of

Inhibitory Actions of Potentiating Neuroactive Steroids in the Human {alpha}1{beta}3{gamma}2L {gamma}-Aminobutyric Acid Type A Receptor [Article]

The -aminobutyric acid type A (GABAA) receptor is modulated by a number of neuroactive steroids. Sulfated steroids and 3β-hydroxy steroids inhibit, while 3α-hydroxy steroids typically potentiate the receptor. Here, we have investigated inhibition of the α1β32L GABAA receptor by the endogenous neurosteroid 3α-hydroxy-5β-pregnan-20-one (3α5βP) and the synthetic neuroactive steroid 3α-hydroxy-5α-androstane-17β-carbonitrile (ACN). The receptors were expressed in Xenopus oocytes. All experiments were done using two-electrode voltage-clamp electrophysiology. In the presence of low concentrations of GABA, 3α5βP and ACN potentiate the GABAA receptor. To reveal inhibition, we conducted the experiments on receptors activated by the combination of a saturating concentration of GABA and propofol to fully activate the receptors and mask potentiation, or on mutant receptors in which potentiation is ablated. Under these conditions, both steroids inhibited the receptor with IC50s of ~13 μM and maximal inhibitory effects of 70–90%. Receptor inhibition by 3α5βP was sensitive to substitution of the α1 transmembrane domain (TM) 2-2' residue, previously shown to ablate inhibition by pregnenolone sulfate. However, results of coapplication studies and the apparent lack of state dependence suggest that pregnenolone sulfate and 3α5βP inhibit the GABAA receptor independently and through distinct mechanisms. Mutations to the neurosteroid binding sites in the α1 and β3 subunits statistically significantly, albeit weakly and incompletely, reduced inhibition by 3α5βP and ACN.

SIGNIFICANCE STATEMENT

The heteromeric GABAA receptor is inhibited by sulfated steroids and 3β-hydroxy steroids, while 3α-hydroxy steroids are considered to potentiate the receptor. We show here that 3α-hydroxy steroids have inhibitory effects on the α1β32L receptor, which are observed in specific experimental settings and are expected to manifest under different physiological conditions.




of

Ketamine and Major Ketamine Metabolites Function as Allosteric Modulators of Opioid Receptors [Article]

Ketamine is a glutamate receptor antagonist that was developed over 50 years ago as an anesthetic agent. At subanesthetic doses, ketamine and some metabolites are analgesics and fast-acting antidepressants, presumably through targets other than glutamate receptors. We tested ketamine and its metabolites for activity as allosteric modulators of opioid receptors expressed as recombinant receptors in heterologous systems and with native receptors in rodent brain; signaling was examined by measuring GTP binding, β-arrestin recruitment, MAPK activation, and neurotransmitter release. Although micromolar concentrations of ketamine alone had weak agonist activity at μ opioid receptors, the combination of submicromolar concentrations of ketamine with endogenous opioid peptides produced robust synergistic responses with statistically significant increases in efficacies. All three opioid receptors (μ, , and ) showed synergism with submicromolar concentrations of ketamine and either methionine-enkephalin (Met-enk), leucine-enkephalin (Leu-enk), and/or dynorphin A17 (Dyn A17), albeit the extent of synergy was variable between receptors and peptides. S-ketamine exhibited higher modulatory effects compared with R-ketamine or racemic ketamine, with ~100% increase in efficacy. Importantly, the ketamine metabolite 6-hydroxynorketamine showed robust allosteric modulatory activity at μ opioid receptors; this metabolite is known to have analgesic and antidepressant activity but does not bind to glutamate receptors. Ketamine enhanced potency and efficacy of Met-enkephalin signaling both in mouse midbrain membranes and in rat ventral tegmental area neurons as determined by electrophysiology recordings in brain slices. Taken together, these findings support the hypothesis that some of the therapeutic effects of ketamine and its metabolites are mediated by directly engaging the endogenous opioid system.

SIGNIFICANCE STATEMENT

This study found that ketamine and its major biologically active metabolites function as potent allosteric modulators of μ, , and opioid receptors, with submicromolar concentrations of these compounds synergizing with endogenous opioid peptides, such as enkephalin and dynorphin. This allosteric activity may contribute to ketamine’s therapeutic effectiveness for treating acute and chronic pain and as a fast-acting antidepressant drug.




of

Simplified Method for Kinetic and Thermodynamic Screening of Cardiotonic Steroids through the K+-Dependent Phosphatase Activity of Na+/K+-ATPase with Chromogenic pNPP Substrate [Article]

The antitumor effect of cardiotonic steroids (CTS) has stimulated the search for new methods to evaluate both kinetic and thermodynamic aspects of their binding to Na+/K+-ATPase (IUBMB Enzyme Nomenclature). We propose a real-time assay based on a chromogenic substrate for phosphatase activity (pNPPase activity), using only two concentrations with an inhibitory progression curve, to obtain the association rate (kon), dissociation rate (koff), and equilibrium (Ki) constants of CTS for the structure-kinetics relationship in drug screening. We show that changing conditions (from ATPase to pNPPase activity) resulted in an increase of Ki of the cardenolides digitoxigenin, essentially due to a reduction of kon. In contrast, the Ki of the structurally related bufadienolide bufalin increased much less due to the reduction of its koff partially compensating the decrease of its kon. When evaluating the kinetics of 15 natural and semisynthetic CTS, we observed that both kon and koff correlated with Ki (Spearman test), suggesting that differences in potency depend on variations of both kon and koff. A rhamnose in C3 of the steroidal nucleus enhanced the inhibitory potency by a reduction of koff rather than an increase of kon. Raising the temperature did not alter the koff of digitoxin, generating a H (koff) of –10.4 ± 4.3 kJ/mol, suggesting a complex dissociation mechanism. Based on a simple and inexpensive methodology, we determined the values of kon, koff, and Ki of the CTS and provided original kinetics and thermodynamics differences between CTS that could help the design of new compounds.

SIGNIFICANCE STATEMENT

This study describes a fast, simple, and cost-effective method for the measurement of phosphatase pNPPase activity enabling structure-kinetics relationships of Na+/K+-ATPase inhibitors, which are important compounds due to their antitumor effect and endogenous role. Using 15 compounds, some of them original, this study was able to delineate the kinetics and/or thermodynamics differences due to the type of sugar and lactone ring present in the steroid structure.




of

Going Rogue: Mechanisms, Regulation, and Roles of Mutationally Activated G{alpha} in Human Cancer [Minireview]

G protein–coupled receptors (GPCRs) couple to heterotrimeric G proteins, comprised of α and β subunits, to convert extracellular signals into activation of intracellular signaling pathways. Canonically, GPCR-mediated activation results in the exchange of GDP for GTP on G protein α subunits (Gα) and the dissociation of Gα-GTP and G protein β subunits (Gβ), both of which can regulate a variety of signaling pathways. Hydrolysis of bound GTP by Gα returns the protein to Gα-GDP and allows reassociation with Gβ to reform the inactive heterotrimer. Naturally occurring mutations in Gα have been found at conserved glutamine and arginine amino acids that disrupt the canonical G protein cycle by inhibiting GTP hydrolysis, rendering these mutants constitutively active. Interestingly, these dysregulated Gα mutants are found in many different cancers due to their ability to sustain aberrant signaling without a need for activation by GPCRs. This review will highlight an increased recognition of the prevalence of such constitutively activating Gα mutations in cancers and the signaling pathways activated. In addition, we will discuss new knowledge regarding how these constitutively active Gα are regulated, how different mutations are biochemically distinct, and how mutationally activated Gα are unique compared with GPCR-activated Gα. Lastly, we will discuss recent progress in developing inhibitors directly targeting constitutively active Gα mutants.

SIGNIFICANCE STATEMENT

Constitutively activating mutations in G protein α subunits (Gα) widely occur in and contribute to the development of many human cancers. To develop ways to inhibit dysregulated, oncogenic signaling by these mutant Gα, it is crucial to better understand mechanisms that lead to constitutive Gα activation and unique mechanisms that regulate mutationally activated Gα in cells. The prevalence of activating mutations in Gα in various cancers makes Gα proteins compelling targets for the development of therapeutics.




of

Promoting Male Involvement in Family Planning: Insights From the No-Scalpel Vasectomy Program of Davao City, Philippines

ABSTRACTDespite global consensus on the importance of male involvement in family planning, disparities persist in low- and middle-income countries, where women continue to bear the responsibility for these initiatives. The Philippines, with a high fertility rate and unmet family planning needs, exemplifies this challenge. We present the experiences and lessons learned from implementing the no-scalpel vasectomy (NSV) program in Davao City, showcasing its potential for increasing male engagement in family planning decisions. Launched in 2008, the program aimed to address gender disparity by promoting NSV as a safe and effective contraceptive alternative to female-centric methods. Through the use of culturally sensitive information campaigns and couple-focused counseling, the program challenged traditional notions of masculinity and encouraged shared decision-making. Strong local government commitment and public-private partnerships played key roles in driving the program’s success. Results showed an average annual increase of 80% in NSV clients over the past 3 years compared to before the COVID-19 pandemic, underscoring its effectiveness. The program presents a compelling intervention model for similar initiatives, highlighting how overcoming cultural barriers, infrastructure limitations, and budgetary constraints through policy advocacy, strategic partnerships, and tailored approaches can significantly boost male involvement in family planning and improve reproductive health outcomes within communities.




of

FP2020 and FP2030 Country Commitments: A Mixed Method Study of Adolescent and Youth Sexual and Reproductive Health Components

ABSTRACTIntroduction:Family Planning 2020 (FP2020) was established in 2012 with the goal of expanding contraceptive access. By 2020, 46 countries had made commitments to FP2020. A sustained focus on adolescents and youth (AY) began in 2016. During the commitment formulation process, substantial support was offered to countries to develop AY commitments based on sound data, research evidence, and programmatic experience. This study assesses how country commitments under FP2020 and FP2030 have evolved over time with respect to improving attention to and focus on the needs of adolescents and youth sexual and reproductive health (AYSRH).Methods:We analyzed the content of FP2020 and FP2030 country commitments focusing on AY (aged 10–24 years) using a scoring guideline we developed to measure the AY commitments in terms of completeness, clarity, and quality.Results:This analysis shows that FP2030 commitments better articulate strategies and activities to reach AY with contraceptive information and services when compared to FP2020 commitments.Conclusion:FP2030 commitments are stronger in some areas on AYSRH, such as commitment to establish national or local policies, strategies, and guidance for AY programming, specifying the target audience of the AY commitment, and partnering with AY or youth-led organizations in commitments. However, more work remains to be done by countries to dedicate a budget for achieving AY objectives, including measurable targets for monitoring progress, identifying and addressing the root causes that impact AY access to and use of contraception, including child marriage and gender-based violence, and reducing financial barriers to access contraception.




of

Establishment of the First Institution-Based Poison Information Center in Nepal Through a Multilateral International Partnership

