x

A Local Spectral Exterior Calculus for the Sphere and Application to the Shallow Water Equations. (arXiv:2005.03598v1 [math.NA])

We introduce $Psimathrm{ec}$, a local spectral exterior calculus for the two-sphere $S^2$. $Psimathrm{ec}$ provides a discretization of Cartan's exterior calculus on $S^2$ formed by spherical differential $r$-form wavelets. These are well localized in space and frequency and provide (Stevenson) frames for the homogeneous Sobolev spaces $dot{H}^{-r+1}( Omega_{ u}^{r} , S^2 )$ of differential $r$-forms. At the same time, they satisfy important properties of the exterior calculus, such as the de Rahm complex and the Hodge-Helmholtz decomposition. Through this, $Psimathrm{ec}$ is tailored towards structure preserving discretizations that can adapt to solutions with varying regularity. The construction of $Psimathrm{ec}$ is based on a novel spherical wavelet frame for $L_2(S^2)$ that we obtain by introducing scalable reproducing kernel frames. These extend scalable frames to weighted sampling expansions and provide an alternative to quadrature rules for the discretization of needlet-like scale-discrete wavelets. We verify the practicality of $Psimathrm{ec}$ for numerical computations using the rotating shallow water equations. Our numerical results demonstrate that a $Psimathrm{ec}$-based discretization of the equations attains accuracy comparable to those of spectral methods while using a representation that is well localized in space and frequency.




x

Efficient Exact Verification of Binarized Neural Networks. (arXiv:2005.03597v1 [cs.AI])

We present a new system, EEV, for verifying binarized neural networks (BNNs). We formulate BNN verification as a Boolean satisfiability problem (SAT) with reified cardinality constraints of the form $y = (x_1 + cdots + x_n le b)$, where $x_i$ and $y$ are Boolean variables possibly with negation and $b$ is an integer constant. We also identify two properties, specifically balanced weight sparsity and lower cardinality bounds, that reduce the verification complexity of BNNs. EEV contains both a SAT solver enhanced to handle reified cardinality constraints natively and novel training strategies designed to reduce verification complexity by delivering networks with improved sparsity properties and cardinality bounds. We demonstrate the effectiveness of EEV by presenting the first exact verification results for $ell_{infty}$-bounded adversarial robustness of nontrivial convolutional BNNs on the MNIST and CIFAR10 datasets. Our results also show that, depending on the dataset and network architecture, our techniques verify BNNs between a factor of ten to ten thousand times faster than the best previous exact verification techniques for either binarized or real-valued networks.




x

A Tale of Two Perplexities: Sensitivity of Neural Language Models to Lexical Retrieval Deficits in Dementia of the Alzheimer's Type. (arXiv:2005.03593v1 [cs.CL])

In recent years there has been a burgeoning interest in the use of computational methods to distinguish between elicited speech samples produced by patients with dementia, and those from healthy controls. The difference between perplexity estimates from two neural language models (LMs) - one trained on transcripts of speech produced by healthy participants and the other trained on transcripts from patients with dementia - as a single feature for diagnostic classification of unseen transcripts has been shown to produce state-of-the-art performance. However, little is known about why this approach is effective, and on account of the lack of case/control matching in the most widely-used evaluation set of transcripts (DementiaBank), it is unclear if these approaches are truly diagnostic, or are sensitive to other variables. In this paper, we interrogate neural LMs trained on participants with and without dementia using synthetic narratives previously developed to simulate progressive semantic dementia by manipulating lexical frequency. We find that perplexity of neural LMs is strongly and differentially associated with lexical frequency, and that a mixture model resulting from interpolating control and dementia LMs improves upon the current state-of-the-art for models trained on transcript text exclusively.




x

VM placement over WDM-TDM AWGR PON Based Data Centre Architecture. (arXiv:2005.03590v1 [cs.NI])

Passive optical networks (PON) can play a vital role in data centres and access fog solutions by providing scalable, cost and energy efficient architectures. This paper proposes a Mixed Integer Linear Programming (MILP) model to optimize the placement of virtual machines (VMs) over an energy efficient WDM-TDM AWGR PON based data centre architecture. In this optimization, the use of VMs and their requirements affect the optimum number of servers utilized in the data centre when minimizing the power consumption and enabling more efficient utilization of servers is considered. Two power consumption minimization objectives were examined for up to 20 VMs with different computing and networking requirements. The results indicate that considering the minimization of the processing and networking power consumption in the allocation of VMs in the WDM-TDM AWGR PON can reduce the networking power consumption by up to 70% compared to the minimization of the processing power consumption.




x

Learning Implicit Text Generation via Feature Matching. (arXiv:2005.03588v1 [cs.CL])

Generative feature matching network (GFMN) is an approach for training implicit generative models for images by performing moment matching on features from pre-trained neural networks. In this paper, we present new GFMN formulations that are effective for sequential data. Our experimental results show the effectiveness of the proposed method, SeqGFMN, for three distinct generation tasks in English: unconditional text generation, class-conditional text generation, and unsupervised text style transfer. SeqGFMN is stable to train and outperforms various adversarial approaches for text generation and text style transfer.




x

GeoLogic -- Graphical interactive theorem prover for Euclidean geometry. (arXiv:2005.03586v1 [cs.LO])

Domain of mathematical logic in computers is dominated by automated theorem provers (ATP) and interactive theorem provers (ITP). Both of these are hard to access by AI from the human-imitation approach: ATPs often use human-unfriendly logical foundations while ITPs are meant for formalizing existing proofs rather than problem solving. We aim to create a simple human-friendly logical system for mathematical problem solving. We picked the case study of Euclidean geometry as it can be easily visualized, has simple logic, and yet potentially offers many high-school problems of various difficulty levels. To make the environment user friendly, we abandoned strict logic required by ITPs, allowing to infer topological facts from pictures. We present our system for Euclidean geometry, together with a graphical application GeoLogic, similar to GeoGebra, which allows users to interactively study and prove properties about the geometrical setup.




x

Simulating Population Protocols in Sub-Constant Time per Interaction. (arXiv:2005.03584v1 [cs.DS])

We consider the problem of efficiently simulating population protocols. In the population model, we are given a distributed system of $n$ agents modeled as identical finite-state machines. In each time step, a pair of agents is selected uniformly at random to interact. In an interaction, agents update their states according to a common transition function. We empirically and analytically analyze two classes of simulators for this model.

