e

War Crimes and Their Prosecution

Invitation Only Research Event

5 March 2020 - 9:00am to 10:30am

Chatham House | 10 St James's Square | London | SW1Y 4LE

Event participants

Michelle Butler, Barrister, Matrix Chambers
Charles Garraway, Visiting Fellow, Human Rights Centre, University of Essex
Chair: Elizabeth Wilmshurst, Distinguished Fellow, International Law Programme, Chatham House

 

The International Criminal Court cannot act when crimes are being genuinely prosecuted in a state. The meeting will discuss whether the ICC complementarity rules apply when a state puts restrictions on the prosecution of war crimes committed in particular circumstances or within a particular time period. In this context, the discussion will also cover the extent to which such restrictions are precluded by international obligations such as those in the Geneva Conventions with regard to the investigation and prosecution of war crimes.

Event attributes

Chatham House Rule

Jacqueline Rowe

Programme Assistant, International Law Programme
020 7389 3287




e

Kate Jones

Associate Fellow, International Law Programme

Biography

Kate focuses on cyber and human rights law issues, and is author of Chatham House’s research paper on Online Disinformation and Political Discourse: Applying a Human Rights Framework.

Kate is based at the University of Oxford, where she is a member of the Law Faculty and directs the Diplomatic Studies Programme, a set of postgraduate courses for diplomats. 

She gained much of her experience in human rights law and public international law as a lawyer at the UK Foreign and Commonwealth Office, both in London and overseas as Legal Adviser at the UK Mission to the United Nations in Geneva and then Deputy Permanent Representative at the UK Delegation to the Council of Europe in Strasbourg. 

She took her undergraduate and postgraduate degrees in law at the University of Oxford, and qualified as a solicitor at Norton Rose.

Areas of expertise

  • Cyber and human rights law (disinformation, elections, social media platforms, etc)
  • Human rights law
  • Public international law
  • Diplomatic skills and training

Past experience

2015 - presentDirector, Diplomatic Studies Programme; Member of University Law Faculty; Fellow of Kellogg College, University of Oxford
2014-15Research and Outreach Specialist, UK Foreign and Commonwealth Office
2011-14Deputy Permanent Representative, UK Delegation to Council of Europe
2008-11Legal Adviser, UK Mission to the United Nations
2002-07Assistant Legal Adviser, UK Foreign and Commonwealth Office
1997-2001Trainee, then Assistant Solicitor, Norton Rose
1999Judicial Assistant, Court of Appeal (secondment)




e

Seventy Years of the Geneva Conventions: What of the Future?

24 March 2020

Seventy years after the adoption of the Geneva Conventions, there are challenges that remain to be addressed. This briefing takes three pertinent examples, and discusses possibilities for addressing them.

Emanuela-Chiara Gillard

Associate Fellow, International Law Programme

GettyImages-913468402.jpg

Rescue of the wounded in Duma city by Syrian Red Crescent paramedics, 2 February 2018. Photo: Samer Bouidani/NurPhoto/Getty

Summary

  • The 70th anniversary of the adoption of the 1949 Geneva Conventions was commemorated in 2019. But violations of the Conventions and of the 1977 Additional Protocols are widespread.
  • Contemporary conflicts have been marked by violations of some of the foundational rules of international humanitarian law (IHL) relating to the protection of the wounded and sick and of providers of medical assistance.
  • A further area of IHL that has come under strain and scrutiny are the rules regulating humanitarian relief operations and their application to sieges and blockades.
  • War has a huge impact on children, and the treatment of children in armed conflict is another area of the law that requires further attention.
  • In the current political climate, it is unlikely that new treaties will be negotiated to address emerging issues or uncertainties in the law.
  • Other measures must be explored, including the adoption of domestic measures to implement existing law; support for processes that interpret the law; and initiatives to promote compliance with the law by organized armed groups.
  • One overarching challenge is the interplay between IHL and counterterrorism measures. It can undermine the protections set out in IHL, and hinder principled humanitarian action and activities to promote compliance with the law by organized armed groups.