ABSTRACTToxicological emergencies present a significant health challenge in Nepal. Despite the high burden, the country has inadequate formal toxicology training, medical toxicology expertise, and adequate poison control infrastructure. In recognition of this need, the Nepal Poison Information Center (PIC) was established as a collaborative effort involving local and international partners. Through a comprehensive partnership framework, the Nepal PIC provides 24 hours a day, 7 days a week expert guidance to health care workers, conducts educational webinars, and engages in research. Initial data from the pilot phase indicate successful consultation delivery. Challenges include bureaucratic hurdles and the need for sustainable funding. Despite these challenges, the Nepal PIC demonstrates early feasibility and potential for expansion into a comprehensive toxicology center, contributing to the advancement of clinical toxicology in Nepal. Long-term sustainability relies on governmental support and continued advocacy efforts.




of

Family Planning, Reproductive Health, and Progress Toward the Sustainable Development Goals: Reflections and Directions on the 30th Anniversary of the International Conference on Population and Development




of

Can the International Conference on Population and Development Programme of Action and Cairo Consensus Normalize the Discourse on Population?




of

Maturity Assessment of the Health Information System Using Stages of Continuous Improvement Methodology: Results From Serbia

ABSTRACTIntroduction:Since the health information system (HIS) in public health care services in Serbia was introduced in 2009, it has gradually expanded. However, it is unclear how well the HIS components have developed and the whole system’s stage of maturity.Method:In June–September 2021, a maturity assessment of the Serbian HIS was conducted for the first time using the HIS Stages of Continuous Improvement (SOCI) toolkit. The toolkit measures HIS status across 5 HIS domains: leadership and governance, management and workforce, information and communication technology (ICT), standards and interoperability, and data quality and use. The domains were further divided into 13 components and 39 subcomponents whose maturity stage was assessed on a 5-point Likert scale, indicating the level of development: (1) emerging/ad hoc; (2) repeatable; (3) defined; (4) managed; and (5) optimized. The toolkit was applied in a working group of 32 professionals and experts who were engaged in developing the new national eHealth strategy and action plan.Results:The overall maturity score of the Serbian HIS was 1.6, which indicates a low level. The highest baseline score (2) was given to the standards and interoperability domain, and the lowest (1.1) was given to ICT infrastructure. The remaining 3 domains (leadership and governance, Management and Workforce, and Data Quality and Use) were similarly rated (1.7, 1.7, and 1.6, respectively).Conclusion:A baseline assessment of the maturity level of Serbian HIS indicates that the majority of components are between the emerging/ad hoc stage and repeatable, which represent isolated, ad hoc efforts, with some basic processes in place and existing and accessible policies. This exercise provided an opportunity to address identified weaknesses in the upcoming national eHealth strategy.




of

Documenting the Provision of Emergency Contraceptive Pills Through Youth-Serving Delivery Channels: Exploratory Mixed Methods Research on Malawi’s Emergency Contraception Strategy

ABSTRACTIntroduction:Emergency contraceptive pills (ECPs) are effective and can be used safely at any age repeatedly within the same cycle. They are often favored by youth yet are underutilized. Private facilities can increase ECP access but present barriers including cost. Identifying effective public-sector ECP distribution models can help ensure equitable access. The Malawi Ministry of Health developed a strategy to improve ECP access in 2020. We documented ECP provision through select public, youth-serving channels recommended by the strategy: general and youth-specific outreach, paid and unpaid community health workers (CHWs), and youth clubs.Methods:We conducted this mixed methods study from November 2022–March 2023 in 2 rural districts (Mchinji and Phalombe) implementing the strategy. We conducted qualitative interviews with 10 national stakeholders, 46 providers, and 24 clients aged 15–24 years about ECP service delivery. Additionally, 25 providers collected quantitative tally data about clients seeking ECPs. We analyzed qualitative data using grounded theory and quantitative data descriptively.Results:Stakeholders and providers reported ECP uptake increased in geographies where the strategy was implemented, especially among youth. Providers documented 3,988 client visits for ECPs over 3 months. Of these visits, 26% were from male clients, 36% were from clients aged younger than 20 years, and 64% received ECPs for the first time. Across channels, youth club leaders and unpaid CHWs reported the most client visits per provider and served the youngest clients. However, no ECPs were dispensed during 29% of visits due to stock-outs. While many providers were supportive of youth accessing ECPs, most held unfavorable attitudes toward repeat use.Conclusion:ECP access should be expanded through provision in the studied channels, especially youth clubs and CHWs. However, to meet demand, the supply chain must be strengthened. We recommend addressing providers’ attitudes about repeat use to ensure informed method choice.




of

Adapting the Social Norms Exploration Tool in the Democratic Republic of the Congo to Identify Social Norms for Behavior Change

ABSTRACTIn the Democratic Republic of the Congo (DRC), male engagement, social norms, and social networks mitigate family planning behavior. We discuss the adaptation of the Social Norms Exploration Tool (SNET), which identifies relevant social norms and community members upholding these norms, to inform the development of family planning interventions in the DRC. The SNET provides activity tools and templates to guide users through the following steps: (1) plan and prepare, (2) identify reference groups, (3) explore social norms, (4) analyze results, and (5) apply findings.The SNET approach resulted in discussion of social norms, particularly around birth spacing and gender norms framing the man as the decision-maker. However, despite applying a methodology specifically designed to identify social norms, other factors limiting use of contraceptive methods were identified in the process, including lack of education, rumors, and misconceptions. Adaptations were needed to include the full range of reference groups due to narrow phrasing of primary questions, and some of the participatory methods were overly complicated. Feedback from experienced data collectors suggested that the social norms framework is not intuitive, is difficult to apply correctly, and may require that data collectors have a stronger foundation in the relevant concepts to produce valid and actionable results.Although the SNET provides language for discussing normative factors and techniques to identify reference groups and social norms, modifications to the implementation process are recommended when adapting the tool for research.




of

A Cosmopolitan Argument for Temporary “Diagonal” Short-Term Surgical Missions as a Component of Surgical Systems Strengthening




of

Capacity-Building Through Digital Approaches: Evaluating the Feasibility and Effectiveness of eLearning to Introduce Subcutaneous DMPA Self-Injection in Senegal and Uganda

ABSTRACTTraining health workers is one of the biggest challenges and cost drivers when introducing a new contraceptive method or service delivery innovation. PATH developed a digital training curriculum for family planning providers who are learning to offer subcutaneous DMPA (DMPA-SC), including through self-injection, as an option among a range of contraceptive methods. The DMPA-SC eLearning course for health workers includes 10 lessons with an emphasis on informed choice counseling and training clients to self-inject. In partnership with Ministries of Health in Senegal and Uganda, the course was rolled out in select areas in 2019–2020, including during the COVID-19 pandemic when physical distancing requirements restricted in-person training. We conducted evaluations in both countries to assess the practical application of this digital training approach for contraceptive introduction. The evaluation consisted of a post-training survey, an observational assessment conducted during post-training supportive supervision, and an estimation of training costs.In both countries, a majority (88.6% in Uganda and 64.3% in Senegal) scored above 80% on a DMPA-SC knowledge test following the training. In Senegal, where there was a comparison group of providers trained in person, those providers scored similar on the post-test to eLearners. Providers in both groups and in both countries felt more prepared to administer DMPA-SC or offer self-injection to clients after receiving a supervision visit (93%–98% of eLearners felt very prepared after supervision as compared to 45%–72% prior). The evaluation results suggest that digital approaches offer a number of benefits, can be cost-effective, and are most optimal when blended with in-person training and/or supportive supervision.




of

Innovations in Providing HIV Index Testing Services: A Retrospective Evaluation of Partner Elicitation Models in Southern Nigeria

ABSTRACTBackground: This analysis aimed to evaluate the effectiveness of eliciting sexual partners from HIV-positive clients using the elicitation box model (where an HIV-positive index can report sexual contacts on paper and insert in a box for a health care provider to contact at a later time) compared to the conventional model (in which a health care provider elicits sexual contacts directly from clients) in Akwa Ibom, Southern Nigeria.Methods: Between March 2021 and April 2022, data were collected from index testing registers at 4 health facilities with a high volume of HIV clients currently on treatment in 4 local government areas in Akwa Ibom State. Primary outcome analyzed was the elicitation ratio (number of partners elicited per HIV-index offered index testing services). Secondary outcomes were the index testing acceptance (index HIV-positive clients accepted index testing service), testing coverage (partners tested for HIV from a list of partners elicited from HIV-index accepted index testing services), testing yield (index partners identified HIV positive from index partners HIV-tested), and linkage rate (index partners identified HIV positive and linked to antiretroviral therapy).Results: Of the total 2,705 index clients offered index testing services, 91.9% accepted, with 2,043 and 439 indexes opting for conventional elicitation and elicitation box models, respectively. A total of 3,796 sexual contacts were elicited: 2,546 using the conventional model (elicitation ratio=1:1) and 1,250 using the elicitation box model (elicitation ratio=1:3). Testing coverage was significantly higher in the conventional compared to the elicitation box model (P<.001). However, there was no significant difference in the testing yield (P=.81) and linkage rate using the conventional compared to elicitation box models (P=.13).Conclusion: The implementation of the elicitation box model resulted in an increase in partner elicitation compared to the conventional model. Increasing the testing coverage by implementing the elicitation box model should be considered.




of

Development and Piloting of Implementation Strategies to Support Delivery of a Clinical Intervention for Postpartum Hemorrhage in Four sub-Saharan Africa Countries

ABSTRACTIntroduction:Postpartum hemorrhage (PPH) remains the leading cause of maternal mortality. A new clinical intervention (E-MOTIVE) holds the potential to improve early PPH detection and management. We aimed to develop and pilot implementation strategies to support uptake of this intervention in Kenya, Nigeria, South Africa, and Tanzania.Methods:Implementation strategy development: We triangulated findings from qualitative interviews, surveys and a qualitative evidence synthesis to identify current PPH care practices and influences on future intervention implementation. We mapped influences using implementation science frameworks to identify candidate implementation strategies before presenting these at stakeholder consultation and design workshops to discuss feasibility, acceptability, and local adaptations. Piloting: The intervention and implementation strategies were piloted in 12 health facilities (3 per country) over 3 months. Interviews (n=58), case report forms (n=1,269), and direct observations (18 vaginal births, 7 PPHs) were used to assess feasibility, acceptability, and fidelity.Results:Implementation strategy development: Key influences included shortages of drugs, supplies, and staff, limited in-service training, and perceived benefits of the intervention (e.g., more accurate PPH detection and reduced PPH mortality). Proposed implementation strategies included a PPH trolley, on-site simulation-based training, champions, and audit and feedback. Country-specific adaptations included merging the E-MOTIVE intervention with national maternal health trainings, adapting local PPH protocols, and PPH trollies depending on staff needs. Piloting: Intervention and implementation strategy fidelity differed within and across countries. Calibrated drapes resulted in earlier and more accurate PPH detection but were not consistently used at the start. Implementation strategies were feasible to deliver; however, some instances of limited use were observed (e.g., PPH trolley and skills practice after training).Conclusion:Systematic intervention development, piloting, and process evaluation helped identify initial challenges related to intervention fidelity, which were addressed ahead of a larger-scale effectiveness evaluation. This has helped maximize the internal validity of the trial.