First, we consider sequential simulators executing one interaction after the other. Key to the performance of these simulators is the data structure storing the agents' states. For our analysis, we consider plain arrays, binary search trees, and a novel Dynamic Alias Table data structure.

Secondly, we consider batch processing to efficiently update the states of multiple independent agents in one step. For many protocols considered in literature, our simulator requires amortized sub-constant time per interaction and is fast in practice: given a fixed time budget, the implementation of our batched simulator is able to simulate population protocols several orders of magnitude larger compared to the sequential competitors, and can carry out $2^{50}$ interactions among the same number of agents in less than 400s.




x

A Reduced Basis Method For Fractional Diffusion Operators II. (arXiv:2005.03574v1 [math.NA])

We present a novel numerical scheme to approximate the solution map $smapsto u(s) := mathcal{L}^{-s}f$ to partial differential equations involving fractional elliptic operators. Reinterpreting $mathcal{L}^{-s}$ as interpolation operator allows us to derive an integral representation of $u(s)$ which includes solutions to parametrized reaction-diffusion problems. We propose a reduced basis strategy on top of a finite element method to approximate its integrand. Unlike prior works, we deduce the choice of snapshots for the reduced basis procedure analytically. Avoiding further discretization, the integral is interpreted in a spectral setting to evaluate the surrogate directly. Its computation boils down to a matrix approximation $L$ of the operator whose inverse is projected to a low-dimensional space, where explicit diagonalization is feasible. The universal character of the underlying $s$-independent reduced space allows the approximation of $(u(s))_{sin(0,1)}$ in its entirety. We prove exponential convergence rates and confirm the analysis with a variety of numerical examples.

Further improvements are proposed in the second part of this investigation to avoid inversion of $L$. Instead, we directly project the matrix to the reduced space, where its negative fractional power is evaluated. A numerical comparison with the predecessor highlights its competitive performance.




x

Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation. (arXiv:2005.03572v1 [cs.CV])

Deep learning-based object detection and instance segmentation have achieved unprecedented progress. In this paper, we propose Complete-IoU (CIoU) loss and Cluster-NMS for enhancing geometric factors in both bounding box regression and Non-Maximum Suppression (NMS), leading to notable gains of average precision (AP) and average recall (AR), without the sacrifice of inference efficiency. In particular, we consider three geometric factors, i.e., overlap area, normalized central point distance and aspect ratio, which are crucial for measuring bounding box regression in object detection and instance segmentation. The three geometric factors are then incorporated into CIoU loss for better distinguishing difficult regression cases. The training of deep models using CIoU loss results in consistent AP and AR improvements in comparison to widely adopted $ell_n$-norm loss and IoU-based loss. Furthermore, we propose Cluster-NMS, where NMS during inference is done by implicitly clustering detected boxes and usually requires less iterations. Cluster-NMS is very efficient due to its pure GPU implementation, , and geometric factors can be incorporated to improve both AP and AR. In the experiments, CIoU loss and Cluster-NMS have been applied to state-of-the-art instance segmentation (e.g., YOLACT), and object detection (e.g., YOLO v3, SSD and Faster R-CNN) models. Taking YOLACT on MS COCO as an example, our method achieves performance gains as +1.7 AP and +6.2 AR$_{100}$ for object detection, and +0.9 AP and +3.5 AR$_{100}$ for instance segmentation, with 27.1 FPS on one NVIDIA GTX 1080Ti GPU. All the source code and trained models are available at https://github.com/Zzh-tju/CIoU




x

QuickSync: A Quickly Synchronizing PoS-Based Blockchain Protocol. (arXiv:2005.03564v1 [cs.CR])

To implement a blockchain, we need a blockchain protocol for all the nodes to follow. To design a blockchain protocol, we need a block publisher selection mechanism and a chain selection rule. In Proof-of-Stake (PoS) based blockchain protocols, block publisher selection mechanism selects the node to publish the next block based on the relative stake held by the node. However, PoS protocols may face vulnerability to fully adaptive corruptions. In literature, researchers address this issue at the cost of performance.

In this paper, we propose a novel PoS-based blockchain protocol, QuickSync, to achieve security against fully adaptive corruptions without compromising on performance. We propose a metric called block power, a value defined for each block, derived from the output of the verifiable random function based on the digital signature of the block publisher. With this metric, we compute chain power, the sum of block powers of all the blocks comprising the chain, for all the valid chains. These metrics are a function of the block publisher's stake to enable the PoS aspect of the protocol. The chain selection rule selects the chain with the highest chain power as the one to extend. This chain selection rule hence determines the selected block publisher of the previous block. When we use metrics to define the chain selection rule, it may lead to vulnerabilities against Sybil attacks. QuickSync uses a Sybil attack resistant function implemented using histogram matching. We prove that QuickSync satisfies common prefix, chain growth, and chain quality properties and hence it is secure. We also show that it is resilient to different types of adversarial attack strategies. Our analysis demonstrates that QuickSync performs better than Bitcoin by an order of magnitude on both transactions per second and time to finality, and better than Ouroboros v1 by a factor of three on time to finality.




x

NH-HAZE: An Image Dehazing Benchmark with Non-Homogeneous Hazy and Haze-Free Images. (arXiv:2005.03560v1 [cs.CV])

Image dehazing is an ill-posed problem that has been extensively studied in the recent years. The objective performance evaluation of the dehazing methods is one of the major obstacles due to the lacking of a reference dataset. While the synthetic datasets have shown important limitations, the few realistic datasets introduced recently assume homogeneous haze over the entire scene. Since in many real cases haze is not uniformly distributed we introduce NH-HAZE, a non-homogeneous realistic dataset with pairs of real hazy and corresponding haze-free images. This is the first non-homogeneous image dehazing dataset and contains 55 outdoor scenes. The non-homogeneous haze has been introduced in the scene using a professional haze generator that imitates the real conditions of hazy scenes. Additionally, this work presents an objective assessment of several state-of-the-art single image dehazing methods that were evaluated using NH-HAZE dataset.