e

Bulletin updated at 19:45 HKT - 03/05/2020

There is no warning in force.




e

12-LOX catalyzes the oxidation of 2-arachidonoyl-lysolipids in platelets generating eicosanoid-lysolipids that are attenuated by iPLA2{gamma} knockout [Signal Transduction]

The canonical pathway of eicosanoid production in most mammalian cells is initiated by phospholipase A2-mediated release of arachidonic acid, followed by its enzymatic oxidation resulting in a vast array of eicosanoid products. However, recent work has demonstrated that the major phospholipase in mitochondria, iPLA2γ (patatin-like phospholipase domain containing 8 (PNPLA8)), possesses sn-1 specificity, with polyunsaturated fatty acids at the sn-2 position generating polyunsaturated sn-2-acyl lysophospholipids. Through strategic chemical derivatization, chiral chromatographic separation, and multistage tandem MS, here we first demonstrate that human platelet-type 12-lipoxygenase (12-LOX) can directly catalyze the regioselective and stereospecific oxidation of 2-arachidonoyl-lysophosphatidylcholine (2-AA-LPC) and 2-arachidonoyl-lysophosphatidylethanolamine (2-AA-LPE). Next, we identified these two eicosanoid-lysophospholipids in murine myocardium and in isolated platelets. Moreover, we observed robust increases in 2-AA-LPC, 2-AA-LPE, and their downstream 12-LOX oxidation products, 12(S)-HETE-LPC and 12(S)-HETE-LPE, in calcium ionophore (A23187)-stimulated murine platelets. Mechanistically, genetic ablation of iPLA2γ markedly decreased the calcium-stimulated production of 2-AA-LPC, 2-AA-LPE, and 12-HETE-lysophospholipids in mouse platelets. Importantly, a potent and selective 12-LOX inhibitor, ML355, significantly inhibited the production of 12-HETE-LPC and 12-HETE-LPE in activated platelets. Furthermore, we found that aging is accompanied by significant changes in 12-HETE-LPC in murine serum that were also markedly attenuated by iPLA2γ genetic ablation. Collectively, these results identify previously unknown iPLA2γ-initiated signaling pathways mediated by direct 12-LOX oxidation of 2-AA-LPC and 2-AA-LPE. This oxidation generates previously unrecognized eicosanoid-lysophospholipids that may serve as biomarkers for age-related diseases and could potentially be used as targets in therapeutic interventions.




e

Glucocerebrosidases catalyze a transgalactosylation reaction that yields a newly-identified brain sterol metabolite, galactosylated cholesterol [Glycobiology and Extracellular Matrices]

β-Glucocerebrosidase (GBA) hydrolyzes glucosylceramide (GlcCer) to generate ceramide. Previously, we demonstrated that lysosomal GBA1 and nonlysosomal GBA2 possess not only GlcCer hydrolase activity, but also transglucosylation activity to transfer the glucose residue from GlcCer to cholesterol to form β-cholesterylglucoside (β-GlcChol) in vitro. β-GlcChol is a member of sterylglycosides present in diverse species. How GBA1 and GBA2 mediate β-GlcChol metabolism in the brain is unknown. Here, we purified and characterized sterylglycosides from rodent and fish brains. Although glucose is thought to be the sole carbohydrate component of sterylglycosides in vertebrates, structural analysis of rat brain sterylglycosides revealed the presence of galactosylated cholesterol (β-GalChol), in addition to β-GlcChol. Analyses of brain tissues from GBA2-deficient mice and GBA1- and/or GBA2-deficient Japanese rice fish (Oryzias latipes) revealed that GBA1 and GBA2 are responsible for β-GlcChol degradation and formation, respectively, and that both GBA1 and GBA2 are responsible for β-GalChol formation. Liquid chromatography–tandem MS revealed that β-GlcChol and β-GalChol are present throughout development from embryo to adult in the mouse brain. We found that β-GalChol expression depends on galactosylceramide (GalCer), and developmental onset of β-GalChol biosynthesis appeared to be during myelination. We also found that β-GlcChol and β-GalChol are secreted from neurons and glial cells in association with exosomes. In vitro enzyme assays confirmed that GBA1 and GBA2 have transgalactosylation activity to transfer the galactose residue from GalCer to cholesterol to form β-GalChol. This is the first report of the existence of β-GalChol in vertebrates and how β-GlcChol and β-GalChol are formed in the brain.