of

Twinning Partnership Network: A Learning and Experience-Sharing Network Among Health Professionals in Rwanda to Improve Health Services

ABSTRACTWe describe the development, implementation, and evaluation of a novel twinning approach: the Twinning Partnership Network (TPN). Twinning is a well-known approach to peer learning that has been used in a variety of settings to build organizational capacity. Although twinning takes many forms, the heart of the approach is that institutions with shared characteristics collaborate via sharing information and experiences to achieve a specific goal. We adapted a twinning partnership strategy developed by the World Health Organization to create a network of like-minded health institutions. The key innovation of the TPN is the network, which ensures that an institution always has a high-performing peer with whom to partner on a specific topic area of interest. We identified 10 hospitals and 30 districts in Rwanda to participate in the TPN. These districts and hospitals participated in a kickoff workshop in which they identified capacity gaps, clarified goals, and selected twinning partners. After the workshop, districts and hospitals participated in exchange visits, coaching visits, and virtual and in-person learning events. We found that districts and hospitals that selected specific areas and worked on them throughout the duration of the TPN with their peers improved their performance significantly when compared with those that selected and worked on other areas. Accreditation scores improved by 5.6% more in hospitals selecting accreditation than those that did not. Districts that selected improving community-based health insurance coverage improved by 4.8% more than districts that did not select this topic area. We hypothesize that these results are due to senior management’s interest and motivation to improve in these specific areas, the motivation gained by learning from high-performing peers with similar resources, and context-specific knowledge sharing from peer hospitals and districts.




of

Sensory-Motor Neuropathy in Mfn2 T105M Knock-in Mice and Its Reversal by a Novel Piperine-Derived Mitofusin Activator [Neuropharmacology]

Mitochondrial dysfunction is a hallmark of many genetic neurodegenerative diseases, but therapeutic options to reverse mitochondrial dysfunction are limited. While recent studies support the possibility of improving mitochondrial fusion/fission dynamics and motility to correct mitochondrial dysfunction and resulting neurodegeneration in Charcot-Marie-Tooth disease (CMT) and other neuropathies, the clinical utility of reported compounds and relevance of preclinical models are uncertain. Here, we describe motor and sensory neuron dysfunction characteristic of clinical CMT type 2 A in a CRISPR/Casp-engineered Mfn2 Thr105Met (T105M) mutant knock-in mouse. We further demonstrate that daily oral treatment with a novel mitofusin activator derived from the natural product piperine can reverse these neurologic phenotypes. Piperine derivative 8015 promoted mitochondrial fusion and motility in Mfn2-deficient cells in a mitofusin-dependent manner and reversed mitochondrial dysfunction in cultured fibroblasts and reprogrammed motor neurons from a human CMT2A patient carrying the MFN2 T105M mutation. Like previous mitofusin activators, 8015 exhibited stereospecific functionality, but the more active stereoisomer, 8015-P2, is unique in that it has subnanomolar potency and undergoes entero-hepatic recirculation which extends its in vivo half-life. Daily administration of 8015-P2 to Mfn2 T105M knock-in mice for 6 weeks normalized neuromuscular and sensory dysfunction and corrected histological/ultrastructural neurodegeneration and neurogenic myoatrophy. These studies describe a more clinically relevant mouse model of CMT2A and an improved mitofusin activator derived from piperine. We posit that 8015-P2 and other piperine derivatives may benefit CMT2A or other neurodegenerative conditions wherein mitochondrial dysdynamism plays a contributory role.

SIGNIFICANCE STATEMENT

Mitochondrial dysfunction is widespread and broadly contributory in neurodegeneration, but difficult to target therapeutically. Here, we describe 8015-P2, a new small molecule mitofusin activator with ~10-fold greater potency and improved in vivo pharmacokinetics versus comparators, and demonstrate its rapid reversal of sensory and motor neuron dysfunction in an Mfn2 T105M knock-in mouse model of Charcot-Marie-Tooth disease type 2 A. These findings further support the therapeutic approach of targeting mitochondrial dysdynamism in neurodegeneration.




of

Factors Influencing the Central Nervous System (CNS) Distribution of the Ataxia Telangiectasia Mutated and Rad3-Related Inhibitor Elimusertib (BAY1895344): Implications for the Treatment of CNS Tumors [Metabolism, Transport, and Pharmacogenetics]

Glioblastoma (GBM) is a disease of the whole brain, with infiltrative tumor cells protected by an intact blood-brain barrier (BBB). GBM has a poor prognosis despite aggressive treatment, in part due to the lack of adequate drug permeability at the BBB. Standard of care GBM therapies include radiation and cytotoxic chemotherapy that lead to DNA damage. Subsequent activation of DNA damage response (DDR) pathways can induce resistance. Various DDR inhibitors, targeting the key regulators of these pathways such as ataxia telangiectasia mutated and Rad3-related (ATR), are being explored as radio- and chemosensitizers. Elimusertib, a novel ATR kinase inhibitor, can prevent repair of damaged DNA, increasing efficacy of DNA-damaging cytotoxic therapies. Robust synergy was observed in vitro when elimusertib was combined with the DNA-damaging agent temozolomide; however, we did not observe improvement with this combination in in vivo efficacy studies in GBM orthotopic tumor-bearing mice. This in vitro–in vivo disconnect was explored to understand factors influencing central nervous system (CNS) distribution of elimusertib and reasons for lack of efficacy. We observed that elimusertib is rapidly cleared from systemic circulation in mice and would not maintain adequate exposure in the CNS for efficacious combination therapy with temozolomide. CNS distribution of elimusertib is partially limited by P-glycoprotein efflux at the BBB, and high binding to CNS tissues leads to low levels of pharmacologically active (unbound) drug in the brain. Acknowledging the potential for interspecies differences in pharmacokinetics, these data suggest that clinical translation of elimusertib in combination with temozolomide for treatment of GBM may be limited.

SIGNIFICANCE STATEMENT

This study examined the disconnect between the in vitro synergy and in vivo efficacy of elimusertib/temozolomide combination therapy by exploring systemic and central nervous system (CNS) distributional pharmacokinetics. Results indicate that the lack of improvement in in vivo efficacy in glioblastoma (GBM) patient-derived xenograft (PDX) models could be attributed to inadequate exposure of pharmacologically active drug concentrations in the CNS. These observations can guide further exploration of elimusertib for the treatment of GBM or other CNS tumors.




of

Nonclinical Profile of PF-06952229 (MDV6058), a Novel TGF{beta}RI/Activin Like Kinase 5 Inhibitor Supports Clinical Evaluation in Cancer [Drug Discovery and Translational Medicine]

The development of transforming growth factor βreceptor inhibitors (TGFβRi) as new medicines has been affected by cardiac valvulopathy and arteriopathy toxicity findings in nonclinical toxicology studies. PF-06952229 (MDV6058) selected using rational drug design is a potent and selective TGFβRI inhibitor with a relatively clean off-target selectivity profile and good pharmacokinetic properties across species. PF-06952229 inhibited clinically translatable phospho-SMAD2 biomarker (≥60%) in human and cynomolgus monkey peripheral blood mononuclear cells, as well as in mouse and rat splenocytes. Using an optimized, intermittent dosing schedule (7-day on/7-day off/cycle; 5 cycles), PF-06952229 demonstrated efficacy in a 63-day syngeneic MC38 colon carcinoma mouse model. In the pivotal repeat-dose toxicity studies (rat and cynomolgus monkey), PF-06952229 on an intermittent dosing schedule (5-day on/5-day off cycle; 5 cycles, 28 doses) showed no cardiac-related adverse findings. However, new toxicity findings related to PF-06952229 included reversible hepatocellular (hepatocyte necrosis with corresponding clinically monitorable transaminase increases) and lung (hemorrhage with mixed cell inflammation) findings at ≥ targeted projected clinical efficacious exposures. Furthermore, partially reversible cartilage hypertrophy (trachea and femur in rat; femur in monkey) and partially to fully reversible, clinically monitorable decreases in serum phosphorus and urinary phosphate at ≥ projected clinically efficacious exposures were observed. Given the integral role of TGFβ in endochondral bone formation, cartilage findings in toxicity studies have been observed with other TGFβRi classes of compounds. The favorable cumulative profile of PF-06952229 in biochemical, pharmacodynamic, pharmacokinetic, and nonclinical studies allowed for its evaluation in cancer patients using the intermittent dosing schedule (7-day on/7-day off) and careful protocol-defined monitoring.

SIGNIFICANCE STATEMENT

Only a few TGFβRi have progressed for clinical evaluation due to adverse cardiac findings in pivotal nonclinical toxicity studies. The potential translations of such findings in patients are of major concern. Using a carefully optimized intermittent dosing schedule, PF-06952229 has demonstrated impressive pharmacological efficacy in the syngeneic MC38 colon carcinoma mouse model. Additionally, a nonclinical toxicology package without cardiovascular liabilities and generally monitorable toxicity profile has been completed. The compound presents an acceptable International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use S9-compliant profile for the intended-to-treat cancer patients.




of

Gabapentinoids Increase the Potency of Fentanyl and Heroin and Decrease the Potency of Naloxone to Antagonize Fentanyl and Heroin in Rats Discriminating Fentanyl [Behavioral Pharmacology]

Despite a significant decrease in the number of prescriptions for opioids, the opioid crisis continues, fueled in large part by the availability of the phenylpiperidine mu opioid receptor (MOR) agonist fentanyl. In contrast, the number of prescriptions for and the off-label use of gabapentinoids (gabapentin and pregabalin) has increased dramatically, with gabapentinoids commonly detected in opioid overdose victims. Although gabapentinoids can decrease the potency of the opioid receptor antagonist naloxone to reverse heroin-induced hypoventilation in male rats, the specificity and nature of interaction between gabapentinoids and MOR agonists and any potential sex difference in those interactions are not well characterized. Gabapentinoids were studied in female and male rats discriminating fentanyl (0.0032 mg/kg, i.p.) or cocaine (3.2 mg/kg, i.p.). Alone, neither gabapentin nor pregabalin significantly increased fentanyl- or cocaine-appropriate responding. In rats discriminating fentanyl, each gabapentinoid dose-dependently shifted the fentanyl and heroin discrimination dose-effect functions to the left, whereas naloxone dose-dependently shifted the fentanyl and heroin discrimination dose-effect functions to the right. Each gabapentinoid (100 mg/kg) significantly decreased the potency of naloxone to antagonize the discriminative stimulus effect of fentanyl or heroin. In contrast, each gabapentinoid dose-dependently shifted the cocaine and d-methamphetamine discrimination dose-effect functions to the right. There were no significant sex differences in this study. These results suggest that gabapentinoids impact the misuse of opioids, the co-use of opioids and stimulant drugs, and the increasing number of overdose deaths in individuals using opioids, stimulant drugs, and gabapentinoids in mixtures.

