eso

CBD News: Montreal, 13 June 2016 - China, Finland and Zambia are the latest countries to ratify the ground-breaking Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilization, bringing the




eso

CBD News: Belgium and Bulgaria are the latest countries to ratify the Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilization to the Convention on Biological Diversity (CBD), bringing th




eso

CBD News: France, Mali, the Netherlands, the Republic of Moldova and Sweden are the latest countries to ratify the Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilization, bringing the t




eso

CBD News: Biodiversity, the variety of life on Earth, provides us with a wealth of natural resources that are extremely important for the tourism sector.




eso

CBD News: This week marks the two-year anniversary of the entry into force of the Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilization to the Convention on Biological Diversity.




eso

CBD News: It is a great pleasure to participate in this session of the Commission on Genetic Resources for Food and Agriculture and to discuss opportunities to further integrate biodiversity within the agriculture and food production sectors.




eso

CBD News: On the occasion of the International Day for Biological Diversity, Japan became the latest country to ratify the Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilization, bring




eso

CBD News: On Friday, 19 May 2017, the Republic of Korea became the 98th country to ratify the Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilization.




eso

CBD News: On the 5th of June 2017, Kuwait ratified the Nagoya Protocol on Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilization, an agreement under the Convention on Biological Diversity, bri




eso

CBD News: Statement by the Secretariat of the Convention on Biological Diversity on behalf of the Executive Secretary at the 4th Session of the Preparatory Committee established by General Assembly resolution 69/292, New York, United States of America, 10




eso

CBD News: The international community has long recognized the interdependence of all countries with regard to plant genetic resources for food and agriculture and their relevance to FAO as well as the Convention on Biological Diversity (CBD) and its Nagoy




eso

CBD News: A Memorandum of Cooperation (MoC) geared towards enhancing cooperation between the Secretariats of the Convention on Biological Diversity (CBD) and the FAO International Treaty on Plant Genetic Resources for Food and Agriculture was signed today




eso

CBD News: Germany has published the first report on the utilization of genetic resources through the Access and Benefit-sharing (ABS) Clearing-House by issuing a checkpoint communiqué concerning research on ants from South Africa. This was rapidly fo





eso

Online dispute resolution effective

In view of the severe economic repercussions caused by the COVID-19 pandemic globally and locally, the Government announced another package of measures to support the affected individuals and businesses last Wednesday. Two of which are particularly relevant to the legal and dispute resolution sector - the LawTech Fund and the COVID-19 Online Dispute Resolution (ODR) Scheme. The LawTech Fund was briefly introduced in this blog a few days ago. Today, I would like to give an online explanation of the COVID-19 ODR.

 

In anticipation of an upsurge of disputes arising from or relating to COVID-19, the scheme aims to provide speedy and cost-effective means to resolve such disputes, especially for those involving micro, small and medium-sized enterprises (MSMEs) that may be adversely affected or hard hit by the pandemic. The scheme will engage eBRAM (electronic Business Related Arbitration & Mediation system) to provide ODR services to the general public and businesses, in particular MSMEs, involved in low value disputes.

 

The scheme plans to cover COVID-19 related disputes with the claim amount for each case to be capped at $500,000. Either one of the parties (claimant or respondent) must be a Hong Kong resident or company and they will only be required to each pay $200 registration fees. Under the scheme, the parties are required to enter into a dispute resolution agreement to record their consent.

 

The process to be adopted is a multi-tiered dispute resolution mechanism where the parties will first attempt to negotiate their disputes, followed by mediation and if that does not result in settlement, then subsequently to arbitration for a final and binding award. This is in line with the "Mediate First" policy that we have been advocating under our "Mediate First" Pledge Programmes.

 

The scheme aims to offer a fast and effective means to resolve disputes among parties. Each tier of dispute resolution will be conducted within a limited time. The tiers are devised with a view to avoiding disputes and differences from being entrenched. If the disputes can be resolved successfully and amicably through negotiation or mediation, we hope it will help build and reinforce a harmonious society and enable the parties to preserve their long term business relationship.

