a field of view, and a controller for determining a distance of the target relative to the housing based on a position of the aiming light pattern in the captured image, for determining a scanning resolution based on the determined distance, for comparing the determined scanning resolution with a scanning resolution setting, and for processing the captured image based on the comparison.




so

System and method for cogeneration from mixed oil and inert solids, furnace and fuel nozzle for the same

This invention provides a system and method for efficiently and completely combusting oil in mixture with particulate solids. A furnace (kiln) having a feed nozzle with a lead screw drives the mixture from a feed hopper. This nozzle includes forced-air jets/ports at its tip providing makeup air and allowing atomization of the mixture. The nozzle thereby directs the mixture into a rotating combustion chamber that is tilted downwardly from the front toward a solid waste outlet port at the rear. Uncombusted fuel and air backflow to an upper, secondary chamber near the primary chamber front, and are completely combusted at a high temperature. Gasses exit a flue that can include a heat exchanger. This heat exchanger can be operatively connected to a heating device or other mechanism that converts the heat into usable energy. The nozzle can include a cone with axially tilted air ports about its perimeter.




so

Solid fuel unit which burns solid fuels together with their volatile gases

The invention relates to solid fuel units having a fuel supply chamber wherein the fuel to be sent for combustion to the combustion region found in the body is placed and the feed mechanism carrying the solid fuel found in the chamber forward. It is characterized in that it includes a main burning block having a fuel and air cell connected to the solid fuel supply chamber and air outlet vents formed on the external wall surface. A preventive surface is positioned on the main burning block external wall surface in a way that it would form a closed volume in a certain distance.




so

Method for connecting solar cells

A method of connecting two solar cells is disclosed. In one embodiment, the method comprises gripping an interconnect with a head of positioning device, heating the interconnect with the head of the positioning device to between two predetermined temperatures, where one is higher than the other, positioning the interconnect so as to overlay two adjacent solar cells, coupling the interconnect to each of the two adjacent solar cells, and releasing the interconnect from the head.




so

Semiconductor device, in particular solar cell

A semiconductor device, in particular a solar cell, comprises a semiconductor substrate having a semiconductor substrate surface and a passivation composed of at least one passivation layer which surface-passivates the semiconductor substrate surface, wherein the passivation layer comprises a compound composed of aluminum oxide, aluminum nitride or aluminum oxynitride and at least one further element.




so

Solar-cell-integrated gas production device

The present invention provides a solar-cell-integrated gas production device that can generate a first gas and a second gas by utilizing an electromotive force of a solar cell, and that can supply power to an external circuit by utilizing the same solar cell. The solar-cell-integrated gas production device according to the present invention comprises: a photoelectric conversion part having a light acceptance surface and its back surface; a first electrolysis electrode provided on the back surface of the photoelectric conversion part so as to be capable of being immersed into an electrolytic solution; a second electrolysis electrode provided on the back surface of the photoelectric conversion part so as to be capable of being immersed into the electrolytic solution; and a changeover part, wherein the first electrolysis electrode and the second electrolysis electrode are provided to be capable of electrolyzing the electrolytic solution to generate a first gas and a second gas by utilizing an electromotive force generated by irradiating the photoelectric conversion part with light, and the changeover part makes a changeover between a circuit that outputs the electromotive force, generated by irradiating the photoelectric conversion part outputs the electromotive force, generated by irradiating the photoelectric conversion part with light, to the first electrolysis electrode and the second electrolysis electrode.




so

Tellurium inorganic reaction systems for conductive thick film paste for solar cell contacts

This disclosure relates to electroconductive paste formulations useful in solar panel technology. In one aspect, the disclosure relates to an inorganic reaction system for use in electroconductive paste compositions, wherein the inorganic reaction system comprises a lead containing matrix composition and a tellurium containing matrix composition. In another aspect, the disclosure relates to an electroconductive paste composition comprising a conductive metal component, an inorganic reaction system and an organic vehicle. Another aspect of the disclosure relates to a solar cell produced by applying an electroconductive paste composition of the invention to a silicon wafer. Yet another aspect relates to a solar cell module assembled using solar cells produced by applying an electroconductive paste composition to a silicon wafer, wherein the electroconductive paste composition comprises an conductive metal component, an inorganic reaction system and an organic vehicle.