e

Deletion of fatty acid transport protein 2 (FATP2) in the mouse liver changes the metabolic landscape by increasing the expression of PPAR{alpha}-regulated genes [Lipids]

Fatty acid transport protein 2 (FATP2) is highly expressed in the liver, small intestine, and kidney, where it functions in both the transport of exogenous long-chain fatty acids and the activation of very-long-chain fatty acids. Here, using a murine model, we investigated the phenotypic impacts of deleting FATP2, followed by a transcriptomic analysis using unbiased RNA-Seq to identify concomitant changes in the liver transcriptome. WT and FATP2-null (Fatp2−/−) mice (5 weeks) were maintained on a standard chow diet for 6 weeks. The Fatp2−/− mice had reduced weight gain, lowered serum triglyceride, and increased serum cholesterol levels and attenuated dietary fatty acid absorption. Transcriptomic analysis of the liver revealed 258 differentially expressed genes in male Fatp2−/− mice and a total of 91 in female Fatp2−/− mice. These genes mapped to the following gene ontology categories: fatty acid degradation, peroxisome biogenesis, fatty acid synthesis, and retinol and arachidonic acid metabolism. Targeted RT-quantitative PCR verified the altered expression of selected genes. Of note, most of the genes with increased expression were known to be regulated by peroxisome proliferator–activated receptor α (PPARα), suggesting that FATP2 activity is linked to a PPARα-specific proximal ligand. Targeted metabolomic experiments in the Fatp2−/− liver revealed increases of total C16:0, C16:1, and C18:1 fatty acids; increases in lipoxin A4 and prostaglandin J2; and a decrease in 20-hydroxyeicosatetraenoic acid. We conclude that the expression of FATP2 in the liver broadly affects the metabolic landscape through PPARα, indicating that FATP2 provides an important role in liver lipid metabolism through its transport or activation activities.




e

Determination of globotriaosylceramide analogs in the organs of a mouse model of Fabry disease [Lipids]

Fabry disease is a heritable lipid disorder caused by the low activity of α-galactosidase A and characterized by the systemic accumulation of globotriaosylceramide (Gb3). Recent studies have reported a structural heterogeneity of Gb3 in Fabry disease, including Gb3 isoforms with different fatty acids and Gb3 analogs with modifications on the sphingosine moiety. However, Gb3 assays are often performed only on the selected Gb3 isoforms. To precisely determine the total Gb3 concentration, here we established two methods for determining both Gb3 isoforms and analogs. One was the deacylation method, involving Gb3 treatment with sphingolipid ceramide N-deacylase, followed by an assay of the deacylated products, globotriaosylsphingosine (lyso-Gb3) and its analogs, by ultra-performance LC coupled to tandem MS (UPLC-MS/MS). The other method was a direct assay established in the present study for 37 Gb3 isoforms and analogs/isoforms by UPLC-MS/MS. Gb3s from the organs of symptomatic animals of a Fabry disease mouse model were mainly Gb3 isoforms and two Gb3 analogs, such as Gb3(+18) containing the lyso-Gb3(+18) moiety and Gb3(−2) containing the lyso-Gb3(−2) moiety. The total concentrations and Gb3 analog distributions determined by the two methods were comparable. Gb3(+18) levels were high in the kidneys (24% of total Gb3) and the liver (13%), and we observed Gb3(−2) in the heart (10%) and the kidneys (5%). These results indicate organ-specific expression of Gb3 analogs, insights that may lead to a deeper understanding of the pathophysiology of Fabry disease.




e

MtrP, a putative methyltransferase in Corynebacteria, is required for optimal membrane transport of trehalose mycolates [Lipids]