x

Checking Qualitative Liveness Properties of Replicated Systems with Stochastic Scheduling. (arXiv:2005.03555v1 [cs.LO])

We present a sound and complete method for the verification of qualitative liveness properties of replicated systems under stochastic scheduling. These are systems consisting of a finite-state program, executed by an unknown number of indistinguishable agents, where the next agent to make a move is determined by the result of a random experiment. We show that if a property of such a system holds, then there is always a witness in the shape of a Presburger stage graph: a finite graph whose nodes are Presburger-definable sets of configurations. Due to the high complexity of the verification problem (non-elementary), we introduce an incomplete procedure for the construction of Presburger stage graphs, and implement it on top of an SMT solver. The procedure makes extensive use of the theory of well-quasi-orders, and of the structural theory of Petri nets and vector addition systems. We apply our results to a set of benchmarks, in particular to a large collection of population protocols, a model of distributed computation extensively studied by the distributed computing community.




x

Online Algorithms to Schedule a Proportionate Flexible Flow Shop of Batching Machines. (arXiv:2005.03552v1 [cs.DS])

This paper is the first to consider online algorithms to schedule a proportionate flexible flow shop of batching machines (PFFB). The scheduling model is motivated by manufacturing processes of individualized medicaments, which are used in modern medicine to treat some serious illnesses. We provide two different online algorithms, proving also lower bounds for the offline problem to compute their competitive ratios. The first algorithm is an easy-to-implement, general local scheduling heuristic. It is 2-competitive for PFFBs with an arbitrary number of stages and for several natural scheduling objectives. We also show that for total/average flow time, no deterministic algorithm with better competitive ratio exists. For the special case with two stages and the makespan or total completion time objective, we describe an improved algorithm that achieves the best possible competitive ratio $varphi=frac{1+sqrt{5}}{2}$, the golden ratio. All our results also hold for proportionate (non-flexible) flow shops of batching machines (PFB) for which this is also the first paper to study online algorithms.




x

Credulous Users and Fake News: a Real Case Study on the Propagation in Twitter. (arXiv:2005.03550v1 [cs.SI])

Recent studies have confirmed a growing trend, especially among youngsters, of using Online Social Media as favourite information platform at the expense of traditional mass media. Indeed, they can easily reach a wide audience at a high speed; but exactly because of this they are the preferred medium for influencing public opinion via so-called fake news. Moreover, there is a general agreement that the main vehicle of fakes news are malicious software robots (bots) that automatically interact with human users. In previous work we have considered the problem of tagging human users in Online Social Networks as credulous users. Specifically, we have considered credulous those users with relatively high number of bot friends when compared to total number of their social friends. We consider this group of users worth of attention because they might have a higher exposure to malicious activities and they may contribute to the spreading of fake information by sharing dubious content. In this work, starting from a dataset of fake news, we investigate the behaviour and the degree of involvement of credulous users in fake news diffusion. The study aims to: (i) fight fake news by considering the content diffused by credulous users; (ii) highlight the relationship between credulous users and fake news spreading; (iii) target fake news detection by focusing on the analysis of specific accounts more exposed to malicious activities of bots. Our first results demonstrate a strong involvement of credulous users in fake news diffusion. This findings are calling for tools that, by performing data streaming on credulous' users actions, enables us to perform targeted fact-checking.




x

MISA: Modality-Invariant and -Specific Representations for Multimodal Sentiment Analysis. (arXiv:2005.03545v1 [cs.CL])

Multimodal Sentiment Analysis is an active area of research that leverages multimodal signals for affective understanding of user-generated videos. The predominant approach, addressing this task, has been to develop sophisticated fusion techniques. However, the heterogeneous nature of the signals creates distributional modality gaps that pose significant challenges. In this paper, we aim to learn effective modality representations to aid the process of fusion. We propose a novel framework, MISA, which projects each modality to two distinct subspaces. The first subspace is modality invariant, where the representations across modalities learn their commonalities and reduce the modality gap. The second subspace is modality-specific, which is private to each modality and captures their characteristic features. These representations provide a holistic view of the multimodal data, which is used for fusion that leads to task predictions. Our experiments on popular sentiment analysis benchmarks, MOSI and MOSEI, demonstrate significant gains over state-of-the-art models. We also consider the task of Multimodal Humor Detection and experiment on the recently proposed UR_FUNNY dataset. Here too, our model fares better than strong baselines, establishing MISA as a useful multimodal framework.




x

Collaborative Deanonymization. (arXiv:2005.03535v1 [cs.CR])

We propose protocols to resolve the tension between anonymity and accountability in a peer-to-peer manner. Law enforcement can adopt this approach to solve crimes involving cryptocurrency and anonymization techniques. We illustrate how the protocols could apply to Monero rings and CoinJoin transactions in Bitcoin.




x

p for political: Participation Without Agency Is Not Enough. (arXiv:2005.03534v1 [cs.HC])

Participatory Design's vision of democratic participation assumes participants' feelings of agency in envisioning a collective future. But this assumption may be leaky when dealing with vulnerable populations. We reflect on the results of a series of activities aimed at supporting agentic-future-envisionment with a group of sex-trafficking survivors in Nepal. We observed a growing sense among the survivors that they could play a role in bringing about change in their families. They also became aware of how they could interact with available institutional resources. Reflecting on the observations, we argue that building participant agency on the small and personal interactions is necessary before demanding larger Political participation. In particular, a value of PD, especially for vulnerable populations, can lie in the process itself if it helps participants position themselves as actors in the larger world.




x

Faceted Search of Heterogeneous Geographic Information for Dynamic Map Projection. (arXiv:2005.03531v1 [cs.HC])