 

We also hope the scheme will have the benefit of job creation and job advancement for mediators and arbitrators (including their pupils). Parties are at liberty to appoint the third party neutral of their choice and if no agreement is reached, there will be a mechanism for appointment. The third party neutrals and the parties or their representatives can still handle cases under the social distancing measures online and indeed to practice on the handling of cases online. We would like the scheme to be launched in June if funding is provided in April.

 

It is a global trend to develop and use ODR to provide reliable and efficient platform to facilitate alternative dispute resolution. The scheme is in line with the development under Asia-Pacific Economic Cooperation's Collaborative Framework on ODR (APEC Framework), with MSMEs as the major beneficiary. The mechanism of adopting negotiation and mediation in the first stage under the APEC Framework is also to prevent entrenched views on the conflicts, thereby helping to create harmony in society.

 

Some forms of alternative dispute resolution, such as mediation, are a more cost-effective way to resolve disputes. The costs of mediation are almost always lower than the disputed amounts, making it an economical way to resolve disputes. Mediation can save time too. Some cases may be resolved following just one day of mediation.

 

LawTech has greatly helped the development of dispute resolution services. The establishment of a safe, reliable and credible platform to provide enterprises with convenient and cost-effective online dispute resolution will become a new trend.

 

It is one of the major long-term policy objectives of the Department of Justice (DoJ) in recent years to enhance and promote Hong Kong's status as an international legal hub for deal-making and dispute resolution. A further promotion of the use of ODR will help consolidate Hong Kong's position as an international business and financial centre.

 

The social media accounts of the DoJ's IDAR Office have been introducing the procedure, characteristics and benefits of mediation and arbitration. You may wish to visit the dedicated pages of the IDAR Office to keep abreast of the dispute resolution services.

 

In addition to the relief measures announced by the Government, the DoJ has also taken the initiative to speed up payment of fees to counsel. Counsel engaged by the DoJ could submit their interim fee notes together with the interim case reports after certain work has been completed. Each case will be considered individually on a case-by-case basis and interim payments could be made. I have enquired and am also glad to learn from the Legal Aid Department and the Duty Lawyer Service that they made similar arrangements.

 

We are confident that Hong Kong can weather the storm with our fundamental strengths and resilience. We also trust that we would overcome this unprecedented challenge by standing in solidarity.

 

Secretary for Justice Teresa Cheng wrote this article and posted it on her blog on April 13.




eso

Development of a novel {beta}-1,6-glucan-specific detection system using functionally-modified recombinant endo-{beta}-1,6-glucanase [Methods and Resources]

β-1,3-d-Glucan is a ubiquitous glucose polymer produced by plants, bacteria, and most fungi. It has been used as a diagnostic tool in patients with invasive mycoses via a highly-sensitive reagent consisting of the blood coagulation system of horseshoe crab. However, no method is currently available for measuring β-1,6-glucan, another primary β-glucan structure of fungal polysaccharides. Herein, we describe the development of an economical and highly-sensitive and specific assay for β-1,6-glucan using a modified recombinant endo-β-1,6-glucanase having diminished glucan hydrolase activity. The purified β-1,6-glucanase derivative bound to the β-1,6-glucan pustulan with a KD of 16.4 nm. We validated the specificity of this β-1,6-glucan probe by demonstrating its ability to detect cell wall β-1,6-glucan from both yeast and hyphal forms of the opportunistic fungal pathogen Candida albicans, without any detectable binding to glucan lacking the long β-1,6-glucan branch. We developed a sandwich ELISA-like assay with a low limit of quantification for pustulan (1.5 pg/ml), and we successfully employed this assay in the quantification of extracellular β-1,6-glucan released by >250 patient-derived strains of different Candida species (including Candida auris) in culture supernatant in vitro. We also used this assay to measure β-1,6-glucan in vivo in the serum and in several organs in a mouse model of systemic candidiasis. Our work describes a reliable method for β-1,6-glucan detection, which may prove useful for the diagnosis of invasive fungal infections.