Pathogenic bacteria of the genera Mycobacterium and Corynebacterium cause severe human diseases such as tuberculosis (Mycobacterium tuberculosis) and diphtheria (Corynebacterium diphtheriae). The cells of these species are surrounded by protective cell walls rich in long-chain mycolic acids. These fatty acids are conjugated to the disaccharide trehalose on the cytoplasmic side of the bacterial cell membrane. They are then transported across the membrane to the periplasm where they act as donors for other reactions. We have previously shown that transient acetylation of the glycolipid trehalose monohydroxycorynomycolate (hTMCM) enables its efficient transport to the periplasm in Corynebacterium glutamicum and that acetylation is mediated by the membrane protein TmaT. Here, we show that a putative methyltransferase, encoded at the same genetic locus as TmaT, is also required for optimal hTMCM transport. Deletion of the C. glutamicum gene NCgl2764 (Rv0224c in M. tuberculosis) abolished acetyltrehalose monocorynomycolate (AcTMCM) synthesis, leading to accumulation of hTMCM in the inner membrane and delaying its conversion to trehalose dihydroxycorynomycolate (h2TDCM). Complementation with NCgl2764 normalized turnover of hTMCM to h2TDCM. In contrast, complementation with NCgl2764 derivatives mutated at residues essential for methyltransferase activity failed to rectify the defect, suggesting that NCgl2764/Rv0224c encodes a methyltransferase, designated here as MtrP. Comprehensive analyses of the individual mtrP and tmaT mutants and of a double mutant revealed strikingly similar changes across several lipid classes compared with WT bacteria. These findings indicate that both MtrP and TmaT have nonredundant roles in regulating AcTMCM synthesis, revealing additional complexity in the regulation of trehalose mycolate transport in the Corynebacterineae.




e

COQ11 deletion mitigates respiratory deficiency caused by mutations in the gene encoding the coenzyme Q chaperone protein Coq10 [Lipids]

Coenzyme Q (Qn) is a vital lipid component of the electron transport chain that functions in cellular energy metabolism and as a membrane antioxidant. In the yeast Saccharomyces cerevisiae, coq1–coq9 deletion mutants are respiratory-incompetent, sensitive to lipid peroxidation stress, and unable to synthesize Q6. The yeast coq10 deletion mutant is also respiratory-deficient and sensitive to lipid peroxidation, yet it continues to produce Q6 at an impaired rate. Thus, Coq10 is required for the function of Q6 in respiration and as an antioxidant and is believed to chaperone Q6 from its site of synthesis to the respiratory complexes. In several fungi, Coq10 is encoded as a fusion polypeptide with Coq11, a recently identified protein of unknown function required for efficient Q6 biosynthesis. Because “fused” proteins are often involved in similar biochemical pathways, here we examined the putative functional relationship between Coq10 and Coq11 in yeast. We used plate growth and Seahorse assays and LC-MS/MS analysis to show that COQ11 deletion rescues respiratory deficiency, sensitivity to lipid peroxidation, and decreased Q6 biosynthesis of the coq10Δ mutant. Additionally, immunoblotting indicated that yeast coq11Δ mutants accumulate increased amounts of certain Coq polypeptides and display a stabilized CoQ synthome. These effects suggest that Coq11 modulates Q6 biosynthesis and that its absence increases mitochondrial Q6 content in the coq10Δcoq11Δ double mutant. This augmented mitochondrial Q6 content counteracts the respiratory deficiency and lipid peroxidation sensitivity phenotypes of the coq10Δ mutant. This study further clarifies the intricate connection between Q6 biosynthesis, trafficking, and function in mitochondrial metabolism.




e

AIG1 and ADTRP are endogenous hydrolases of fatty acid esters of hydroxy fatty acids (FAHFAs) in mice [Metabolism]