This paper proposes a faceted information exploration model that supports coarse-grained and fine-grained focusing of geographic maps by offering a graphical representation of data attributes within interactive widgets. The proposed approach enables (i) a multi-category projection of long-lasting geographic maps, based on the proposal of efficient facets for data exploration in sparse and noisy datasets, and (ii) an interactive representation of the search context based on widgets that support data visualization, faceted exploration, category-based information hiding and transparency of results at the same time. The integration of our model with a semantic representation of geographical knowledge supports the exploration of information retrieved from heterogeneous data sources, such as Public Open Data and OpenStreetMap. We evaluated our model with users in the OnToMap collaborative Web GIS. The experimental results show that, when working on geographic maps populated with multiple data categories, it outperforms simple category-based map projection and traditional faceted search tools, such as checkboxes, in both user performance and experience.




x

CounQER: A System for Discovering and Linking Count Information in Knowledge Bases. (arXiv:2005.03529v1 [cs.IR])

Predicate constraints of general-purpose knowledge bases (KBs) like Wikidata, DBpedia and Freebase are often limited to subproperty, domain and range constraints. In this demo we showcase CounQER, a system that illustrates the alignment of counting predicates, like staffSize, and enumerating predicates, like workInstitution^{-1} . In the demonstration session, attendees can inspect these alignments, and will learn about the importance of these alignments for KB question answering and curation. CounQER is available at https://counqer.mpi-inf.mpg.de/spo.




x

Linear Time LexDFS on Chordal Graphs. (arXiv:2005.03523v1 [cs.DM])

Lexicographic Depth First Search (LexDFS) is a special variant of a Depth First Search (DFS), which was introduced by Corneil and Krueger in 2008. While this search has been used in various applications, in contrast to other graph searches, no general linear time implementation is known to date. In 2014, K"ohler and Mouatadid achieved linear running time to compute some special LexDFS orders for cocomparability graphs. In this paper, we present a linear time implementation of LexDFS for chordal graphs. Our algorithm is able to find any LexDFS order for this graph class. To the best of our knowledge this is the first unrestricted linear time implementation of LexDFS on a non-trivial graph class. In the algorithm we use a search tree computed by Lexicographic Breadth First Search (LexBFS).




x

The Danish Gigaword Project. (arXiv:2005.03521v1 [cs.CL])

Danish is a North Germanic/Scandinavian language spoken primarily in Denmark, a country with a tradition of technological and scientific innovation. However, from a technological perspective, the Danish language has received relatively little attention and, as a result, Danish language technology is hard to develop, in part due to a lack of large or broad-coverage Danish corpora. This paper describes the Danish Gigaword project, which aims to construct a freely-available one billion word corpus of Danish text that represents the breadth of the written language.




x

Practical Perspectives on Quality Estimation for Machine Translation. (arXiv:2005.03519v1 [cs.CL])

Sentence level quality estimation (QE) for machine translation (MT) attempts to predict the translation edit rate (TER) cost of post-editing work required to correct MT output. We describe our view on sentence-level QE as dictated by several practical setups encountered in the industry. We find consumers of MT output---whether human or algorithmic ones---to be primarily interested in a binary quality metric: is the translated sentence adequate as-is or does it need post-editing? Motivated by this we propose a quality classification (QC) view on sentence-level QE whereby we focus on maximizing recall at precision above a given threshold. We demonstrate that, while classical QE regression models fare poorly on this task, they can be re-purposed by replacing the output regression layer with a binary classification one, achieving 50-60\% recall at 90\% precision. For a high-quality MT system producing 75-80\% correct translations, this promises a significant reduction in post-editing work indeed.




x

Two Efficient Device Independent Quantum Dialogue Protocols. (arXiv:2005.03518v1 [quant-ph])

Quantum dialogue is a process of two way secure and simultaneous communication using a single channel. Recently, a Measurement Device Independent Quantum Dialogue (MDI-QD) protocol has been proposed (Quantum Information Processing 16.12 (2017): 305). To make the protocol secure against information leakage, the authors have discarded almost half of the qubits remaining after the error estimation phase. In this paper, we propose two modified versions of the MDI-QD protocol such that the number of discarded qubits is reduced to almost one-fourth of the remaining qubits after the error estimation phase. We use almost half of their discarded qubits along with their used qubits to make our protocol more efficient in qubits count. We show that both of our protocols are secure under the same adversarial model given in MDI-QD protocol.




x

An asynchronous distributed and scalable generalized Nash equilibrium seeking algorithm for strongly monotone games. (arXiv:2005.03507v1 [cs.GT])

In this paper, we present three distributed algorithms to solve a class of generalized Nash equilibrium (GNE) seeking problems in strongly monotone games. The first one (SD-GENO) is based on synchronous updates of the agents, while the second and the third (AD-GEED and AD-GENO) represent asynchronous solutions that are robust to communication delays. AD-GENO can be seen as a refinement of AD-GEED, since it only requires node auxiliary variables, enhancing the scalability of the algorithm. Our main contribution is to prove converge to a variational GNE of the game via an operator-theoretic approach. Finally, we apply the algorithms to network Cournot games and show how different activation sequences and delays affect convergence. We also compare the proposed algorithms to the only other in the literature (ADAGNES), and observe that AD-GENO outperforms the alternative.




x

Sunny Pointer: Designing a mouse pointer for people with peripheral vision loss. (arXiv:2005.03504v1 [cs.HC])

We present a new mouse cursor designed to facilitate the use of the mouse by people with peripheral vision loss. The pointer consists of a collection of converging straight lines covering the whole screen and following the position of the mouse cursor. We measured its positive effects with a group of participants with peripheral vision loss of different kinds and we found that it can reduce by a factor of 7 the time required to complete a targeting task using the mouse. Using eye tracking, we show that this system makes it possible to initiate the movement towards the target without having to precisely locate the mouse pointer. Using Fitts' Law, we compare these performances with those of full visual field users in order to understand the relation between the accuracy of the estimated mouse cursor position and the index of performance obtained with our tool.