so

Flexible solar cell photovoltaic assembly prepared with flexible substrate

This invention is directed to a flexible solar cell photovoltaic module with high light transmittance based on modified substrate, which belongs to the field of thin-film solar cell technology. The objective of the present invention to provide a technical solution for a transparent flexible solar cell module and its fabrication method. Technical features include using a stainless steel template to mold a modified polyimide PI substrate (the PI substrate). The PI substrate has light-passing through-holes, including draining holes and convergence holes, through and distributed on the PI substrate, a conductive film layer, and various stacked photoelectric conversion film layers. The creativeness of the present invention is obvious, such as reducing the short circuit and current leakage due to crystallization of the photoelectric layer interface caused by a subsequent process of laser etching the conductive film layer, reducing the composition on the surface of the solar cell, reducing steps of the fabrication process, and lowering the production cost. Further, the present invention significantly increases the conversion efficiency and load capacity of the solar cell and the quality-cost ratio. The transparent flexible solar cell photovoltaic module also has a broad range of applications.




so

Photoelectric conversion element and solar cell

A photoelectric conversion element comprising a substrate, a first electrode, a photoelectric conversion layer comprising a semiconductor and a sensitizing dye, a hole transport layer and a second electrode, wherein the hole transport layer comprises a polymer having a repeat unit represented by Formula (1) or (2),




so

Photoelectric conversion material, film containing the material, photoelectric conversion device, production method thereof, photosensor, imaging device and their use methods

An organic compound and a photoelectric conversion device containing the organic compound are disclosed. The organic compound and device realize high photoelectric conversion efficiency, low dark current and high-speed responsivity. It has been found that when this organic compound and an n-type semiconductor are used in combination, high-speed responsivity can be realized while maintaining high heat resistance, an aspect of which has not been seen when the connection part between a donor part and an acceptor part is a phenylene group.




so

Preventing harmful polarization of solar cells

In one embodiment, harmful solar cell polarization is prevented or minimized by providing a conductive path that bleeds charge from a front side of a solar cell to the bulk of a wafer. The conductive path may include patterned holes in a dielectric passivation layer, a conductive anti-reflective coating, or layers of conductive material formed on the top or bottom surface of an anti-reflective coating, for example. Harmful solar cell polarization may also be prevented by biasing a region of a solar cell module on the front side of the solar cell.




so

Support for solar energy collectors

A solar energy collection system can include support devices made with bearings formed from sheet material. These bearings can be optionally formed so as to provide tool-less connections to their associated bearing housings. The bearings can be formed with an open configuration allowing a shaft to be inserted into an open bite of the bearing. Optionally, the bearing can be made from an ultrahigh molecular weight polyethylene plastic material. Additionally, two open-type bearing assemblies can be mounted axially offset and opposed to one another.




so

Layered compound-metal particle composite and production method therefor, and suspension, film and flexible solar cell using same

A layered compound-metal particle composite 3 is obtained by the addition, to an organically modified layered compound 1 formed by the intercalation of organic ions between layers of a layered compound, of both an aqueous colloidal metal solution 2 in which metal particles are dispersed as a metal colloid in water, and a nonaqueous solvent which is a poor solvent for the metal colloid and has an excellent ability to swell the organically modified layered compound 1.




so

Dye-sensitized solar cell

The present invention provides a dye-sensitized solar cell which enhances an area of a photo electrode by arranging metal wires on a surface of a transparent substrate or a transparent conductive layer without degrading a transparency of the solar cell, allowing the metal wires to act as a collector electrode exclusively or together with a metal electrode.