Fatty acid esters of hydroxy fatty acids (FAHFAs) are a newly discovered class of signaling lipids with anti-inflammatory and anti-diabetic properties. However, the endogenous regulation of FAHFAs remains a pressing but unanswered question. Here, using MS-based FAHFA hydrolysis assays, LC-MS–based lipidomics analyses, and activity-based protein profiling, we found that androgen-induced gene 1 (AIG1) and androgen-dependent TFPI-regulating protein (ADTRP), two threonine hydrolases, control FAHFA levels in vivo in both genetic and pharmacologic mouse models. Tissues from mice lacking ADTRP (Adtrp-KO), or both AIG1 and ADTRP (DKO) had higher concentrations of FAHFAs particularly isomers with the ester bond at the 9th carbon due to decreased FAHFA hydrolysis activity. The levels of other lipid classes were unaltered indicating that AIG1 and ADTRP specifically hydrolyze FAHFAs. Complementing these genetic studies, we also identified a dual AIG1/ADTRP inhibitor, ABD-110207, which is active in vivo. Acute treatment of WT mice with ABD-110207 resulted in elevated FAHFA levels, further supporting the notion that AIG1 and ADTRP activity control endogenous FAHFA levels. However, loss of AIG1/ADTRP did not mimic the changes associated with pharmacologically administered FAHFAs on extent of upregulation of FAHFA levels, glucose tolerance, or insulin sensitivity in mice, indicating that therapeutic strategies should weigh more on FAHFA administration. Together, these findings identify AIG1 and ADTRP as the first endogenous FAHFA hydrolases identified and provide critical genetic and chemical tools for further characterization of these enzymes and endogenous FAHFAs to unravel their physiological functions and roles in health and disease.




e

The transcriptional regulator MEIS2 sets up the ground state for palatal osteogenesis in mice [Gene Regulation]

Haploinsufficiency of Meis homeobox 2 (MEIS2), encoding a transcriptional regulator, is associated with human cleft palate, and Meis2 inactivation leads to abnormal palate development in mice, implicating MEIS2 functions in palate development. However, its functional mechanisms remain unknown. Here we observed widespread MEIS2 expression in the developing palate in mice. Wnt1Cre-mediated Meis2 inactivation in cranial neural crest cells led to a secondary palate cleft. Importantly, about half of the Wnt1Cre;Meis2f/f mice exhibited a submucous cleft, providing a model for studying palatal bone formation and patterning. Consistent with complete absence of palatal bones, the results from integrative analyses of MEIS2 by ChIP sequencing, RNA-Seq, and an assay for transposase-accessible chromatin sequencing identified key osteogenic genes regulated directly by MEIS2, indicating that it plays a fundamental role in palatal osteogenesis. De novo motif analysis uncovered that the MEIS2-bound regions are highly enriched in binding motifs for several key osteogenic transcription factors, particularly short stature homeobox 2 (SHOX2). Comparative ChIP sequencing analyses revealed genome-wide co-occupancy of MEIS2 and SHOX2 in addition to their colocalization in the developing palate and physical interaction, suggesting that SHOX2 and MEIS2 functionally interact. However, although SHOX2 was required for proper palatal bone formation and was a direct downstream target of MEIS2, Shox2 overexpression failed to rescue the palatal bone defects in a Meis2-mutant background. These results, together with the fact that Meis2 expression is associated with high osteogenic potential and required for chromatin accessibility of osteogenic genes, support a vital function of MEIS2 in setting up a ground state for palatal osteogenesis.




e

Certain ortho-hydroxylated brominated ethers are promiscuous kinase inhibitors that impair neuronal signaling and neurodevelopmental processes [Cell Biology]