eso

Integration and Application of Knowledge, Experience and Resources Supporting Students with Special Educational Needs in the Epidemic




eso

ESO instrument finds closest black hole to Earth

(ESO) Astronomers have discovered a black hole lying just 1,000 light-years from Earth. The black hole is closer to our solar system than any other found to date and forms part of a triple system that can be seen with the naked eye. The astronomers found evidence for the invisible object by tracking its two companion stars using the MPG/ESO 2.2-meter telescope at ESO's La Silla Observatory in Chile. They say this system could just be the tip of the iceberg.




eso

A radar for plastic: High-resolution map of 1 kilometer grids to track plastic emissions in seas

(Tokyo University of Science) Plastic waste often ends up in river bodies and oceans, posing a serious threat to the marine ecosystem. To prevent the accumulation of plastic debris, we must find out where plastic emission is prevalent. To this end, scientists in Japan have come up with a new method to track plastic emissions from inland areas to sea. This method is useful to identify the 'hotspots' of plastic emission and can even help to implement appropriate measures to avoid plastic pollution.




eso

Examining heart extractions in ancient Mesoamerica

(University of Chicago Press Journals) A recent study confirms that Mesoamerican priests ripped the hearts out of their still-living victims in three different ways. New forensic evidence, historic witness accounts and native representations now show that the most common form of native heart extraction was from beneath the rib cage, second was forceful chest penetration between two ribs and at mid-chest level between the nipples, and thirdly, a mid-chest opening of one single blow, extracting the heart from the front.




eso

Marooned on Mesozoic Madagascar

(Stony Brook University) In evolutionary terms, islands are the stuff of weirdness. It is on islands where animals evolve in isolation, often for millions of years, with different food sources, competitors, predators, and parasites...indeed, different everything compared to mainland species. As a result, they develop into different shapes and sizes and evolve into new species that, given enough time, spawn yet more new species.




eso

Position statement addresses difficult issue: allocating scare resources in COVID-19 era

(American Geriatrics Society) The COVID-19 pandemic has placed unprecedented pressure on societies worldwide, given the pandemic's rapid, often deadly spread. In health care, the pandemic has raised the pressing question of how society should allocate scarce resources during a crisis. This is the question experts addressed today in a new position statement published by the American Geriatrics Society (AGS) in the Journal of the American Geriatrics Society (DOI: 10.1111/jgs.16537).




eso

Fashion Brands Repurpose Resources to Offer Aid in the COVID-19 Crisis

Retail giants like Yoox Net-a-Porter Group and Brooks Brothers quickly pivoted to offer life-saving services.




eso

Profiling Cell Signaling Networks at Single-cell Resolution

Xiao-Kang Lun
May 1, 2020; 19:744-756
Review




eso

Webinar: Are the Gulf Standoffs Resolvable?

Research Event

21 April 2020 - 1:00pm to 2:00pm

Event participants

David Roberts, Assistant Professor and School of Security Studies Lead for Regional Security and Development, King's College London
Kristian Coates Ulrichsen, Associate Fellow, Middle East and North Africa Programme, Chatham House
Chair: Sanam Vakil, Deputy Director and Senior Research Fellow, Middle East and North Africa Programme, Chatham House

This webinar, part of the MENA Programme Webinar Series, will examine the trajectory of political and security dynamics in the Gulf in view of the ongoing rift within the Gulf Cooperation Council (GCC), the death of Sultan Qaboos in Oman, the escalation of tensions between Iran and the United States, and the COVID-19 crisis.

Speakers will explore the orientation of the GCC under a new Secretary-General and the prospects for mediation between Qatar and its neighbours, the future of Omani domestic and foreign policy under Sultan Haitham bin Tariq Al Said, eventual transitions to new leadership in Bahrain and Kuwait, and whether the impact of COVID-19 may help replace the confrontation within the GCC with closer coordination among its six member states.

The webinar will be livestreamed on the MENA Programme Facebook page.