so

Crack resistant solar cell modules

A crack resistant solar cell module includes a protective package mounted on a frame. The protective package includes a polyolefin encapsulant that protectively encapsulates solar cells. The polyolefin has less than five weight percent of oxygen and nitrogen in the backbone or side chain. In other words, the combined weight percent of oxygen and nitrogen in any location in the molecular structure of the polyolefin is less than five. The polyolefin also has a complex viscosity less than 10,000 Pa second at 90° C. as measured by dynamic mechanical analysis (DMA) before any thermal processing of the polyolefin. The protective package includes a top cover, the encapsulant, and a backsheet. The solar cell module allows for shipping, installation, and maintenance with less risk of developing cracks on the surfaces of the solar cells.




so

Back electrode type solar cell, back electrode type solar cell with interconnection sheet, solar cell module, method of manufacturing back electrode type solar cell with interconnection sheet, and method of manufacturing solar cell module

A back electrode type solar cell in which a no-electrode-formed region where no electrode is placed is provided in a part of a peripheral portion of a back surface of the back electrode type solar cell such that a line connecting end portions of a plurality of electrodes to one another includes a partially inwardly recessed region and the no-electrode-formed region is located adjacent to each of an electrode for n-type and an electrode for p-type adjacent to each other, a solar cell module, a method of manufacturing a back electrode type solar cell with interconnection sheet, and a method of manufacturing a solar cell module are provided.




so

Gel-type polymer electrolyte for dye-sensitized solar cell and dye-sensitized solar cell comprising the same

The present disclosure relates to gel-type polymer electrolyte for a dye-sensitized solar cell, a dye-sensitized solar cell comprising the gel-type polymer electrolyte, and a method for manufacturing the dye-sensitized solar cell.




so

Conductive paste and electronic device, and solar cell including an electrode formed using the conductive paste

A conductive paste may include a conductive component and an organic vehicle. The conductive component may include an amorphous metal. The amorphous metal may have a lower resistivity after a crystallization process than before the crystallization process, and at least one of a weight gain of about 4 mg/cm2 or less and a thickness increase of about 30 μm or less after being heated in a process furnace at a firing temperature.




so

Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste

According to example embodiments, a conductive paste includes a conductive component that contains a conductive powder and a titanium (Ti)-based metallic glass. The titanium-based metallic glass has a supercooled liquid region of about 5K or more, a resistivity after crystallization that is less than a resistivity before crystallization by about 50% or more, and a weight increase by about 0.5 mg/cm2 or less after being heated in a process furnace at a firing temperature. According to example embodiments, an electronic device and a solar cell may include at least one electrode formed using the conductive paste according to example embodiments.




so

Photoplating of metal electrodes for solar cells

A method of photoplating a metal contact onto a surface of a cathode of a photovoltaic device is provided using light induced plating technique. The method comprises: a) immersing the photovoltaic device in a solution of metal ions, where the metal ions are a species which is to be plated onto the surface of the cathode of the photovoltaic device; and b) illuminating the photovoltaic device, using a light source of time varying intensity. This results in nett plating which is faster in a direction normal to the surface of the cathode than in a direction in a plane of the surface of the cathode.




so

Light-guide solar panel and method of fabrication thereof

The present invention is that of a solar energy system that uses a light-guide solar panel (LGSP) to trap light inside a dielectric or other transparent panel and propagates the light to one of the panel edges for harvesting by a solar energy collector such as a photovoltaic cell. This allows for very thin modules whose thickness is comparable to the height of the solar energy collector. This eliminates eliminating the depth requirements inherent in traditional concentrated photovoltaic solar energy systems. A light guide solar panel has a deflecting layer, a light guide layer and a solar cell in optical communication with the light guide layer. The deflecting layer receives light at a first surface and inputs the light into the light guide layer. The light guide layer propagates the light to the solar cell, which is aligned generally parallel to the input surface.