x

Subtle Sensing: Detecting Differences in the Flexibility of Virtually Simulated Molecular Objects. (arXiv:2005.03503v1 [cs.HC])

During VR demos we have performed over last few years, many participants (in the absence of any haptic feedback) have commented on their perceived ability to 'feel' differences between simulated molecular objects. The mechanisms for such 'feeling' are not entirely clear: observing from outside VR, one can see that there is nothing physical for participants to 'feel'. Here we outline exploratory user studies designed to evaluate the extent to which participants can distinguish quantitative differences in the flexibility of VR-simulated molecular objects. The results suggest that an individual's capacity to detect differences in molecular flexibility is enhanced when they can interact with and manipulate the molecules, as opposed to merely observing the same interaction. Building on these results, we intend to carry out further studies investigating humans' ability to sense quantitative properties of VR simulations without haptic technology.




x

Heidelberg Colorectal Data Set for Surgical Data Science in the Sensor Operating Room. (arXiv:2005.03501v1 [cs.CV])

Image-based tracking of medical instruments is an integral part of many surgical data science applications. Previous research has addressed the tasks of detecting, segmenting and tracking medical instruments based on laparoscopic video data. However, the methods proposed still tend to fail when applied to challenging images and do not generalize well to data they have not been trained on. This paper introduces the Heidelberg Colorectal (HeiCo) data set - the first publicly available data set enabling comprehensive benchmarking of medical instrument detection and segmentation algorithms with a specific emphasis on robustness and generalization capabilities of the methods. Our data set comprises 30 laparoscopic videos and corresponding sensor data from medical devices in the operating room for three different types of laparoscopic surgery. Annotations include surgical phase labels for all frames in the videos as well as instance-wise segmentation masks for surgical instruments in more than 10,000 individual frames. The data has successfully been used to organize international competitions in the scope of the Endoscopic Vision Challenges (EndoVis) 2017 and 2019.




x

Computing with bricks and mortar: Classification of waveforms with a doped concrete blocks. (arXiv:2005.03498v1 [cs.ET])

We present results showing the capability of concrete-based information processing substrate in the signal classification task in accordance with in materio computing paradigm. As the Reservoir Computing is a suitable model for describing embedded in materio computation, we propose that this type of presented basic construction unit can be used as a source for "reservoir of states" necessary for simple tuning of the readout layer. In that perspective, buildings constructed from computing concrete could function as a highly parallel information processor for smart architecture. We present an electrical characterization of the set of samples with different additive concentrations followed by a dynamical analysis of selected specimens showing fingerprints of memfractive properties. Moreover, on the basis of obtained parameters, classification of the signal waveform shapes can be performed in scenarios explicitly tuned for a given device terminal.




x

Subquadratic-Time Algorithms for Normal Bases. (arXiv:2005.03497v1 [cs.SC])

For any finite Galois field extension $mathsf{K}/mathsf{F}$, with Galois group $G = mathrm{Gal}(mathsf{K}/mathsf{F})$, there exists an element $alpha in mathsf{K}$ whose orbit $Gcdotalpha$ forms an $mathsf{F}$-basis of $mathsf{K}$. Such an $alpha$ is called a normal element and $Gcdotalpha$ is a normal basis. We introduce a probabilistic algorithm for testing whether a given $alpha in mathsf{K}$ is normal, when $G$ is either a finite abelian or a metacyclic group. The algorithm is based on the fact that deciding whether $alpha$ is normal can be reduced to deciding whether $sum_{g in G} g(alpha)g in mathsf{K}[G]$ is invertible; it requires a slightly subquadratic number of operations. Once we know that $alpha$ is normal, we show how to perform conversions between the working basis of $mathsf{K}/mathsf{F}$ and the normal basis with the same asymptotic cost.




x

Text Recognition in the Wild: A Survey. (arXiv:2005.03492v1 [cs.CV])

The history of text can be traced back over thousands of years. Rich and precise semantic information carried by text is important in a wide range of vision-based application scenarios. Therefore, text recognition in natural scenes has been an active research field in computer vision and pattern recognition. In recent years, with the rise and development of deep learning, numerous methods have shown promising in terms of innovation, practicality, and efficiency. This paper aims to (1) summarize the fundamental problems and the state-of-the-art associated with scene text recognition; (2) introduce new insights and ideas; (3) provide a comprehensive review of publicly available resources; (4) point out directions for future work. In summary, this literature review attempts to present the entire picture of the field of scene text recognition. It provides a comprehensive reference for people entering this field, and could be helpful to inspire future research. Related resources are available at our Github repository: https://github.com/HCIILAB/Scene-Text-Recognition.




x

Algorithmic Averaging for Studying Periodic Orbits of Planar Differential Systems. (arXiv:2005.03487v1 [cs.SC])

One of the main open problems in the qualitative theory of real planar differential systems is the study of limit cycles. In this article, we present an algorithmic approach for detecting how many limit cycles can bifurcate from the periodic orbits of a given polynomial differential center when it is perturbed inside a class of polynomial differential systems via the averaging method. We propose four symbolic algorithms to implement the averaging method. The first algorithm is based on the change of polar coordinates that allows one to transform a considered differential system to the normal form of averaging. The second algorithm is used to derive the solutions of certain differential systems associated to the unperturbed term of the normal of averaging. The third algorithm exploits the partial Bell polynomials and allows one to compute the integral formula of the averaged functions at any order. The last algorithm is based on the aforementioned algorithms and determines the exact expressions of the averaged functions for the considered differential systems. The implementation of our algorithms is discussed and evaluated using several examples. The experimental results have extended the existing relevant results for certain classes of differential systems.




x

Anonymized GCN: A Novel Robust Graph Embedding Method via Hiding Node Position in Noise. (arXiv:2005.03482v1 [cs.LG])