Reni Zhelyazkova

Programme Coordinator, Middle East and North Africa Programme
+44 (0)20 7314 3624




eso

Performance of digital PET compared to high-resolution conventional PET in patients with cancer

Recently introduced PET systems using silicon photomultipliers with digital readout (dPET) have an improved timing and spatial resolution, aiming at a better image quality, over conventional PET (cPET) systems. We prospectively evaluated the performance of a dPET system in patients with cancer, as compared to high-resolution (HR) cPET imaging. Methods: After a single FDG-injection, 66 patients underwent dPET (Vereos, Philips Healthcare) and cPET (Ingenuity TF, Philips Healthcare) imaging in a randomized order. We used HR-reconstructions (2x2x2 mm3 voxels) for both scanners and determined SUVmax, SUVmean, lesion-to-background ratio (LBR), metabolic tumor volume (MTV) and lesion diameter in up to 5 FDG-positive lesions per patient. Furthermore, we counted the number of visible and measurable lesions on each PET scan. Two nuclear medicine specialists blindly determined the Tumor Node Metastasis (TNM) score from both image sets in 30 patients referred for initial staging. For all 66 patients, these specialists separately and blindly evaluated image quality (4-point scale) and determined the scan preference. Results: We included 238 lesions that were visible and measurable on both PET scans. We found 37 additional lesions on dPET in 27 patients (41%), which were unmeasurable (n = 14) or invisible (n = 23) on cPET. SUVmean, SUVmax, LBR and MTV on cPET were 5.2±3.9 (mean±SD), 6.9±5.6, 5.0±3.6 and 2991±13251 mm3, respectively. On dPET SUVmean, SUVmax and LBR increased 24%, 23% and 27%, respectively (p<0.001) while MTV decreased 13% (p<0.001) compared to cPET. Visual analysis showed TNM upstaging with dPET in 13% of the patients (4/30). dPET images also scored higher in image quality (P = 0.003) and were visually preferred in the majority of cases (65%). Conclusion: Digital PET improved the detection of small lesions, upstaged the disease and images were visually preferred as compared to high-resolution conventional PET. More studies are necessary to confirm the superior diagnostic performance of digital PET.




eso

High Resolution Depth-Encoding PET Detector Module with Prismatoid Light Guide Array

Depth-encoding detectors with single-ended readout provide a practical, cost-effective approach for constructing high resolution and high sensitivity PET scanners. However, the current iteration of such detectors utilizes a uniform glass light guide to achieve depth-encoding, resulting in non-uniform performance throughout the detector array due to suboptimal intercrystal light sharing. We introduce Prism-PET, a single-ended readout PET detector module with a segmented light guide composed of an array of prismatoids that introduces enhanced, deterministic light sharing. Methods: High resolution PET detector modules were fabricated with single-ended readout of polished multicrystal lutetium yttrium orthosilicate (LYSO) scintillator arrays directly coupled 4-to-1 and 9-to-1 to arrays of 3.2 x 3.2 mm2 silicon photomultiplier pixels. Each scintillator array was coupled at the non-readout side to a light guide (one 4-to-1 module with a uniform glass light guide, one 4-to-1 Prism-PET module and one 9-to-1 Prism-PET module) to introduce intercrystal light sharing, which closely mimics the behavior of dual-ended readout with the additional benefit of improved crystal identification. Flood histogram data was acquired using a 3 MBq Na-22 source to characterize crystal identification and energy resolution. Lead collimation was used to acquire data at specific depths to determine depth-of-interaction (DOI) resolution. Results: The flood histogram measurements showed excellent and uniform crystal separation throughout the Prism-PET modules while the uniform glass light guide module had performance degradation at the edges and corners. A DOI resolution of 5.0 mm full width at half maximum (FWHM) and energy resolution of 13% were obtained in the uniform glass light guide module. By comparison, the 4-to-1 coupled Prism-PET module achieved 2.5 mm FWHM DOI resolution and 9% energy resolution. Conclusion: PET scanners based on our Prism-PET modules with segmented prismatoid light guide arrays can achieve high and uniform spatial resolution (9-to-1 coupling with ~ 1 mm crystals), high sensitivity, good energy and timing resolutions (using polished crystals and after applying DOI-correction), and compact size (depth-encoding eliminates parallax error and permits smaller ring-diameter).