so

Solar cell module

The solar cell module includes a solar panel that includes a transparent substrate and is configured by aligning solar cells, a reinforcing frame arranged on the back surface of the solar panel, and a shock absorbing unit arranged between the solar panel and the reinforcing frame, where the shock absorbing unit has the first main surface facing the solar panel, which is a flat surface, and a second main surface facing the reinforcing frame, which is a curved surface bowed in the longitudinal direction of the reinforcing frame, having an arc shape in cross section, and convexed toward the reinforcing frame side.




so

Solar-cell sealant and solar-cell module using same

A solar-cell sealant that has excellent properties such as transparency, flexibility, adhesiveness, heat resistance, appearance, cross-linking characteristics, electrical characteristics, and calenderability. A solar-cell sealant that contains an ethylene/α-olefin/unconjugated-polyene copolymer satisfying requirements (a1) through (a3). Requirement (a1) is that constituent units derived from ethylene constitute 80-90 mol %, constituent units derived from C3-20 α-olefin constitute 9.99-19.99 mol %, and constituent units derived from an unconjugated polyene constitute 0.01-5.0 mol % of said copolymer. Requirement (a2) is that the MFR of said copolymer, as measured in accordance with ASTM D1238 at 190° C. under a 2.16 kg load, be at least 2 g/10 min. and less than 10 g/10 min. Requirement (a3) is that the Shore A hardness of said copolymer, as measured in accordance with ASTM D2240, be 60 to 85.




so

Solar cell module

A solar cell module includes a plurality of solar cells each comprising a substrate, an emitter region placed at the substrate, and an anti-reflection region placed on the emitter region. The anti-reflection region includes a first opening region through which part of the emitter region is exposed and one or more second opening regions through which part of the emitter region is exposed. A first electrode is connected to the exposed emitter region of the first opening region through the anti-reflection region by metal plating and a first bus bar is connected to the exposed emitter region of one or more second opening regions through the anti-reflection region by metal plating.




so

Thin-film solar cell and method of fabricating thin-film solar cell

A thin-film solar cell includes a cell having a transparent electrode layer, a photoelectric conversion layer, and a back electrode layer stacked on a transparent insulation substrate. A plurality of cells are connected in series to constitute a cell string. A bus bar is arranged on the back electrode layer of an end cell constituting the cell string. The thin-film solar cell has a photoelectric conversion layer on a series-connection direction end of the transparent electrode layer. In plan view, a series-connection direction end of the back electrode layer at an end of the cell string and the series-connection direction end of the transparent electrode layer at the end of the cell string do not overlap, while the bus bar and the transparent electrode layer at the end cell constituting the cell string overlap at least partially. A method of fabricating the thin-film solar cell is provided.




so

Organic thin film solar cell

The present invention provides an organic thin film solar cell having a novel photoelectric conversion layer with superior conversion efficiency from light to electricity and superior carrier transportability to an electrode. The photoelectric conversion layer is arranged between a pair of electrodes at least one of which has optical transparency, and comprises a multilayer film formed by alternately laminating an electron-donating organic semiconductor thin film and an electron-accepting thin film. The electron-donating organic semiconductor thin film is formed by organic semiconductor molecules in which cyclic compounds are bound in a linear fashion.




so

Multiple solar cell and method for manufacturing the same

A multi-junction solar cell having a Ge or GaAs substrate, as well as a solar cell structure having several subcells deposited on the substrate, the substrate having peripheral side faces, and the solar cell structure having a peripheral circumferential surface, which runs spaced apart from the side faces. To prevent oxidation and penetration of moisture, the circumferential surface of the solar cell structure is coated with a protective, electrically insulating first coating under essential exclusion of the upper surface facing the rays, or that without encroaching on the solar cell structure, the side faces of the substrate are coated with a protective, electrically insulating second coating or that both the side faces of the substrate as well as the circumferential surface of the solar cell structure are coated with a third coating by essential exclusion of the upper surface facing the rays.