Graph convolution network (GCN) have achieved state-of-the-art performance in the task of node prediction in the graph structure. However, with the gradual various of graph attack methods, there are lack of research on the robustness of GCN. At this paper, we will design a robust GCN method for node prediction tasks. Considering the graph structure contains two types of information: node information and connection information, and attackers usually modify the connection information to complete the interference with the prediction results of the node, we first proposed a method to hide the connection information in the generator, named Anonymized GCN (AN-GCN). By hiding the connection information in the graph structure in the generator through adversarial training, the accurate node prediction can be completed only by the node number rather than its specific position in the graph. Specifically, we first demonstrated the key to determine the embedding of a specific node: the row corresponding to the node of the eigenmatrix of the Laplace matrix, by target it as the output of the generator, we designed a method to hide the node number in the noise. Take the corresponding noise as input, we will obtain the connection structure of the node instead of directly obtaining. Then the encoder and decoder are spliced both in discriminator, so that after adversarial training, the generator and discriminator can cooperate to complete the encoding and decoding of the graph, then complete the node prediction. Finally, All node positions can generated by noise at the same time, that is to say, the generator will hides all the connection information of the graph structure. The evaluation shows that we only need to obtain the initial features and node numbers of the nodes to complete the node prediction, and the accuracy did not decrease, but increased by 0.0293.




x

Brain-like approaches to unsupervised learning of hidden representations -- a comparative study. (arXiv:2005.03476v1 [cs.NE])

Unsupervised learning of hidden representations has been one of the most vibrant research directions in machine learning in recent years. In this work we study the brain-like Bayesian Confidence Propagating Neural Network (BCPNN) model, recently extended to extract sparse distributed high-dimensional representations. The saliency and separability of the hidden representations when trained on MNIST dataset is studied using an external classifier, and compared with other unsupervised learning methods that include restricted Boltzmann machines and autoencoders.




x

Bundle Recommendation with Graph Convolutional Networks. (arXiv:2005.03475v1 [cs.IR])

Bundle recommendation aims to recommend a bundle of items for a user to consume as a whole. Existing solutions integrate user-item interaction modeling into bundle recommendation by sharing model parameters or learning in a multi-task manner, which cannot explicitly model the affiliation between items and bundles, and fail to explore the decision-making when a user chooses bundles. In this work, we propose a graph neural network model named BGCN (short for extit{ extBF{B}undle extBF{G}raph extBF{C}onvolutional extBF{N}etwork}) for bundle recommendation. BGCN unifies user-item interaction, user-bundle interaction and bundle-item affiliation into a heterogeneous graph. With item nodes as the bridge, graph convolutional propagation between user and bundle nodes makes the learned representations capture the item level semantics. Through training based on hard-negative sampler, the user's fine-grained preferences for similar bundles are further distinguished. Empirical results on two real-world datasets demonstrate the strong performance gains of BGCN, which outperforms the state-of-the-art baselines by 10.77\% to 23.18\%.




x

Ensuring Fairness under Prior Probability Shifts. (arXiv:2005.03474v1 [cs.LG])

In this paper, we study the problem of fair classification in the presence of prior probability shifts, where the training set distribution differs from the test set. This phenomenon can be observed in the yearly records of several real-world datasets, such as recidivism records and medical expenditure surveys. If unaccounted for, such shifts can cause the predictions of a classifier to become unfair towards specific population subgroups. While the fairness notion called Proportional Equality (PE) accounts for such shifts, a procedure to ensure PE-fairness was unknown.

In this work, we propose a method, called CAPE, which provides a comprehensive solution to the aforementioned problem. CAPE makes novel use of prevalence estimation techniques, sampling and an ensemble of classifiers to ensure fair predictions under prior probability shifts. We introduce a metric, called prevalence difference (PD), which CAPE attempts to minimize in order to ensure PE-fairness. We theoretically establish that this metric exhibits several desirable properties.

We evaluate the efficacy of CAPE via a thorough empirical evaluation on synthetic datasets. We also compare the performance of CAPE with several popular fair classifiers on real-world datasets like COMPAS (criminal risk assessment) and MEPS (medical expenditure panel survey). The results indicate that CAPE ensures PE-fair predictions, while performing well on other performance metrics.




x

Indexing Metric Spaces for Exact Similarity Search. (arXiv:2005.03468v1 [cs.DB])

With the continued digitalization of societal processes, we are seeing an explosion in available data. This is referred to as big data. In a research setting, three aspects of the data are often viewed as the main sources of challenges when attempting to enable value creation from big data: volume, velocity and variety. Many studies address volume or velocity, while much fewer studies concern the variety. Metric space is ideal for addressing variety because it can accommodate any type of data as long as its associated distance notion satisfies the triangle inequality. To accelerate search in metric space, a collection of indexing techniques for metric data have been proposed. However, existing surveys each offers only a narrow coverage, and no comprehensive empirical study of those techniques exists. We offer a survey of all the existing metric indexes that can support exact similarity search, by i) summarizing all the existing partitioning, pruning and validation techniques used for metric indexes, ii) providing the time and storage complexity analysis on the index construction, and iii) report on a comprehensive empirical comparison of their similarity query processing performance. Here, empirical comparisons are used to evaluate the index performance during search as it is hard to see the complexity analysis differences on the similarity query processing and the query performance depends on the pruning and validation abilities related to the data distribution. This article aims at revealing different strengths and weaknesses of different indexing techniques in order to offer guidance on selecting an appropriate indexing technique for a given setting, and directing the future research for metric indexes.




x

Predictions and algorithmic statistics for infinite sequence. (arXiv:2005.03467v1 [cs.IT])

Consider the following prediction problem. Assume that there is a block box that produces bits according to some unknown computable distribution on the binary tree. We know first $n$ bits $x_1 x_2 ldots x_n$. We want to know the probability of the event that that the next bit is equal to $1$. Solomonoff suggested to use universal semimeasure $m$ for solving this task. He proved that for every computable distribution $P$ and for every $b in {0,1}$ the following holds: $$sum_{n=1}^{infty}sum_{x: l(x)=n} P(x) (P(b | x) - m(b | x))^2 < infty .$$ However, Solomonoff's method has a negative aspect: Hutter and Muchnik proved that there are an universal semimeasure $m$, computable distribution $P$ and a random (in Martin-L{"o}f sense) sequence $x_1 x_2ldots$ such that $lim_{n o infty} P(x_{n+1} | x_1ldots x_n) - m(x_{n+1} | x_1ldots x_n) rightarrow 0$. We suggest a new way for prediction. For every finite string $x$ we predict the new bit according to the best (in some sence) distribution for $x$. We prove the similar result as Solomonoff theorem for our way of prediction. Also we show that our method of prediction has no that negative aspect as Solomonoff's method.