eso

OpenDose: open access resources for nuclear medicine dosimetry

Background: Radiopharmaceutical dosimetry depends on the localization in space and time of radioactive sources and requires the estimation of the amount of energy emitted by the sources deposited within targets. In particular, when computing resources are not accessible, this task can be carried out using precomputed tables of Specific Absorbed Fractions (SAFs) or S values based on dosimetric models. The OpenDose collaboration aims to generate and make freely available a range of dosimetric data and tools. Methods: OpenDose brings together resources and expertise from 18 international teams to produce and compare traceable dosimetric data using 6 of the most popular Monte Carlo codes in radiation transport (EGSnrc/EGS++, FLUKA, GATE, Geant4, MCNP/MCNPX and PENELOPE). SAFs are uploaded, together with their associated statistical uncertainties, in a relational database. S values are then calculated from mono-energetic SAFs, based on the radioisotope decay data presented in the International Commission on Radiological Protection (ICRP) publication 107. Results: The OpenDose collaboration produced SAFs for all source regions and targets combinations of the two ICRP 110 adult reference models. SAFs computed from the different Monte Carlo codes were in good agreement at all energies, with standard deviations below individual statistical uncertainties. Calculated S values were in good agreement with OLINDA 2 (commercial) and IDAC 2.1 (free) software. A dedicated website (www.opendose.org) has been developed to provide easy and open access to all data. Conclusion: The OpenDose website allows the display and download of SAFs and the corresponding S values for 1252 radionuclides. The OpenDose collaboration, open to new research teams, will extend data production to other dosimetric models and implement new free features, such as online dosimetric tools and patient-specific absorbed dose calculation software, together with educational resources.




eso

FDG-PET assessment of malignant pleural mesothelioma: Total Lesion volume and Total Lesion Glycolysis; the central role of volume.

Cancer Survival is related to tumor volume. FDG PET measurement of tumor volume holds promise but is not yet a clinical tool. Measurements come in two forms: the total lesion volume (TLV) based on the number of voxels in the tumor and secondly the total lesion glycolysis (TLG) which is the TLV multiplied by the average SUL per voxel of the tumor (SUL is the standardize uptake value normalized for lean mass). In this study we measured tumor volume in patients with malignant pleural mesothelioma (MPM). METHODS: A threshold-based program in IDL was developed to measure tumor volume in FDG PET images. 19 patients with malignant pleural mesothelioma (MPM) were studied before and after two cycles (6 weeks) of chemo-immunotherapy. Measurements included the total lesion volume (TLV), Total Lesion Glycolysis (TLG), the sum of the SULs in the tumor (SUL- total), a measure of total FDG uptake, and the average SUL per voxel. RESULTS: Baseline MPM volumes (TLV) ranged from 11 to 2610 cc. TLG values ranged from 32 to 8552 SUL-cc and were strongly correlated with TLV. While tumor volumes ranged over 3 orders of magnitude, the average SUL per voxel, SUL-average, stayed within a narrow range of 2.4 to 5.3 units. Thus, TLV was the major component of TLG while SUL-average was a minor component and was essentially constant. Further evaluation of SUL-average showed that in this cohort it’s two components SUL-total and tumor volume changed in parallel and were strongly correlated, r= 0.99, p<.01. Thus, whether the tumors were large or small, the FDG uptake as measured by SUL-total was proportional to the total tumor volume. Conclusion: TLG equals TLV multiplied by the average SUL per voxel, essentially TLV multiplied by a constant. Thus TLG, commonly considered a measure of "metabolic activity" in tumors, is also in this cohort a measure of tumor volume. The constancy of SUL per voxel is due to FDG uptake being proportional to tumor volume. Thus, in this study, the FDG uptake was also a measure of volume.




eso

Combining Precursor and Fragment Information for Improved Detection of Differential Abundance in Data Independent Acquisition [Technological Innovation and Resources]

In bottom-up, label-free discovery proteomics, biological samples are acquired in a data-dependent (DDA) or data-independent (DIA) manner, with peptide signals recorded in an intact (MS1) and fragmented (MS2) form. While DDA has only the MS1 space for quantification, DIA contains both MS1 and MS2 at high quantitative quality. DIA profiles of complex biological matrices such as tissues or cells can contain quantitative interferences, and the interferences at the MS1 and the MS2 signals are often independent. When comparing biological conditions, the interferences can compromise the detection of differential peptide or protein abundance and lead to false positive or false negative conclusions.