The developing nervous system is remarkably sensitive to environmental signals, including disruptive toxins, such as polybrominated diphenyl ethers (PBDEs). PBDEs are an environmentally pervasive class of brominated flame retardants whose neurodevelopmental toxicity mechanisms remain largely unclear. Using dissociated cortical neurons from embryonic Rattus norvegicus, we found here that chronic exposure to 6-OH–BDE-47, one of the most prevalent hydroxylated PBDE metabolites, suppresses both spontaneous and evoked neuronal electrical activity. On the basis of our previous work on mitogen-activated protein kinase (MAPK)/extracellular signal-related kinase (ERK) (MEK) biology and our observation that 6-OH–BDE-47 is structurally similar to kinase inhibitors, we hypothesized that certain hydroxylated PBDEs mediate neurotoxicity, at least in part, by impairing the MEK–ERK axis of MAPK signal transduction. We tested this hypothesis on three experimental platforms: 1) in silico, where modeling ligand–protein docking suggested that 6-OH–BDE-47 is a promiscuous ATP-competitive kinase inhibitor; 2) in vitro in dissociated neurons, where 6-OH–BDE-47 and another specific hydroxylated BDE metabolite similarly impaired phosphorylation of MEK/ERK1/2 and activity-induced transcription of a neuronal immediate early gene; and 3) in vivo in Drosophila melanogaster, where developmental exposures to 6-OH–BDE-47 and a MAPK inhibitor resulted in offspring displaying similarly increased frequency of mushroom-body β–lobe midline crossing, a metric of axonal guidance. Taken together, our results support that certain ortho-hydroxylated PBDE metabolites are promiscuous kinase inhibitors and can cause disruptions of critical neurodevelopmental processes, including neuronal electrical activity, pre-synaptic functions, MEK–ERK signaling, and axonal guidance.




e

The testis-specific LINC component SUN3 is essential for sperm head shaping during mouse spermiogenesis [Cell Biology]

Sperm head shaping is a key event in spermiogenesis and is tightly controlled via the acrosome–manchette network. Linker of nucleoskeleton and cytoskeleton (LINC) complexes consist of Sad1 and UNC84 domain–containing (SUN) and Klarsicht/ANC-1/Syne-1 homology (KASH) domain proteins and form conserved nuclear envelope bridges implicated in transducing mechanical forces from the manchette to sculpt sperm nuclei into a hook-like shape. However, the role of LINC complexes in sperm head shaping is still poorly understood. Here we assessed the role of SUN3, a testis-specific LINC component harboring a conserved SUN domain, in spermiogenesis. We show that CRISPR/Cas9-generated Sun3 knockout male mice are infertile, displaying drastically reduced sperm counts and a globozoospermia-like phenotype, including a missing, mislocalized, or fragmented acrosome, as well as multiple defects in sperm flagella. Further examination revealed that the sperm head abnormalities are apparent at step 9 and that the sperm nuclei fail to elongate because of the absence of manchette microtubules and perinuclear rings. These observations indicate that Sun3 deletion likely impairs the ability of the LINC complex to transduce the cytoskeletal force to the nuclear envelope, required for sperm head elongation. We also found that SUN3 interacts with SUN4 in mouse testes and that the level of SUN4 proteins is drastically reduced in Sun3-null mice. Altogether, our results indicate that SUN3 is essential for sperm head shaping and male fertility, providing molecular clues regarding the underlying pathology of the globozoospermia-like phenotype.




e

Bulletin updated at 00:00 HKT 10/May/2020

General Situation:
A trough of low pressure will edge towards the coast of Guangdong today and linger over the region in the following couple of days. There will be thundery showers over Guangdong. With the anticyclone aloft strengthening in the middle and latter parts of this week, the weather over southern China will improve and it will be hot.

Date/Month: 10/05 (Sunday)
Wind: South force 3.
Weather: Sunny intervals and a few showers. Isolated thunderstorms later.
Temp range: 28 - 32 C
R.H. range: 65 - 95 per Cent

Date/Month: 11/05 (Monday)
Wind: South force 2 to 3.
Weather: Mainly cloudy with occasional showers and a few squally thunderstorms.
Temp range: 26 - 30 C
R.H. range: 70 - 95 per Cent

Date/Month: 12/05 (Tuesday)
Wind: Light winds force 2.
Weather: Mainly cloudy with a few showers and thunderstorms.
Temp range: 25 - 29 C
R.H. range: 70 - 95 per Cent