x

High Performance Interference Suppression in Multi-User Massive MIMO Detector. (arXiv:2005.03466v1 [cs.OH])

In this paper, we propose a new nonlinear detector with improved interference suppression in Multi-User Multiple Input, Multiple Output (MU-MIMO) system. The proposed detector is a combination of the following parts: QR decomposition (QRD), low complexity users sorting before QRD, sorting-reduced (SR) K-best method and minimum mean square error (MMSE) pre-processing. Our method outperforms a linear interference rejection combining (IRC, i.e. MMSE naturally) method significantly in both strong interference and additive white noise scenarios with both ideal and real channel estimations. This result has wide application importance for scenarios with strong interference, i.e. when co-located users utilize the internet in stadium, highway, shopping center, etc. Simulation results are presented for the non-line of sight 3D-UMa model of 5G QuaDRiGa 2.0 channel for 16 highly correlated single-antenna users with QAM16 modulation in 64 antennas of Massive MIMO system. The performance was compared with MMSE and other detection approaches.




x

How Can CNNs Use Image Position for Segmentation?. (arXiv:2005.03463v1 [eess.IV])

Convolution is an equivariant operation, and image position does not affect its result. A recent study shows that the zero-padding employed in convolutional layers of CNNs provides position information to the CNNs. The study further claims that the position information enables accurate inference for several tasks, such as object recognition, segmentation, etc. However, there is a technical issue with the design of the experiments of the study, and thus the correctness of the claim is yet to be verified. Moreover, the absolute image position may not be essential for the segmentation of natural images, in which target objects will appear at any image position. In this study, we investigate how positional information is and can be utilized for segmentation tasks. Toward this end, we consider {em positional encoding} (PE) that adds channels embedding image position to the input images and compare PE with several padding methods. Considering the above nature of natural images, we choose medical image segmentation tasks, in which the absolute position appears to be relatively important, as the same organs (of different patients) are captured in similar sizes and positions. We draw a mixed conclusion from the experimental results; the positional encoding certainly works in some cases, but the absolute image position may not be so important for segmentation tasks as we think.




x

ExpDNN: Explainable Deep Neural Network. (arXiv:2005.03461v1 [cs.LG])

In recent years, deep neural networks have been applied to obtain high performance of prediction, classification, and pattern recognition. However, the weights in these deep neural networks are difficult to be explained. Although a linear regression method can provide explainable results, the method is not suitable in the case of input interaction. Therefore, an explainable deep neural network (ExpDNN) with explainable layers is proposed to obtain explainable results in the case of input interaction. Three cases were given to evaluate the proposed ExpDNN, and the results showed that the absolute value of weight in an explainable layer can be used to explain the weight of corresponding input for feature extraction.




x

AIBench: Scenario-distilling AI Benchmarking. (arXiv:2005.03459v1 [cs.PF])

Real-world application scenarios like modern Internet services consist of diversity of AI and non-AI modules with very long and complex execution paths. Using component or micro AI benchmarks alone can lead to error-prone conclusions. This paper proposes a scenario-distilling AI benchmarking methodology. Instead of using real-world applications, we propose the permutations of essential AI and non-AI tasks as a scenario-distilling benchmark. We consider scenario-distilling benchmarks, component and micro benchmarks as three indispensable parts of a benchmark suite. Together with seventeen industry partners, we identify nine important real-world application scenarios. We design and implement a highly extensible, configurable, and flexible benchmark framework. On the basis of the framework, we propose the guideline for building scenario-distilling benchmarks, and present two Internet service AI ones. The preliminary evaluation shows the advantage of scenario-distilling AI benchmarking against using component or micro AI benchmarks alone. The specifications, source code, testbed, and results are publicly available from the web site url{this http URL}.




x

NTIRE 2020 Challenge on NonHomogeneous Dehazing. (arXiv:2005.03457v1 [cs.CV])

This paper reviews the NTIRE 2020 Challenge on NonHomogeneous Dehazing of images (restoration of rich details in hazy image). We focus on the proposed solutions and their results evaluated on NH-Haze, a novel dataset consisting of 55 pairs of real haze free and nonhomogeneous hazy images recorded outdoor. NH-Haze is the first realistic nonhomogeneous haze dataset that provides ground truth images. The nonhomogeneous haze has been produced using a professional haze generator that imitates the real conditions of haze scenes. 168 participants registered in the challenge and 27 teams competed in the final testing phase. The proposed solutions gauge the state-of-the-art in image dehazing.




x

Successfully Applying the Stabilized Lottery Ticket Hypothesis to the Transformer Architecture. (arXiv:2005.03454v1 [cs.LG])

Sparse models require less memory for storage and enable a faster inference by reducing the necessary number of FLOPs. This is relevant both for time-critical and on-device computations using neural networks. The stabilized lottery ticket hypothesis states that networks can be pruned after none or few training iterations, using a mask computed based on the unpruned converged model. On the transformer architecture and the WMT 2014 English-to-German and English-to-French tasks, we show that stabilized lottery ticket pruning performs similar to magnitude pruning for sparsity levels of up to 85%, and propose a new combination of pruning techniques that outperforms all other techniques for even higher levels of sparsity. Furthermore, we confirm that the parameter's initial sign and not its specific value is the primary factor for successful training, and show that magnitude pruning cannot be used to find winning lottery tickets.




x

A combination of 'pooling' with a prediction model can reduce by 73% the number of COVID-19 (Corona-virus) tests. (arXiv:2005.03453v1 [cs.LG])