We hypothesized that the combined use of MS1 and MS2 quantitative signals could improve our ability to detect differentially abundant proteins. Therefore, we developed a statistical procedure incorporating both MS1 and MS2 quantitative information of DIA. We benchmarked the performance of the MS1-MS2-combined method to the individual use of MS1 or MS2 in DIA using four previously published controlled mixtures, as well as in two previously unpublished controlled mixtures. In the majority of the comparisons, the combined method outperformed the individual use of MS1 or MS2. This was particularly true for comparisons with low fold changes, few replicates, and situations where MS1 and MS2 were of similar quality. When applied to a previously unpublished investigation of lung cancer, the MS1-MS2-combined method increased the coverage of known activated pathways.

Since recent technological developments continue to increase the quality of MS1 signals (e.g. using the BoxCar scan mode for Orbitrap instruments), the combination of the MS1 and MS2 information has a high potential for future statistical analysis of DIA data.




eso

Thorough Performance Evaluation of 213 nm Ultraviolet Photodissociation for Top-down Proteomics [Technological Innovation and Resources]

Top-down proteomics studies intact proteoform mixtures and offers important advantages over more common bottom-up proteomics technologies, as it avoids the protein inference problem. However, achieving complete molecular characterization of investigated proteoforms using existing technologies remains a fundamental challenge for top-down proteomics. Here, we benchmark the performance of ultraviolet photodissociation (UVPD) using 213 nm photons generated by a solid-state laser applied to the study of intact proteoforms from three organisms. Notably, the described UVPD setup applies multiple laser pulses to induce ion dissociation, and this feature can be used to optimize the fragmentation outcome based on the molecular weight of the analyzed biomolecule. When applied to complex proteoform mixtures in high-throughput top-down proteomics, 213 nm UVPD demonstrated a high degree of complementarity with the most employed fragmentation method in proteomics studies, higher-energy collisional dissociation (HCD). UVPD at 213 nm offered higher average proteoform sequence coverage and degree of proteoform characterization (including localization of post-translational modifications) than HCD. However, previous studies have shown limitations in applying database search strategies developed for HCD fragmentation to UVPD spectra which contains up to nine fragment ion types. We therefore performed an analysis of the different UVPD product ion type frequencies. From these data, we developed an ad hoc fragment matching strategy and determined the influence of each possible ion type on search outcomes. By paring down the number of ion types considered in high-throughput UVPD searches from all types down to the four most abundant, we were ultimately able to achieve deeper proteome characterization with UVPD. Lastly, our detailed product ion analysis also revealed UVPD cleavage propensities and determined the presence of a product ion produced specifically by 213 nm photons. All together, these observations could be used to better elucidate UVPD dissociation mechanisms and improve the utility of the technique for proteomic applications.




eso

Mass Spectrometry Based Immunopeptidomics Leads to Robust Predictions of Phosphorylated HLA Class I Ligands [Technological Innovation and Resources]

The presentation of peptides on class I human leukocyte antigen (HLA-I) molecules plays a central role in immune recognition of infected or malignant cells. In cancer, non-self HLA-I ligands can arise from many different alterations, including non-synonymous mutations, gene fusion, cancer-specific alternative mRNA splicing or aberrant post-translational modifications. Identifying HLA-I ligands remains a challenging task that requires either heavy experimental work for in vivo identification or optimized bioinformatics tools for accurate predictions. To date, no HLA-I ligand predictor includes post-translational modifications. To fill this gap, we curated phosphorylated HLA-I ligands from several immunopeptidomics studies (including six newly measured samples) covering 72 HLA-I alleles and retrieved a total of 2,066 unique phosphorylated peptides. We then expanded our motif deconvolution tool to identify precise binding motifs of phosphorylated HLA-I ligands. Our results reveal a clear enrichment of phosphorylated peptides among HLA-C ligands and demonstrate a prevalent role of both HLA-I motifs and kinase motifs on the presentation of phosphorylated peptides. These data further enabled us to develop and validate the first predictor of interactions between HLA-I molecules and phosphorylated peptides.