Date/Month: 13/05 (Wednesday)
Wind: Southeast force 3.
Weather: Sunny intervals and one or two showers.
Temp range: 26 - 30 C
R.H. range: 65 - 90 per Cent

Date/Month: 14/05 (Thursday)
Wind: Southeast force 3.
Weather: Sunny periods.
Temp range: 26 - 31 C
R.H. range: 60 - 85 per Cent

Date/Month: 15/05 (Friday)
Wind: South to southeast force 3.
Weather: Sunny periods.
Temp range: 27 - 32 C
R.H. range: 60 - 85 per Cent

Date/Month: 16/05 (Saturday)
Wind: South force 3.
Weather: Sunny periods.
Temp range: 27 - 32 C
R.H. range: 60 - 85 per Cent

Date/Month: 17/05 (Sunday)
Wind: South force 3 to 4.
Weather: Sunny periods.
Temp range: 28 - 32 C
R.H. range: 70 - 90 per Cent

Date/Month: 18/05 (Monday)
Wind: South force 3 to 4.
Weather: Sunny periods and isolated showers.
Temp range: 28 - 32 C
R.H. range: 70 - 90 per Cent

Sea surface temperature at 2 P.M. 09/05/2020 at North Point was 25 degrees C.
Soil temperatures at 7 A.M. 09/05/2020 at Hong Kong Observatory :
0.5 M below surface was 27.6 degrees C
1.0 M below surface was 26.4 degrees C




e

Bulletin updated at 00:45 HKT 10/05/2020

An anticyclone aloft brought hot weather to southern China yesterday. Locally, it was hot with sunny periods and isolated showers. A trough of low pressure will edge towards the coast of Guangdong today and linger over the region in the following couple of days. There will be thundery showers over Guangdong.

Weather forecast for Hong Kong:
Mainly cloudy with a few showers. Sunny intervals during the day. There will be isolated thunderstorms later. Hot with temperatures ranging between 28 and 32 degrees. Moderate southerly winds.

Outlook: There will be showers and thunderstorms on Monday and Tuesday. The weather will improve gradually in the following couple of days.




e

WYSIWYG Web Builder 7.0 released!

We are pleased to announce a major new release with more than 150 new features and improvements!




e

WYSIWYG Web Builder 7.5 available now!

WYSIWYG Web Builder 7.5 is a major update with more than 50 new features and improvements (compared to version 7.2.1). Our christmas gift to you!




e

WYSIWYG Web Builder 8.0 released!

We are pleased to announce a major new release with more than 150 new features and improvements!




e

WYSIWYG Web Builder 8.5 available now!

WYSIWYG Web Builder 8.5 is a major update with more than 50 new features and improvements (compared to version 8.2.1).




e

WYSIWYG Web Builder 9.0 released!

We are pleased to announce a major new release with more than 150 new features and improvements!




e

WYSIWYG Web Builder 9.1 update

WYSIWYG Web Builder 9.1 fixes known problems, adds new features and includes other improvements.




e

WYSIWYG Web Builder 9.2 update

WYSIWYG Web Builder 9.2 fixes known problems, adds new features and includes other improvements.




e

WYSIWYG Web Builder 9.3 update

WYSIWYG Web Builder 9.3 fixes known problems, adds new features and includes other improvements.




e

WYSIWYG Web Builder 9.4 update

WYSIWYG Web Builder 9.4 fixes known problems, adds new features and includes other improvements.




e

WYSIWYG Web Builder 10.0 released!

We are pleased to announce a major new release with more than 100 new features and improvements!




e

WYSIWYG Web Builder 10.1 update

WYSIWYG Web Builder 10.1 fixes known problems, adds new features and includes other improvements.




e

WYSIWYG Web Builder 10.2 update

WYSIWYG Web Builder 10.2 fixes known problems, adds new features and includes other improvements.




e

WYSIWYG Web Builder 10.3 update

WYSIWYG Web Builder 10.3 fixes known problems, adds new features and includes other improvements.




e

WYSIWYG Web Builder 10.4 update

WYSIWYG Web Builder 10.4 fixes known problems, adds new features and includes other improvements.




e

WYSIWYG Web Builder 11.0 released!