SIGNIFICANCE STATEMENT

The number of prescriptions for and the off-label use of gabapentinoids (gabapentin and pregabalin) has increased dramatically, with gabapentinoids commonly detected in opioid overdose victims. This study reports that in rats gabapentinoids increase the potency of fentanyl and heroin to produce discriminative stimulus effects while decreasing the potency of naloxone to antagonize those effects of fentanyl and heroin. These results can help guide policies for regulating gabapentinoids and treating opioid misuse and overdose.




of

Effects of Dual Inhibition at Dopamine Transporter and {sigma} Receptors in the Discriminative-Stimulus Effects of Cocaine in Male Rats [Behavioral Pharmacology]

Previous studies demonstrated that sigma receptor (R) antagonists alone fail to alter cocaine self-administration despite blocking various other effects of cocaine. However, R antagonists when combined with dopamine transporter (DAT) inhibitors substantially decrease cocaine self-administration. To better understand the effects of this combination, the present study examined the effects of R antagonist and DAT inhibitor combinations in male rats discriminating cocaine (10 mg/kg, i.p.) from saline injections. The DAT inhibitors alone [(–)-2-β-carbomethoxy-3-β-(4-fluorophenyl)tropane 1,5-naphthalenedisulfonate monohydrate (WIN 35,428) and methylphenidate] at low (0.1-mg/kg) doses that were minimally active failed to shift the dose-effect function for discriminative-stimulus effects of cocaine to the left more than 2-fold. At 0.32 mg/kg the DAT inhibitors alone shifted the cocaine dose-effect function leftward 24- or 6.6-fold, respectively. The R antagonists (BD1008, BD1047, and BD1063) failed to fully substitute for cocaine, although BD1008 and BD1047 substituted partially. At 10 mg/kg, BD1008, BD1047, or BD1063 alone shifted the cocaine dose-effect function leftward less than 6.0-fold. In combination with 0.1 mg/kg WIN 35,428, the 10 mg/kg doses of R antagonists shifted the cocaine dose-effect function from 12.3- to 36.7-fold leftward, and with 0.32 mg/kg WIN 35,428 from 14.3- to 440-fold leftward. In combination with 0.1 mg/kg methylphenidate, those R antagonist doses shifted the cocaine dose-effect function from 5.5- to 55.0-fold leftward, and with 0.32 mg/kg methylphenidate from 10.5- to 48.1-fold leftward. The present results suggest that dual DAT/R inhibition produces agonist-like subjective effects that may promote decreases in self-administration obtained in previous studies.

SIGNIFICANCE STATEMENT

There is currently no approved medication for treating stimulant abuse, although dopamine uptake inhibitors in combination with sigma receptor (R) antagonists decrease cocaine self-administration in laboratory animals. The present study assessed how this combination alters the discriminative-stimulus effects of cocaine in male rats. Results suggest that concurrent dopamine uptake inhibition and R antagonism together may promote decreases in self-administration, possibly by mimicking the subjective effects extant when subjects cease continued cocaine self-administration.




of

Alternative Reinforcers Enhance the Effects of Opioid Antagonists, but Not Agonists, on Oxycodone Choice Self-Administration in Nonhuman Primates [Behavioral Pharmacology]

Clinical reports suggest that the most effective strategies for managing opioid use disorder comprise a comprehensive treatment program of both pharmacological and nonpharmacological approaches. However, the conditions under which these combinations are most effective are not well characterized. This study examined whether the presence of an alternative reinforcer could alter the efficacy of Food and Drug Administration–approved opioid antagonist or agonist medications, as well as the nonopioid flumazenil, in decreasing oxycodone choice self-administration in nonhuman primates. Adult squirrel monkeys (n = 7; four females) responded under concurrent second-order fixed-ratio (FR)-3(FR5:S);TO45s schedules of reinforcement for intravenous oxycodone (0.1 mg/kg) or saline on one lever and 30% sweetened condensed milk or water on the other. Doses of naltrexone (0.00032–1.0 mg/kg), nalbuphine (0.32–10 mg/kg), buprenorphine (0.0032–0.032 mg/kg), methadone (0.32–1.0 mg/kg), or flumazenil (1–3.2 mg/kg) were administered intramuscularly prior to oxycodone self-administration sessions that occurred with either milk or water as the alternative. Naltrexone, a μ-opioid receptor antagonist, was >30-fold more potent when milk was available compared with water and abolished oxycodone intake (injections/session) while concomitantly increasing milk deliveries at the highest dose tested. Pretreatment with the low-efficacy μ-agonist nalbuphine was most effective in the presence of milk compared with water, decreasing oxycodone preference to <50% of control values. The higher efficacy μ-agonists, methadone and buprenorphine, and the benzodiazepine antagonist flumazenil did not appreciably alter the reinforcing potency of oxycodone under either condition. These results suggest that antagonist medications used in combination with alternative reinforcers may be an effective strategy to curtail opioid abuse–related behaviors.

SIGNIFICANCE STATEMENT

Clinical treatment programs for opioid use disorder use a combination of pharmacological and nonpharmacological approaches. However, the conditions under which these combinations are most effective have not been fully characterized. This study examined whether the effectiveness of μ-opioid medications to decrease oxycodone self-administration is altered in the presence of an alternative reinforcer. The results suggest that alternative reinforcers enhance the effects of antagonist or low-efficacy partial agonists, suggesting they may be a more effective strategy to curtail opioid use.




of

Proteomic Analysis of Signaling Pathways Modulated by Fatty Acid Binding Protein 5 (FABP5) in Macrophages [Special Section: Cannabinoid Signaling in Human Health and Disease]

Although acute inflammation serves essential functions in maintaining tissue homeostasis, chronic inflammation is causally linked to many diseases. Macrophages are a major cell type that orchestrates inflammatory processes. During inflammation, macrophages undergo polarization and activation, thereby mobilizing pro-inflammatory and anti-inflammatory transcriptional programs that regulate ensuing macrophage functions. Fatty acid binding protein 5 (FABP5) is a lipid chaperone highly expressed in macrophages. FABP5 deletion is implicated in driving macrophages toward an anti-inflammatory phenotype, yet signaling pathways regulated by macrophage-FABP5 have not been systematically profiled. We leveraged proteomic and phosphoproteomic approaches to characterize pathways modulated by FABP5 in M1 and M2 polarized bone marrow-derived macrophages (BMDMs). Stable isotope labeling by amino acids-based analysis of M1 and M2 polarized wild-type and FABP5 knockout BMDMs revealed numerous differentially regulated proteins and phosphoproteins. FABP5 deletion impacted downstream pathways associated with inflammation, cytokine production, oxidative stress, and kinase activity. Toll-like receptor 2 (TLR2) emerged as a novel target of FABP5 and pharmacological FABP5 inhibition blunted TLR2-mediated activation of downstream pathways, ascribing a novel role for FABP5 in TLR2 signaling. This study represents a comprehensive characterization of the impact of FABP5 deletion on the proteomic and phosphoproteomic landscape of M1 and M2 polarized BMDMs. Loss of FABP5 altered pathways implicated in inflammatory responses, macrophage function, and TLR2 signaling. This work provides a foundation for future studies seeking to investigate the therapeutic potential of FABP5 inhibition in pathophysiological states resulting from dysregulated inflammatory signaling.

SIGNIFICANCE STATEMENT

This research offers a comprehensive analysis of fatty acid binding protein 5 (FABP5) in macrophages during inflammatory response. The authors employed quantitative proteomic and phosphoproteomic approaches to investigate this utilizing bone marrow-derived macrophages that were M1 and M2 polarized using lipopolysaccharide with interferon and interleukin-4, respectively. This revealed multiple pathways related to inflammation that were differentially regulated due to the absence of FABP5. These findings underscore the potential therapeutic significance of macrophage-FABP5 as a candidate for addressing inflammatory-related diseases.




of

Regulation of Cannabinoid and Opioid Receptor Levels by Endogenous and Pharmacological Chaperones [Special Section: Cannabinoid Signaling in Human Health and Disease]

Cannabinoid and opioid receptor activities can be modulated by a variety of post-translational mechanisms including the formation of interacting complexes. This study examines the involvement of endogenous and exogenous chaperones in modulating the abundance and activity of cannabinoid CB1 receptor (CB1R), opioid receptor (DOR), and CB1R-DOR interacting complexes. Focusing on endogenous protein chaperones, namely receptor transporter proteins (RTPs), we examined relative mRNA expression in the mouse spinal cord and found RTP4 to be expressed at higher levels compared with other RTPs. Next, we assessed the effect of RTP4 on receptor abundance by manipulating RTP4 expression in cell lines. Overexpression of RTP4 causes an increase and knock-down causes a decrease in the levels of CB1R, DOR, and CB1R-DOR interacting complexes; this is accompanied by parallel changes in signaling. The ability of small molecule lipophilic ligands to function as exogenous chaperones was examined using receptor-selective antagonists. Long-term treatment leads to increases in receptor abundance and activity with no changes in mRNA supporting a role as pharmacological chaperones. Finally, the effect of cannabidiol (CBD), a small molecule ligand and a major active component of cannabis, on receptor abundance and activity in mice was examined. We find that CBD administration leads to increases in receptor abundance and activity in mouse spinal cord. Together, these results highlight a role for chaperones (proteins and small molecules) in modulating levels and activity of CB1R, DOR, and their interacting complexes potentially through mechanisms including receptor maturation and trafficking.

SIGNIFICANCE STATEMENT

This study highlights a role for chaperones (endogenous and small membrane-permeable molecules) in modulating levels of cannabinoid CB1 receptor, delta opioid receptor, and their interacting complexes. These chaperones could be developed as therapeutics for pathologies involving these receptors.




of

Evaluating the Abuse Potential of Lenabasum, a Selective Cannabinoid Receptor 2 Agonist [Special Section: Cannabinoid Signaling in Human Health and Disease]

Endocannabinoids, which are present throughout the central nervous system (CNS), can activate cannabinoid receptors 1 and 2 (CB1 and CB2). CB1 and CB2 agonists exhibit broad anti-inflammatory properties, suggesting their potential to treat inflammatory diseases. However, careful evaluation of abuse potential is necessary. This study evaluated the abuse potential of lenabasum, a selective CB2 receptor agonist in participants (n = 56) endorsing recreational cannabis use. Three doses of lenabasum (20, 60, and 120 mg) were compared with placebo and nabilone (3 and 6 mg). The primary endpoint was the peak effect (Emax) on a bipolar Drug Liking visual analog scale (VAS). Secondary VAS and pharmacokinetic (PK) endpoints and adverse events were assessed. Lenabasum was safe and well tolerated. Compared with placebo, a 20-mg dose of lenabasum did not increase ratings of Drug Liking and had no distinguishable effect on other VAS endpoints. Dose-dependent increases in ratings of Drug Liking were observed with 60 and 120 mg lenabasum. Drug Liking and all other VAS outcomes were greatest for nabilone 3 mg and 6 mg, a medication currently approved by the US Food and Drug Administration (FDA). At a target therapeutic dose (20 mg), lenabasum did not elicit subjective ratings of Drug Liking. However, supratherapeutic doses of lenabasum (60 and 120 mg) did elicit subjective ratings of Drug Liking compared with placebo. Although both doses of lenabasum were associated with lower ratings of Drug Liking compared with 3 mg and 6 mg nabilone, lenabasum does have abuse potential and should be used cautiously in clinical settings.