eso

MaXLinker: Proteome-wide Cross-link Identifications with High Specificity and Sensitivity [Technological Innovation and Resources]

Protein-protein interactions play a vital role in nearly all cellular functions. Hence, understanding their interaction patterns and three-dimensional structural conformations can provide crucial insights about various biological processes and underlying molecular mechanisms for many disease phenotypes. Cross-linking mass spectrometry (XL-MS) has the unique capability to detect protein-protein interactions at a large scale along with spatial constraints between interaction partners. The inception of MS-cleavable cross-linkers enabled the MS2-MS3 XL-MS acquisition strategy that provides cross-link information from both MS2 and MS3 level. However, the current cross-link search algorithm available for MS2-MS3 strategy follows a "MS2-centric" approach and suffers from a high rate of mis-identified cross-links. We demonstrate the problem using two new quality assessment metrics ["fraction of mis-identifications" (FMI) and "fraction of interprotein cross-links from known interactions" (FKI)]. We then address this problem, by designing a novel "MS3-centric" approach for cross-link identification and implementing it as a search engine named MaXLinker. MaXLinker outperforms the currently popular search engine with a lower mis-identification rate, and higher sensitivity and specificity. Moreover, we performed human proteome-wide cross-linking mass spectrometry using K562 cells. Employing MaXLinker, we identified a comprehensive set of 9319 unique cross-links at 1% false discovery rate, comprising 8051 intraprotein and 1268 interprotein cross-links. Finally, we experimentally validated the quality of a large number of novel interactions identified in our study, providing a conclusive evidence for MaXLinker's robust performance.




eso

Concentration Determination of >200 Proteins in Dried Blood Spots for Biomarker Discovery and Validation [Technological Innovation and Resources]

The use of protein biomarkers as surrogates for clinical endpoints requires extensive multilevel validation including development of robust and sensitive assays for precise measurement of protein concentration. Multiple reaction monitoring (MRM) is a well-established mass-spectrometric method that can be used for reproducible protein-concentration measurements in biological specimens collected via microsampling. The dried blood spot (DBS) microsampling technique can be performed non-invasively without the expertise of a phlebotomist, and can enhance analyte stability which facilitate the application of this technique in retrospective studies while providing lower storage and shipping costs, because cold-chain logistics can be eliminated. Thus, precise, sensitive, and multiplexed methods for measuring protein concentrations in DBSs can be used for de novo biomarker discovery and for biomarker quantification or verification experiments. To achieve this goal, MRM assays were developed for multiplexed concentration measurement of proteins in DBSs.

The lower limit of quantification (LLOQ) was found to have a median total coefficient of variation (CV) of 18% for 245 proteins, whereas the median LLOQ was 5 fmol of peptide injected on column, and the median inter-day CV over 4 days for measuring endogenous protein concentration was 8%. The majority (88%) of the assays displayed parallelism, whereas the peptide standards remained stable throughout the assay workflow and after exposure to multiple freeze-thaw cycles. For 190 proteins, the measured protein concentrations remained stable in DBS stored at ambient laboratory temperature for up to 2 months. Finally, the developed assays were used to measure the concentration ranges for 200 proteins in twenty same sex, same race and age matched individuals.




eso

Tandem Mass Tag Approach Utilizing Pervanadate BOOST Channels Delivers Deeper Quantitative Characterization of the Tyrosine Phosphoproteome [Technological Innovation and Resources]