We are pleased to announce a major new release with more than 150 new features and improvements!




e

WYSIWYG Web Builder 12.0 released!

We are pleased to announce a major new release with more than 125 new features and improvements!




e

Genetic Profile and Functional Proteomics of Anal Squamous Cell Carcinoma: Proposal for a Molecular Classification

Lucía Trilla-Fuertes
Apr 1, 2020; 19:690-700
Research




e

A Quantitative Tri-fluorescent Yeast Two-hybrid System: From Flow Cytometry to In cellula Affinities

David Cluet
Apr 1, 2020; 19:701-715
Technological Innovation and Resources




e

Phenotypic Adaption of Pseudomonas aeruginosa by Hacking Siderophores Produced by Other Microorganisms

Quentin Perraud
Apr 1, 2020; 19:589-607
Research




e

Tandem Mass Tag Approach Utilizing Pervanadate BOOST Channels Delivers Deeper Quantitative Characterization of the Tyrosine Phosphoproteome

Xien Yu Chua
Apr 1, 2020; 19:730-743
Technological Innovation and Resources




e

Integrative Metabolic Pathway Analysis Reveals Novel Therapeutic Targets in Osteoarthritis

Beatriz Rocha
Apr 1, 2020; 19:574-588
Research




e

Organellar maps through proteomic profiling - a conceptual guide

Georg H H Borner
Apr 28, 2020; 0:R120.001971v1-mcp.R120.001971
Review




e

Peptide-based interaction proteomics

Katrina Meyer
Apr 28, 2020; 0:R120.002034v1-mcp.R120.002034
Review




e

The DNA sensor cGAS is decorated by acetylation and phosphorylation modifications in the context of immune signaling

Bokai Song
Apr 28, 2020; 0:RA120.001981v1-mcp.RA120.001981
Research




e

Modulation of natural HLA-B*27:05 ligandome by ankylosing spondylitis-associated endoplasmic reticulum aminopeptidase 2 (ERAP2)

Elena Lorente
Apr 7, 2020; 0:RA120.002014v1-mcp.RA120.002014
Research




e

HIGD2A is required for assembly of the COX3 module of human mitochondrial complex IV

Daniella H Hock
Apr 21, 2020; 0:RA120.002076v1-mcp.RA120.002076
Research




e

Chemical Genetics of AGC-kinases Reveals Shared Targets of Ypk1, Protein Kinase A and Sch9

Michael Plank
Apr 1, 2020; 19:655-671
Research




e

Characterization of Prenylated C-terminal Peptides Using a Thiopropyl-based Capture Technique and LC-MS/MS

James A. Wilkins
Apr 13, 2020; 0:RA120.001944v1-mcp.RA120.001944
Research




e

Flow-induced reorganization of laminin-integrin networks within the endothelial basement membrane uncovered by proteomics

Eelke P. Béguin
Apr 24, 2020; 0:RA120.001964v1-mcp.RA120.001964
Research




e

Seminal Plasma Proteome as an Indicator of Sperm Dysfunction and Low Sperm Motility

Yunlei Li
Apr 20, 2020; 0:RA120.002017v1-mcp.RA120.002017
Research




e

Cell Cycle Profiling Reveals Protein Oscillation, Phosphorylation, and Localization Dynamics

Patrick Herr
Apr 1, 2020; 19:608-623
Research




e

Proteaphagy in mammalian cells can function independent of ATG5/ATG7

Tatjana Goebel
Apr 16, 2020; 0:RA120.001983v1-mcp.RA120.001983
Research




e

Robust summarization and inference in proteome-wide label-free quantification

Adriaan Sticker
Apr 22, 2020; 0:RA119.001624v1-mcp.RA119.001624
Research




e

Investigation of inter- and intra-tumoral heterogeneity of glioblastoma using TOF-SIMS

Samvel K Gularyan
Apr 6, 2020; 0:RA120.001986v1-mcp.RA120.001986
Research