SIGNIFICANCE STATEMENT

This work provides evidence that in people with a history of recreational cannabis use, lenabasum was safe and well tolerated, although it did demonstrate abuse potential. This work supports further development of lenabasum for potential therapeutic indications.




of

Chronic Administration of Cannabinoid Agonists ACEA, AM1241, and CP55,940 Induce Sex-Specific Differences in Tolerance and Sex Hormone Changes in a Chemotherapy-Induced Peripheral Neuropathy [Special Section: Cannabinoid Signaling in Human Health and Dise

Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of chemotherapy treatment, routinely manifesting as increased pain sensitivity (allodynia) in distal extremities. Despite its prevalence, effective treatment options are limited. Cannabinoids are increasingly being evaluated for their ability to treat chronic pain conditions, including CIPN. While previous studies have revealed sex differences in cannabinoid-mediated antinociception in acute and chronic pain models, there is a paucity of studies addressing potential sex differences in the response of CIPN to cannabinoid treatment. Therefore, we evaluated the long-term antiallodynic efficacy of cannabinoid receptor type 1 (CB1)-selective, cannabinoid receptor type 2 (CB2)-selective, and CB1/CB2 mixed agonists in the cisplatin CIPN model, using both male and female mice. CB1 selective agonism was observed to have sex differences in the development of tolerance to antiallodynic effects, with females developing tolerance more rapidly than males, while the antiallodynic effects of selective CB2 agonism lacked tolerance development. Compound-specific changes to the female estrous cycle and female plasma estradiol levels were noted, with CB1 selective agonism decreasing plasma estradiol while CB2 selective agonism increased plasma estradiol. Chronic administration of a mixed CB1/CB2 agonist resulted in increased mRNA expression of proinflammatory cytokines and endocannabinoid regulatory enzymes in female spinal cord tissue. Ovarian tissue was noted to have proinflammatory cytokine mRNA expression following administration of a CB2 acting compound while selective CB1 agonism resulted in decreased proinflammatory cytokines and endocannabinoid regulatory enzymes in testes. These results support the need for further investigation into the role of sex and sex hormones signaling in pain and cannabinoid-mediated antinociceptive effects.

SIGNIFICANCE STATEMENT

CIPN is a common side effect of chemotherapy. We have found that both CB1 and CB2 receptor agonism produce antinociceptive effects in a cisplatin CIPN model. We observed that tolerance to CB1-mediated antinociception developed faster in females and did not develop for CB2-mediated antinociception. Additionally, we found contrasting roles for CB1/CB2 receptors in the regulation of plasma estradiol in females, with CB1 agonism attenuating estradiol and CB2 agonism enhancing estradiol. These findings support the exploration of cannabinoid agonists for CIPN.




of

Cannabinoid 2 Receptor Activation Protects against Diabetic Cardiomyopathy through Inhibition of AGE/RAGE-Induced Oxidative Stress, Fibrosis, and Inflammasome Activation [Special Section: Cannabinoid Signaling in Human Health and Disease]

Oxidative stress, fibrosis, and inflammasome activation from advanced glycation end product (AGE)–receptor of advanced glycation end product (RAGE) interaction contribute to diabetic cardiomyopathy (DCM) formation and progression. Our study revealed the impact of β-caryophyllene (BCP) on activating cannabinoid type 2 receptors (CB2Rs) against diabetic complication, mainly cardiomyopathy and investigated the underlying cell signaling pathways in mice. The murine model of DCM was developed by feeding a high-fat diet with streptozotocin injections. After the development of diabetes, the animals received a 12-week oral BCP treatment at a dose of 50 mg/kg/body weight. BCP treatment showed significant improvement in glucose tolerance and insulin resistance and enhanced serum insulin levels in diabetic animals. BCP treatment effectively reversed the heart remodeling and restored the phosphorylated troponin I and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a expression. Ultrastructural examination showed reduced myocardial cell injury in DCM mice treated with BCP. The preserved myocytes were found to be associated with reduced expression of AGE/RAGE in DCM mice hearts. BCP treatment mitigated oxidative stress by inhibiting expression of NADPH oxidase 4 and activating phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor erythroid 2–related factor 2 (Nrf2) signaling. Also, BCP suppressed cardiac fibrosis and endothelial-to-mesenchymal transition in DCM mice by inhibiting transforming growth factor β (TGF-β)/suppressor of mothers against decapentaplegic (Smad) signaling. Further, BCP treatment suppressed nucleotide-binding domain, leucine-rich–containing family, pyrin domain–containing-3 (NLRP3) inflammasome activation in DCM mice and alleviated cellular injury to the pancreatic tissues evidenced by significant elevation of the number of insulin-positive cells. To demonstrate a CB2R-dependent mechanism of BCP, another group of DCM mice were pretreated with AM630, a CB2R antagonist. AM630 was observed to abrogate the beneficial effects of BCP in DCM mice. Taken together, BCP demonstrated the potential to protect the myocardium and pancreas of DCM mice mediating CB2R-dependent mechanisms.

SIGNIFICANCE STATEMENT

BCP, a CB2R agonist, shows protection against DCM. BCP attenuates oxidative stress, inflammation, and fibrosis in DCM via activating CB2Rs. BCP mediating CB2R activation favorably modulates AGE/RAGE, PI3K/AKT/Nrf2β and TGF-β/Smad and (NLRP3) inflammasome in diabetic cardiomyopathy.




of

KLS-13019, a Novel Structural Analogue of Cannabidiol and GPR55 Receptor Antagonist, Prevents and Reverses Chemotherapy-Induced Peripheral Neuropathy in Rats [Special Section: Cannabinoid Signaling in Human Health and Disease]

Neuropathic pain is a form of chronic pain that develops because of damage to the nervous system. Treatment of neuropathic pain is often incompletely effective, and most available therapeutics have only moderate efficacy and present side effects that limit their use. Opioids are commonly prescribed for the management of neuropathic pain despite equivocal results in clinical studies and significant abuse potential. Thus, neuropathic pain represents an area of critical unmet medical need, and novel classes of therapeutics with improved efficacy and safety profiles are urgently needed. The cannabidiol structural analog and novel antagonist of GPR55, KLS-13019, was screened in rat models of neuropathic pain. Tactile sensitivity associated with chemotherapy exposure was induced in rats with once-daily 1-mg/kg paclitaxel injections for 4 days or 5 mg/kg oxaliplatin every third day for 1 week. Rats were then administered KLS-13019 or comparator drugs on day 7 in an acute dosing paradigm or days 7–10 in a chronic dosing paradigm, and mechanical or cold allodynia was assessed. Allodynia was reversed in a dose-dependent manner in the rats treated with KLS-13019, with the highest dose reverting the response to prepaclitaxel injection baseline levels with both intraperitoneal and oral administration after acute dosing. In the chronic dosing paradigm, four consecutive doses of KLS-13019 completely reversed allodynia for the duration of the phenotype in control animals. Additionally, coadministration of KLS-13019 with paclitaxel prevented the allodynic phenotype from developing. Together, these data suggest that KLS-13019 represents a potential new drug for the treatment of neuropathic pain.

SIGNIFICANCE STATEMENT

Chemotherapy-induced peripheral neuropathy (CIPN) is a common, debilitating side effect of cancer treatment with no known cure. The GPR55 antagonist KLS-13019 represents a novel class of drug for this condition that is a potent, durable inhibitor of allodynia associated with CIPN in rats in both prevention and reversal-dosing paradigms. This novel therapeutic approach addresses a critical area of unmet medical need.




of

Select Minor Cannabinoids from Cannabis sativa Are Cannabimimetic and Antinociceptive in a Mouse Model of Chronic Neuropathic Pain [Special Section: Cannabinoid Signaling in Human Health and Disease]

Chronic pain conditions affect nearly 20% of the population in the United States. Current medical interventions, such as opioid drugs, are effective at relieving pain but are accompanied by many undesirable side effects. This is one reason increased numbers of chronic pain patients have been turning to Cannabis for pain management. Cannabis contains many bioactive chemical compounds; however, current research looking into lesser-studied minor cannabinoids in Cannabis lacks uniformity between experimental groups and/or excludes female mice from investigation. This makes it challenging to draw conclusions between experiments done with different minor cannabinoid compounds between laboratories or parse out potential sex differences that could be present. We chose five minor cannabinoids found in lower quantities within Cannabis: cannabinol (CBN), cannabidivarin (CBDV), cannabigerol (CBG), 8-tetrahydrocannabinol (8-THC), and 9-tetrahydrocannabivarin (THCV). These compounds were then tested for their cannabimimetic and pain-relieving behaviors in a cannabinoid tetrad assay and a chemotherapy-induced peripheral neuropathy (CIPN) pain model in male and female CD-1 mice. We found that the minor cannabinoids we tested differed in the cannabimimetic behaviors evoked, as well as the extent. We found that CBN, CBG, and high-dose 8-THC evoked some tetrad behaviors in both sexes, while THCV and low-dose 8-THC exhibited cannabimimetic tetrad behaviors only in females. Only CBN efficaciously relieved CIPN pain, which contrasts with reports from other researchers. Together these findings provide further clarity to the pharmacology of minor cannabinoids and suggest further investigation into their mechanism and therapeutic potential.

SIGNIFICANCE STATEMENT

Minor cannabinoids are poorly studied ligands present in lower levels in Cannabis than cannabinoids like THC. In this study, we evaluated five minor cannabinoids (CBN, CBDV, CBG, THCV, and 8-THC) for their cannabimimetic and analgesic effects in mice. We found that four of the five minor cannabinoids showed cannabimimetic activity, while one was efficacious in relieving chronic neuropathic pain. This work is important in further evaluating the activity of these drugs, which are seeing wider public use with marijuana legalization.




of

The Potential of Cannabichromene (CBC) as a Therapeutic Agent [Special Section: Cannabinoid Signaling in Human Health and Disease-Minireview]

There is a growing interest in the use of medicinal plants to treat a variety of diseases, and one of the most commonly used medicinal plants globally is Cannabis sativa. The two most abundant cannabinoids (9-tetrahydrocannabinol and cannabidiol) have been governmentally approved to treat selected medical conditions; however, the plant produces over 100 cannabinoids, including cannabichromene (CBC). Although the cannabinoids share a common precursor molecule, cannabigerol, they are structurally and pharmacologically unique. These differences may engender differing therapeutic potentials. In this review, we will examine what is currently known about CBC with regards to pharmacodynamics, pharmacokinetics, and receptor profile. We will also discuss the therapeutic areas that have been examined for this cannabinoid, notably antinociceptive, antibacterial, and anti-seizure activities. Finally, we will discuss areas where new research is needed and potential novel medicinal applications for CBC.