We show that combining a prediction model (based on neural networks), with a new method of test pooling (better than the original Dorfman method, and better than double-pooling) called 'Grid', we can reduce the number of Covid-19 tests by 73%.




x

Lifted Regression/Reconstruction Networks. (arXiv:2005.03452v1 [cs.LG])

In this work we propose lifted regression/reconstruction networks (LRRNs), which combine lifted neural networks with a guaranteed Lipschitz continuity property for the output layer. Lifted neural networks explicitly optimize an energy model to infer the unit activations and therefore---in contrast to standard feed-forward neural networks---allow bidirectional feedback between layers. So far lifted neural networks have been modelled around standard feed-forward architectures. We propose to take further advantage of the feedback property by letting the layers simultaneously perform regression and reconstruction. The resulting lifted network architecture allows to control the desired amount of Lipschitz continuity, which is an important feature to obtain adversarially robust regression and classification methods. We analyse and numerically demonstrate applications for unsupervised and supervised learning.




x

An Experimental Study of Reduced-Voltage Operation in Modern FPGAs for Neural Network Acceleration. (arXiv:2005.03451v1 [cs.LG])

We empirically evaluate an undervolting technique, i.e., underscaling the circuit supply voltage below the nominal level, to improve the power-efficiency of Convolutional Neural Network (CNN) accelerators mapped to Field Programmable Gate Arrays (FPGAs). Undervolting below a safe voltage level can lead to timing faults due to excessive circuit latency increase. We evaluate the reliability-power trade-off for such accelerators. Specifically, we experimentally study the reduced-voltage operation of multiple components of real FPGAs, characterize the corresponding reliability behavior of CNN accelerators, propose techniques to minimize the drawbacks of reduced-voltage operation, and combine undervolting with architectural CNN optimization techniques, i.e., quantization and pruning. We investigate the effect of environmental temperature on the reliability-power trade-off of such accelerators. We perform experiments on three identical samples of modern Xilinx ZCU102 FPGA platforms with five state-of-the-art image classification CNN benchmarks. This approach allows us to study the effects of our undervolting technique for both software and hardware variability. We achieve more than 3X power-efficiency (GOPs/W) gain via undervolting. 2.6X of this gain is the result of eliminating the voltage guardband region, i.e., the safe voltage region below the nominal level that is set by FPGA vendor to ensure correct functionality in worst-case environmental and circuit conditions. 43% of the power-efficiency gain is due to further undervolting below the guardband, which comes at the cost of accuracy loss in the CNN accelerator. We evaluate an effective frequency underscaling technique that prevents this accuracy loss, and find that it reduces the power-efficiency gain from 43% to 25%.




x

Fine-Grained Analysis of Cross-Linguistic Syntactic Divergences. (arXiv:2005.03436v1 [cs.CL])

The patterns in which the syntax of different languages converges and diverges are often used to inform work on cross-lingual transfer. Nevertheless, little empirical work has been done on quantifying the prevalence of different syntactic divergences across language pairs. We propose a framework for extracting divergence patterns for any language pair from a parallel corpus, building on Universal Dependencies. We show that our framework provides a detailed picture of cross-language divergences, generalizes previous approaches, and lends itself to full automation. We further present a novel dataset, a manually word-aligned subset of the Parallel UD corpus in five languages, and use it to perform a detailed corpus study. We demonstrate the usefulness of the resulting analysis by showing that it can help account for performance patterns of a cross-lingual parser.




x

Parametrized Universality Problems for One-Counter Nets. (arXiv:2005.03435v1 [cs.FL])

We study the language universality problem for One-Counter Nets, also known as 1-dimensional Vector Addition Systems with States (1-VASS), parameterized either with an initial counter value, or with an upper bound on the allowed counter value during runs. The language accepted by an OCN (defined by reaching a final control state) is monotone in both parameters. This yields two natural questions: 1) Does there exist an initial counter value that makes the language universal? 2) Does there exist a sufficiently high ceiling so that the bounded language is universal? Despite the fact that unparameterized universality is Ackermann-complete and that these problems seem to reduce to checking basic structural properties of the underlying automaton, we show that in fact both problems are undecidable. We also look into the complexities of the problems for several decidable subclasses, namely for unambiguous, and deterministic systems, and for those over a single-letter alphabet.




x

Dirichlet spectral-Galerkin approximation method for the simply supported vibrating plate eigenvalues. (arXiv:2005.03433v1 [math.NA])

In this paper, we analyze and implement the Dirichlet spectral-Galerkin method for approximating simply supported vibrating plate eigenvalues with variable coefficients. This is a Galerkin approximation that uses the approximation space that is the span of finitely many Dirichlet eigenfunctions for the Laplacian. Convergence and error analysis for this method is presented for two and three dimensions. Here we will assume that the domain has either a smooth or Lipschitz boundary with no reentrant corners. An important component of the error analysis is Weyl's law for the Dirichlet eigenvalues. Numerical examples for computing the simply supported vibrating plate eigenvalues for the unit disk and square are presented. In order to test the accuracy of the approximation, we compare the spectral-Galerkin method to the separation of variables for the unit disk. Whereas for the unit square we will numerically test the convergence rate for a variable coefficient problem.




x

The Perceptimatic English Benchmark for Speech Perception Models. (arXiv:2005.03418v1 [cs.CL])

We present the Perceptimatic English Benchmark, an open experimental benchmark for evaluating quantitative models of speech perception in English. The benchmark consists of ABX stimuli along with the responses of 91 American English-speaking listeners. The stimuli test discrimination of a large number of English and French phonemic contrasts. They are extracted directly from corpora of read speech, making them appropriate for evaluating statistical acoustic models (such as those used in automatic speech recognition) trained on typical speech data sets. We show that phone discrimination is correlated with several types of models, and give recommendations for researchers seeking easily calculated norms of acoustic distance on experimental stimuli. We show that DeepSpeech, a standard English speech recognizer, is more specialized on English phoneme discrimination than English listeners, and is poorly correlated with their behaviour, even though it yields a low error on the decision task given to humans.