SIGNIFICANCE STATEMENT

Cannabichromene (CBC) has been suggested to have disparate therapeutic benefits such as anti-inflammatory, anticonvulsant, antibacterial, and antinociceptive effects. Most of the focus on the medical benefits of cannabinoids has been focused on 9-tetrahydrocannabinol and cannabidiol. The preliminary studies on CBC indicate that this phytocannabinoid may have unique therapeutic potential that warrants further investigation. Following easier access to hemp, CBC products are commercially available over-the-counter and are being widely utilized with little or no evidence of their safety or efficacy.




of

The Intoxication Equivalency of 11-Hydroxy-{Delta}9-Tetrahydrocannabinol Relative to {Delta}9-Tetrahydrocannabinol [Special Section: Cannabinoid Signaling in Human Health and Disease]

9-Tetrahydrocannabinol (THC) is a psychoactive phytocannabinoid found in the Cannabis sativa plant. THC is primarily metabolized into 11-hydroxy-9-tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy-9-tetrahydrocannabinol (COOH-THC), which may themselves be psychoactive. There is very little research-based evidence concerning the pharmacokinetics and pharmacodynamics of 11-OH-THC as an individual compound. Male C57BL/6 mice were treated with THC or 11-OH-THC via intraperitoneal injection, tail vein intravenous injection, or oral gavage, and whole-blood compound levels were measured to determine pharmacokinetic parameters [Cmax, time to Cmax (Tmax), elimination half-life, area under the curve, apparent volume of distribution, systemic clearance, terminal rate constant, and absolute bioavailability] while also monitoring changes in catalepsy, body temperature, and nociception. 11-OH-THC achieved a Tmax at 30 minutes for all routes of administration. The maximum concentration at 30 minutes was not different between intravenous and intraperitoneal routes, but the oral gavage Cmax was significantly lower. THC had a 10-minute time to the maximum concentration, which was the first blood collection time point, for intravenous and intraperitoneal and 60 minutes for oral gavage, with a lower Cmax for intraperitoneal and oral gavage compared with intravenous. When accounting for circulating compound levels and ED50 responses, these data suggest that 11-OH-THC was 153% as active as THC in the tail-flick test of nociception and 78% as active as THC for catalepsy. Therefore, 11-OH-THC displayed equal or greater activity than the parent compound THC, even when accounting for pharmacokinetic differences. Thus, the THC metabolite 11-OH-THC likely plays a critical role in the bioactivity of cannabis; understanding its activity when administered directly will aid in the interpretation of future animal and human studies.

SIGNIFICANCE STATEMENT

This study establishes that the primary metabolite of THC, 11-OH-THC, displays equal or greater activity than THC in a mouse model of cannabinoid activity when directly administered and even when accounting for route of administration, sex, pharmacokinetic, and pharmacodynamic differences. These data provide critical insight into the bioactivity of THC metabolites that will inform the interpretation of future in vivo cannabinoid research and represent a model for how THC consumption and metabolism may affect cannabis use in humans.




of

Sex Differences in the Neural and Behavioral Effects of Acute High-Dose Edible Cannabis Consumption in Rats [Special Section: Cannabinoid Signaling in Human Health and Disease]

The consumption of 9-tetrahydrocannabinol (THC)- or cannabis-containing edibles has increased in recent years; however, the behavioral and neural circuit effects of such consumption remain unknown, especially in the context of ingestion of higher doses resulting in cannabis intoxication. We examined the neural and behavioral effects of acute high-dose edible cannabis consumption (AHDECC). Sprague-Dawley rats (six males, seven females) were implanted with electrodes in the prefrontal cortex (PFC), dorsal hippocampus (dHipp), cingulate cortex (Cg), and nucleus accumbens (NAc). Rats were provided access to a mixture of Nutella (6 g/kg) and THC-containing cannabis oil (20 mg/kg) for 10 minutes, during which they voluntarily consumed all of the provided Nutella and THC mixture. Cannabis tetrad and neural oscillations were examined 2, 4, 8, and 24 hours after exposure. In another cohort (16 males, 15 females), we examined the effects of AHDECC on learning and prepulse inhibition and serum and brain THC and 11-hydroxy-THC concentrations. AHDECC resulted in higher brain and serum THC and 11-hydroxy-THC levels in female rats over 24 hours. AHDECC also produced: 1) Cg, dHipp, and NAc gamma power suppression, with the suppression being greater in female rats, in a time-dependent manner; 2) hypolocomotion, hypothermia, and antinociception in a time-dependent manner; and 3) learning and prepulse inhibition impairments. Additionally, most neural activity and behavior changes appear 2 hours after ingestion, suggesting that interventions around this time might be effective in reversing/reducing the effects of AHDECC.

SIGNIFICANCE STATEMENT

The effects of high-dose edible cannabis on behavior and neural circuitry are poorly understood. We found that the effects of acute high-dose edible cannabis consumption (AHDECC), which include decreased gamma power, hypothermia, hypolocomotion, analgesia, and learning and information processing impairments, are time and sex dependent. Moreover, these effects begin 2 hours after AHDECC and last for at least 24 hours, suggesting that treatments should target this time window in order to be effective.:




of

{Delta}9-Tetrahydrocannabinol Alleviates Hyperalgesia in a Humanized Mouse Model of Sickle Cell Disease [Special Section: Cannabinoid Signaling in Human Health and Disease]

People with sickle cell disease (SCD) often experience chronic pain as well as unpredictable episodes of acute pain, which significantly affects their quality of life and life expectancy. Current treatment strategies for SCD-associated pain primarily rely on opioid analgesics, which have limited efficacy and cause serious adverse effects. Cannabis has emerged as a potential alternative, yet its efficacy remains uncertain. In this study, we investigated the antinociceptive effects of 9-tetrahydrocannabinol (THC), cannabis’ intoxicating constituent, in male HbSS mice, which express >99% human sickle hemoglobin, and male HbAA mice, which express normal human hemoglobin A, as a control. Acute THC administration (0.1–3 mg/kg–1, i.p.) dose-dependently reduced mechanical and cold hypersensitivity in human sickle hemoglobin (HbSS) but not human normal hemoglobin A (HbAA) mice. In the tail-flick assay, THC (1 and 3 mg/kg–1, i.p.) produced substantial antinociceptive effects in HbSS mice. By contrast, THC (1 mg/kg–1, i.p.) did not alter anxiety-like behavior (elevated plus maze) or long-term memory (24-hour novel object recognition). Subchronic THC treatment (1 and 3 mg/kg–1, i.p.) provided sustained relief of mechanical hypersensitivity but led to tolerance in cold hypersensitivity in HbSS mice. Together, the findings identify THC as a possible therapeutic option for the management of chronic pain in SCD. Further research is warranted to elucidate its mechanism of action and possible interaction with other cannabis constituents.

SIGNIFICANCE STATEMENT

The study explores 9-tetrahydrocannabinol (THC)’s efficacy in alleviating pain in sickle cell disease (SCD) using a humanized mouse model. Findings indicate that acute THC administration reduces mechanical and cold hypersensitivity in SCD mice without impacting emotional and cognitive dysfunction. Subchronic THC treatment offers sustained relief of mechanical hypersensitivity but leads to cold hypersensitivity tolerance. These results offer insights into THC's potential as an alternative pain management option in SCD, highlighting both its benefits and limitations.




of

Analgesic Properties of Next-Generation Modulators of Endocannabinoid Signaling: Leveraging Modern Tools for the Development of Novel Therapeutics [Special Section: Cannabinoid Signaling in Human Health and Disease-Minireview]

Targeting the endocannabinoid (eCB) signaling system for pain relief is an important treatment option that is only now beginning to be mechanistically explored. In this review, we focus on two recently appreciated cannabinoid-based targeting strategies, treatments with cannabidiol (CBD) and α/β-hydrolase domain containing 6 (ABHD6) inhibitors, which have the exciting potential to produce pain relief through distinct mechanisms of action and without intoxication. We review evidence on plant-derived cannabinoids for pain, with an emphasis on CBD and its multiple molecular targets expressed in pain pathways. We also discuss the function of eCB signaling in regulating pain responses and the therapeutic promises of inhibitors targeting ABHD6, a 2-arachidonoylglycerol (2-AG)-hydrolyzing enzyme. Finally, we discuss how the novel cannabinoid biosensor GRABeCB2.0 may be leveraged to enable the discovery of targets modulated by cannabinoids at a circuit-specific level.

SIGNIFICANCE STATEMENT

Cannabis has been used by humans as an effective medicine for millennia, including for pain management. Recent evidence emphasizes the therapeutic potential of compounds that modulate endocannabinoid signaling. Specifically, cannabidiol and inhibitors of the enzyme ABHD6 represent promising strategies to achieve pain relief by modulating endocannabinoid signaling in pain pathways via distinct, nonintoxicating mechanisms of action.




of

Low-Efficacy Mu Opioid Agonists as Candidate Analgesics: Effects of Novel C-9 Substituted Phenylmorphans on Pain-Depressed Behavior in Mice [Behavioral Pharmacology]

Low-efficacy mu opioid receptor (MOR) agonists may serve as novel candidate analgesics with improved safety relative to high-efficacy opioids. This study used a recently validated assay of pain-depressed behavior in mice to evaluate a novel series of MOR-selective C9-substituted phenylmorphan opioids with graded MOR efficacies. Intraperitoneal injection of dilute lactic acid (IP acid) served as a noxious stimulus to depress locomotor activity by mice in an activity chamber composed of two compartments connected by an obstructed door. Behavioral measures included (1) crosses between compartments (vertical activity over the obstruction) and (2) movement counts quantified as photobeam breaks summed across compartments (horizontal activity). Each drug was tested alone and as a pretreatment to IP acid. A charcoal-meal test and whole-body-plethysmography assessment of breathing in 5% CO2 were also used to assess gastrointestinal (GI) inhibition and respiratory depression, respectively. IP acid produced a concentration-dependent depression in crosses and movement that was optimally alleviated by intermediate- to low-efficacy phenylmorphans with sufficient efficacy to produce analgesia with minimal locomotor disruption. Follow-up studies with two low-efficacy phenylmorphans (JL-2-39 and DC-1-76.1) indicated that both drugs produced naltrexone-reversible antinociception with a rapid onset and a duration of ~1 h. Potency of both drugs increased when behavior was depressed by a lower IP-acid concentration, and neither drug alleviated behavioral depression by a non-pain stimulus (IP lithium chloride). Both drugs produced weaker GI inhibition and respiratory depression than fentanyl and attenuated fentanyl-induced GI inhibition and respiratory depression. Results support further consideration of selective, low-efficacy MOR agonists as candidate analgesics.

SIGNIFICANCE STATEMENT

This study used a novel set of mu opioid receptor (MOR)-selective opioids with graded MOR efficacies to examine the lower boundary of MOR efficacy sufficient to relieve pain-related behavioral depression in mice. Two novel low-efficacy opioids (JL-2-39, DC-1-76.1) produced effective antinociception with improved safety relative to higher- or lower-efficacy opioids, and results support further consideration of these and other low-efficacy opioids as candidate analgesics.




of

The Dawning of a New Age of Preclinical Analgesic Drug Screening [Viewpoint]




of

The Role of Molecular Imaging in Precision Oncology




of

Freehand SPECT Combined with 3-Dimensional Light Detection and Ranging as Alternative Means of Specimen Scanning During Prostate Cancer Surgery




of

MIRD Pamphlet No. 30: MIRDfit--A Tool for Fitting of Biodistribution Time-Activity Data for Internal Dosimetry

In nuclear medicine, estimating the number of radioactive decays that occur in a source organ per unit administered activity of a radiopharmaceutical (i.e., the time-integrated activity coefficient [TIAC]) is an essential task within the internal dosimetry workflow. TIAC estimation is commonly derived by least-squares fitting of various exponential models to organ time–activity data (radiopharmaceutical biodistribution). Rarely, however, are methods used to objectively determine the model that best characterizes the data. Additionally, the uncertainty associated with the resultant TIAC is generally not evaluated. As part of the MIRDsoft initiative, MIRDfit has been developed to offer a biodistribution fitting software solution that provides the following essential features and advantages for internal dose assessment: nuclear medicine–appropriate fit functions; objective metrics for guiding best-fit selection; TIAC uncertainty calculation; quality control and data archiving; integration with MIRDcalc software for dose calculation; and a user-friendly Excel-based interface. For demonstration and comparative validation of MIRDfit’s performance, TIACs were derived from serial imaging studies involving 18F-FDG and 177Lu-DOTATATE using MIRDfit. These TIACs were then compared with TIAC estimates obtained using other software. In most cases, the TIACs agreed within approximately 10% between MIRDfit and the other software. MIRDfit has been endorsed by the MIRD Committee of the Society of Nuclear Medicine and Molecular Imaging and has been integrated into the MIRDsoft suite of free dosimetry software; it is available for download at no user cost (https://mirdsoft.org/).




of

Validation of an Artificial Intelligence-Based Prediction Model Using 5 External PET/CT Datasets of Diffuse Large B-Cell Lymphoma

The aim of this study was to validate a previously developed deep learning model in 5 independent clinical trials. The predictive performance of this model was compared with the international prognostic index (IPI) and 2 models incorporating radiomic PET/CT features (clinical PET and PET models). Methods: In total, 1,132 diffuse large B-cell lymphoma patients were included: 296 for training and 836 for external validation. The primary outcome was 2-y time to progression. The deep learning model was trained on maximum-intensity projections from PET/CT scans. The clinical PET model included metabolic tumor volume, maximum distance from the bulkiest lesion to another lesion, SUVpeak, age, and performance status. The PET model included metabolic tumor volume, maximum distance from the bulkiest lesion to another lesion, and SUVpeak. Model performance was assessed using the area under the curve (AUC) and Kaplan–Meier curves. Results: The IPI yielded an AUC of 0.60 on all external data. The deep learning model yielded a significantly higher AUC of 0.66 (P < 0.01). For each individual clinical trial, the model was consistently better than IPI. Radiomic model AUCs remained higher for all clinical trials. The deep learning and clinical PET models showed equivalent performance (AUC, 0.69; P > 0.05). The PET model yielded the highest AUC of all models (AUC, 0.71; P < 0.05). Conclusion: The deep learning model predicted outcome in all trials with a higher performance than IPI and better survival curve separation. This model can predict treatment outcome in diffuse large B-cell lymphoma without tumor delineation but at the cost of a lower prognostic performance than with radiomics.




of

The Updated Registry of Fast Myocardial Perfusion Imaging with Next-Generation SPECT (REFINE SPECT 2.0)

The Registry of Fast Myocardial Perfusion Imaging with Next-Generation SPECT (REFINE SPECT) has been expanded to include more patients and CT attenuation correction imaging. We present the design and initial results from the updated registry. Methods: The updated REFINE SPECT is a multicenter, international registry with clinical data and image files. SPECT images were processed by quantitative software and CT images by deep learning software detecting coronary artery calcium (CAC). Patients were followed for major adverse cardiovascular events (MACEs) (death, myocardial infarction, unstable angina, late revascularization). Results: The registry included scans from 45,252 patients from 13 centers (55.9% male, 64.7 ± 11.8 y). Correlating invasive coronary angiography was available for 3,786 (8.4%) patients. CT attenuation correction imaging was available for 13,405 patients. MACEs occurred in 6,514 (14.4%) patients during a median follow-up of 3.6 y (interquartile range, 2.5–4.8 y). Patients with a stress total perfusion deficit of 5% to less than 10% (unadjusted hazard ratio [HR], 2.42; 95% CI, 2.23–2.62) and a stress total perfusion deficit of at least 10% (unadjusted HR, 3.85; 95% CI, 3.56–4.16) were more likely to experience MACEs. Patients with a deep learning CAC score of 101–400 (unadjusted HR, 3.09; 95% CI, 2.57–3.72) and a CAC of more than 400 (unadjusted HR, 5.17; 95% CI, 4.41–6.05) were at increased risk of MACEs. Conclusion: The REFINE SPECT registry contains a comprehensive set of imaging and clinical variables. It will aid in understanding the value of SPECT myocardial perfusion imaging, leverage hybrid imaging, and facilitate validation of new artificial intelligence tools for improving prediction of adverse outcomes incorporating multimodality imaging.




of

Correlation of FAPI PET Uptake with Immunohistochemistry in Explanted Lungs from Patients with Advanced Interstitial Lung Disease

Recent studies have demonstrated promising results of fibroblast activation protein (FAP) inhibitor (FAPI) PET in prognosticating and monitoring interstitial lung diseases (ILDs). As a first step toward successful translation, our primary aim was to validate the FAPI PET uptake through immunohistochemistry in patients with advanced ILD who underwent lung transplantation after a FAPI PET scan. Methods: This is a preliminary analysis of a single-center, open-label, single-arm, prospective exploratory biodistribution study of 68Ga-FAPI-46 PET imaging in patients with ILD (NCT05365802). Patients with ILD confirmed by high-resolution CT and scheduled for lung transplant were included. Tissue samples of explanted lungs were obtained from both the central and peripheral lung parenchyma of each lobe. Additional samples were obtained from areas of the lung corresponding to regions of FAPI PET activity. Immunohistochemical staining was performed with an anti-FAP antibody. Percentages of FAP immunohistochemistry-positive area were measured semiautomatically using QuPath software. SUVs in the areas of pathologic samples were measured on FAPI PET/CT by referencing the gross photomap of the explanted lung. A Spearman correlation coefficient test was used to assess the relationship between FAPI PET uptake and FAP immunohistochemical expression in each specimen. Results: Four patients with advanced ILD who underwent FAPI PET/CT before lung transplantation were included. The types of ILD were idiopathic pulmonary fibrosis (n = 2), rheumatoid arthritis–associated ILD (n = 1), and nonspecific interstitial pneumonia (n = 1). FAPI uptake was visualized mainly in the fibrotic area on CT. Twenty-nine surgical pathology samples from 3 patients were analyzed. FAP staining was predominantly positive in fibroblastic foci. FAPI PET SUVmax and SUVmean showed a positive correlation with the immunohistochemical FAP expression score (SUVmax: r = 0.57, P = 0.001; SUVmean: r = 0.54, P = 0.002). Conclusion: In this analysis conducted in patients who underwent lung transplantation after a FAPI PET scan, FAPI PET uptake was positively correlated with FAP immunohistochemistry. These findings provide a rationale for further investigation of FAPI PET as a potential imaging biomarker for ILD.




of

Summary: Appropriate Use Criteria for the Use of Nuclear Medicine in Fever of Unknown Origin

The diagnostic work-up of patients with fever of unknown origin (FUO) begins with a thorough history and physical examination, complete blood count with differential, chest x-ray, urinalysis and culture, electrolyte panel, liver enzymes, erythrocyte sedimentation rate, and C-reactive protein level. Additional imaging procedures, including nuclear medicine tests, are generally used as second-line procedures, with 18F-FDG PET and PET/CT assuming increasingly important roles in the diagnostic work-up. The Society of Nuclear Medicine and Molecular Imaging, the Infectious Diseases Society of America, and the American College of Nuclear Medicine convened an autonomous expert work group to comprehensively review the published literature for nuclear imaging in adults and children with FUO and establish appropriate use criteria (AUC). This process was performed in accordance with the Protecting Access to Medicare Act of 2014, which requires that all referring physicians consult AUC by using a clinical decision support mechanism before ordering advanced diagnostic imaging services. The complete findings and discussions of the work group were published on January 8, 2023, and are available at https://www.snmmi.org/ClinicalPractice/content.aspx?ItemNumber=15666. The AUC in the final document are intended to assist referring health care providers in appropriate use of nuclear medicine imaging procedures in patients with FUO. The work group noted limitations in the current literature on nuclear medicine imaging for FUO, with the need for well-designed prospective multicenter investigations. Consensus findings from published data and expert opinions were used to create recommendations in common clinical scenarios for adults and children. Included in the complete document is a discussion of inflammation of unknown origin (IUO), a recently described entity. In view of the fact that the criteria for FUO and IUO are similar (except for fever > 38.3°C [100.9°F]) and that the most common etiologies of these 2 entities are similar, it is the expert opinion of the work group that the recommendations for nuclear medicine imaging of FUO are also applicable to IUO. These recommendations are included in the full guidance document. This summary reviews rationale, methodology, and main findings and refers the reader to the complete AUC document.




of

Validation of a Simplified Tissue-to-Reference Ratio Measurement Using SUVR to Assess Synaptic Density Alterations in Alzheimer Disease with [11C]UCB-J PET

Simplified methods of acquisition and quantification would facilitate the use of synaptic density imaging in multicenter and longitudinal studies of Alzheimer disease (AD). We validated a simplified tissue-to-reference ratio method using SUV ratios (SUVRs) for estimating synaptic density with [11C]UCB-J PET. Methods: Participants included 31 older adults with AD and 16 with normal cognition. The distribution volume ratio (DVR) using simplified reference tissue model 2 was compared with SUVR at short scan windows using a whole-cerebellum reference region. Results: Synaptic density was reduced in AD participants using DVR or SUVR. SUVR using later scan windows (60–90 or 70–90 min) was minimally biased, with the strongest correlation with DVR. Effect sizes using SUVR at these late time windows were minimally reduced compared with effect sizes with DVR. Conclusion: A simplified tissue-to-reference method may be useful for multicenter and longitudinal studies seeking to measure synaptic density in AD.




of

Evaluation of Fibroblast Activation Protein Expression Using 68Ga-FAPI46 PET in Hypertension-Induced Tissue Changes

Chronic hypertension leads to injury and fibrosis in major organs. Fibroblast activation protein (FAP) is one of key molecules in tissue fibrosis, and 68Ga-labeled FAP inhibitor-46 (FAPI46) PET is a recently developed method for evaluating FAP. The aim of this study was to evaluate FAP expression and fibrosis in a hypertension model and to test the feasibility of 68Ga-FAPI46 PET in hypertension. Methods: Hypertension was induced in mice by angiotensin II infusion for 4 wk. 68Ga-FAPI46 biodistribution studies and PET scanning were conducted at 1, 2, and 4 wk after hypertension modeling, and uptake in the major organs was measured. The FAP expression and fibrosis formation of the heart and kidney tissues were analyzed and compared with 68Ga-FAPI46 uptake. Subgroups of the hypertension model underwent angiotensin receptor blocker administration and high-dose FAPI46 blocking, for comparison. As a preliminary human study, 68Ga-FAPI46 PET images of lung cancer patients were analyzed and compared between hypertension and control groups. Results: Uptake of 68Ga-FAPI46 in the heart and kidneys was significantly higher in the hypertension group than in the sham group as early as week 1 and decreased after week 2. The uptake was specifically blocked in the high-dose blocking study. Immunohistochemistry also revealed FAP expression in both heart and kidney tissues. However, overt fibrosis was observed in the heart, whereas it was absent from the kidneys. The angiotensin receptor blocker–treated group showed lower uptake in the heart and kidneys than did the hypertension group. In the pilot human study, renal uptake of 68Ga-FAPI46 significantly differed between the hypertension and control groups. Conclusion: In hypertension, FAP expression is increased in the heart and kidneys from the early phases and decreases over time. FAP expression appears to represent fibrosis activity preceding or underlying fibrotic tissue formation. 68Ga-FAPI46 PET has potential as an effective imaging method for evaluating FAP expression in progressive fibrosis by hypertension.




of

Preclinical Investigation of [212Pb]Pb-DOTAM-GRPR1 for Peptide Receptor Radionuclide Therapy in a Prostate Tumor Model

The role of gastrin-releasing peptide receptor (GRPR) in various diseases, including cancer, has been extensively studied and has emerged as a promising therapeutic target. In this study, we successfully achieved the use of [212Pb]Pb-DOTAM-GRPR1, comprising the α-particle generator, 212Pb, combined with a GRPR-targeting peptide, GRPR1, in a prostate cancer model. Methods: Pharmacokinetics, toxicity, radiation dosimetry, and efficacy were assessed in GRPR-positive prostate tumor–bearing mice after intravenous administration of [212Pb]Pb-DOTAM-GRPR1 (where DOTAM is 1,4,7,10-tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane). Results: Preclinical studies have shown tumor targeting of up to 5 percent injected dose per gram over 24 h, and optimization of the drug formulation and quantity has led to minimized oxidation and off-target binding, respectively. Particularly, an increase in peptide amount from 28 to 280 ng was shown to reduce off-target uptake, especially at the level of the pancreas, by about 30%. Furthermore, dosimetry studies confirmed the kidney as the dose-limiting organ, and toxicity studies revealed that a nontoxic dose of up to 1,665 kBq could be injected into mice. Efficacy studies indicated a median survival time of 9 wk in the control group, which received only a buffer solution, compared with 19 wk in the group that received 4 injections of 370 kBq at 3-wk intervals. Conclusion: Taken together, these combined data demonstrate the safety, tolerability, and efficacy of [212Pb]Pb-DOTAM-GRPR1, thus warranting further exploration in clinical trials.




of

Preclinical Evaluation of 226Ac as a Theranostic Agent: Imaging, Dosimetry, and Therapy

226Ac (t1/2 = 29.37 h) has been proposed as a theranostic radioisotope leveraging both its diagnostic -emissions and therapeutic α-emissions. 226Ac emits 158 and 230 keV -photons ideal for quantitative SPECT imaging and acts as an in vivo generator of 4 high-energy α-particles. Because of these nuclear decay properties, 226Ac has potential to act as a standalone theranostic isotope. In this proof-of-concept study, we evaluated a preclinical 226Ac-radiopharmaceutical for its theranostic efficacy and present the first 226Ac-targeted α-therapy study. Methods: 226Ac was produced at TRIUMF and labeled with the chelator-peptide bioconjugate crown-TATE. [226Ac]Ac-crown-TATE was selected to target neuroendocrine tumors in male NRG mice bearing AR42J tumor xenografts for SPECT imaging, biodistribution, and therapy studies. A preclinical SPECT/CT scanner acquired quantitative images reconstructed from both the 158 and the 230 keV emissions. Mice in the biodistribution study were euthanized at 1, 3, 5, 24, and 48 h after injection, and internal radiation dosimetry was derived for the tumor and organs of interest to establish appropriate therapeutic activity levels. Mice in the therapy study were administered 125, 250, or 375 kBq treatments and were monitored for tumor size and body condition. Results: We present quantitative SPECT images of the in vivo biodistribution of [226Ac]Ac-crown-TATE, which showed agreement with ex vivo measurements. Biodistribution studies demonstrated high uptake (>30%IA/g at 5 h after injection) and retention in the tumor, with an estimated mean absorbed dose coefficient of 222 mGy/kBq. [226Ac]Ac-crown-TATE treatments significantly extended the median survival from 7 d in the control groups to 16, 24, and 27 d in the 125, 250, and 375 kBq treatment groups, respectively. Survival was prolonged by slowing tumor growth, and no weight loss or toxicities were observed. Conclusion: This study highlights the theranostic potential of 226Ac as a standalone therapeutic isotope in addition to its demonstrated diagnostic capabilities to assess dosimetry in matched 225Ac-radiopharmaceuticals. Future studies will investigate maximum dose and toxicity to further explore the therapeutic potential of 226Ac-radiopharmaceuticals.




of

Routine Use of [64Cu]Cu-DOTATATE PET/CT in a Neuroendocrine Tumor Center: Referral Patterns and Image Results of 2,249 Consecutive Scans

The role of somatostatin receptor (SSTR) PET/CT, using 68Ga-based tracers or [64Cu]Cu-DOTATATE (64Cu-DOTATATE), in the management of patients with neuroendocrine neoplasm (NEN) is guided by appropriate use criteria (AUC). In this study, we performed systematic analyses of referral patterns and image findings of routine 64Cu-DOTATATE PET/CT scans to support AUC development. Methods: We included all clinical routine 64Cu-DOTATATE PET/CT scans performed between April 10, 2018 (start of clinical use), and May 2, 2022, at Copenhagen University Hospital–Rigshospitalet. We reviewed the referral text and image report of each scan and classified the indication according to clinical scenarios as listed in the AUC. Results: In total, 1,290 patients underwent 2,249 64Cu-DOTATATE PET/CT scans. Monitoring of patients with NEN seen both on conventional imaging and on SSTR PET without clinical evidence of progression was the most common indication (defined as "may be appropriate" in the AUC) and accounted for 703 (31.3%) scans. Initial staging after NEN diagnosis ("appropriate" in the AUC) and restaging after curative-intent surgery ("may be appropriate" in the AUC) accounted for 221 (9.8%) and 241 (10.7%) scans, respectively. Selection of patients eligible for peptide receptor radionuclide therapy ("appropriate" in the AUC) and restaging after peptide receptor radionuclide therapy completion ("appropriate" in the AUC) accounted for 95 (4.2%) and 115 (5.1%) scans, respectively. The number of scans performed for indications not defined in the AUC was 371 (16.5%). Image result analysis revealed no disease in 669 scans (29.7%), stable disease in 582 (25.9%), and progression in 461 (20.5%). In 99 of the 461 (21.5%) scans, progression was detected on PET but not on CT. Conclusion: Our study provided real-life data that may contribute to support development of 64Cu-DOTATATE/SSTR PET/CT guidelines including AUC. Some scenarios listed as "may be appropriate" in the current AUC were frequent in our data. Monitoring of patients with NEN without clinical evidence of progression was the most frequent indication for 64Cu-DOTATATE PET/CT, in which disease progression was detected in more than one third, and a large proportion was visible by PET only. We therefore conclude that this scenario could potentially be classified as appropriate.




of

Efficacy and Toxicity of [177Lu]Lu-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer: Results from the U.S. Expanded-Access Program and Comparisons with Phase 3 VISION Data

The phase 3 VISION trial demonstrated that [177Lu]Lu-PSMA-617 prolonged progression-free survival and overall survival (OS) in prostate-specific membrane antigen [PSMA]–positive metastatic castration-resistant prostate cancer (mCRPC) patients who progressed on taxane-based chemotherapy and androgen receptor–signaling inhibitors (ARSIs). The U.S. expanded-access program (EAP; NCT04825652) was opened to provide access to [177Lu]Lu-PSMA-617 for eligible patients until regulatory approval was obtained. This study aimed to evaluate the efficacy and safety profile of [177Lu]Lu-PSMA-617 within the EAP and compare the results with those from the VISION trial. Methods: Patients enrolled in the EAP at 4 institutions in the United States with available toxicity and outcome data were included. Outcome measures included OS, a prostate-specific antigen (PSA) response rate (RR) of at least 50%, and incidences of toxicity according to Common Terminology Criteria for Adverse Events version 5.0. Differences in baseline characteristics, outcome data, and toxicity between the EAP and VISION were evaluated using t testing of proportions and survival analyses. Results: In total, 117 patients with mCRPC who received [177Lu]Lu-PSMA-617 within the EAP between May 2021 and March 2022 were eligible and included in this analysis. Patients enrolled in the EAP were more heavily pretreated with ARSI (≥2 ARSI regimens: 70% vs. 46%; P < 0.001) and had worse performance status at baseline (Eastern Cooperative Oncology Group score ≥ 2: 19% vs. 7%; P < 0.001) than VISION patients. EAP and VISION patients had similar levels of grade 3 or higher anemia (18% vs. 13%; P = 0.15), thrombocytopenia (13% vs. 8%; P = 0.13), and neutropenia (3% vs. 3%; P = 0.85) and similar PSA RRs (42% vs. 46%; P = 0.50) and OS (median: 15.1 vs. 15.3 mo; P > 0.05). Conclusion: Patients with PSMA-positive mCRPC who received [177Lu]Lu-PSMA-617 within the EAP were later in their disease trajectory than VISION patients. Patients enrolled in the EAP achieved similar PSA RRs and OS and had a safety profile similar to that of the VISION trial patients.