Dynamic tyrosine phosphorylation is fundamental to a myriad of cellular processes. However, the inherently low abundance of tyrosine phosphorylation in the proteome and the inefficient enrichment of phosphotyrosine(pTyr)-containing peptides has led to poor pTyr peptide identification and quantitation, critically hindering researchers' ability to elucidate signaling pathways regulated by tyrosine phosphorylation in systems where cellular material is limited. The most popular approaches to wide-scale characterization of the tyrosine phosphoproteome use pTyr enrichment with pan-specific, anti-pTyr antibodies from a large amount of starting material. Methods that decrease the amount of starting material and increase the characterization depth of the tyrosine phosphoproteome while maintaining quantitative accuracy and precision would enable the discovery of tyrosine phosphorylation networks in rarer cell populations. To achieve these goals, the BOOST (Broad-spectrum Optimization Of Selective Triggering) method leveraging the multiplexing capability of tandem mass tags (TMT) and the use of pervanadate (PV) boost channels (cells treated with the broad-spectrum tyrosine phosphatase inhibitor PV) selectively increased the relative abundance of pTyr-containing peptides. After PV boost channels facilitated selective fragmentation of pTyr-containing peptides, TMT reporter ions delivered accurate quantitation of each peptide for the experimental samples while the quantitation from PV boost channels was ignored. This method yielded up to 6.3-fold boost in pTyr quantification depth of statistically significant data derived from contrived ratios, compared with TMT without PV boost channels or intensity-based label-free (LF) quantitation while maintaining quantitative accuracy and precision, allowing quantitation of over 2300 unique pTyr peptides from only 1 mg of T cell receptor-stimulated Jurkat T cells. The BOOST strategy can potentially be applied in analyses of other post-translational modifications where treatments that broadly elevate the levels of those modifications across the proteome are available.




eso

A Compact Quadrupole-Orbitrap Mass Spectrometer with FAIMS Interface Improves Proteome Coverage in Short LC Gradients [Technological Innovation and Resources]

State-of-the-art proteomics-grade mass spectrometers can measure peptide precursors and their fragments with ppm mass accuracy at sequencing speeds of tens of peptides per second with attomolar sensitivity. Here we describe a compact and robust quadrupole-orbitrap mass spectrometer equipped with a front-end High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) Interface. The performance of the Orbitrap Exploris 480 mass spectrometer is evaluated in data-dependent acquisition (DDA) and data-independent acquisition (DIA) modes in combination with FAIMS. We demonstrate that different compensation voltages (CVs) for FAIMS are optimal for DDA and DIA, respectively. Combining DIA with FAIMS using single CVs, the instrument surpasses 2500 peptides identified per minute. This enables quantification of >5000 proteins with short online LC gradients delivered by the Evosep One LC system allowing acquisition of 60 samples per day. The raw sensitivity of the instrument is evaluated by analyzing 5 ng of a HeLa digest from which >1000 proteins were reproducibly identified with 5 min LC gradients using DIA-FAIMS. To demonstrate the versatility of the instrument, we recorded an organ-wide map of proteome expression across 12 rat tissues quantified by tandem mass tags and label-free quantification using DIA with FAIMS to a depth of >10,000 proteins.




eso

A Quantitative Tri-fluorescent Yeast Two-hybrid System: From Flow Cytometry to In cellula Affinities [Technological Innovation and Resources]

We present a technological advancement for the estimation of the affinities of Protein-Protein Interactions (PPIs) in living cells. A novel set of vectors is introduced that enables a quantitative yeast two-hybrid system based on fluorescent fusion proteins. The vectors allow simultaneous quantification of the reaction partners (Bait and Prey) and the reporter at the single-cell level by flow cytometry. We validate the applicability of this system on a small but diverse set of PPIs (eleven protein families from six organisms) with different affinities; the dissociation constants range from 117 pm to 17 μm. After only two hours of reaction, expression of the reporter can be detected even for the weakest PPI. Through a simple gating analysis, it is possible to select only cells with identical expression levels of the reaction partners. As a result of this standardization of expression levels, the mean reporter levels directly reflect the affinities of the studied PPIs. With a set of PPIs with known affinities, it is straightforward to construct an affinity ladder that permits rapid classification of PPIs with thus far unknown affinities. Conventional software can be used for this analysis. To permit automated analysis, we provide a graphical user interface for the Python-based FlowCytometryTools package.




eso

Profiling Cell Signaling Networks at Single-cell Resolution [Reviews]

Signaling networks process intra- and extracellular information to modulate the functions of a cell. Deregulation of signaling networks results in abnormal cellular physiological states and often drives diseases. Network responses to a stimulus or a drug treatment can be highly heterogeneous across cells in a tissue because of many sources of cellular genetic and non-genetic variance. Signaling network heterogeneity is the key to many biological processes, such as cell differentiation and drug resistance. Only recently, the emergence of multiplexed single-cell measurement technologies has made it possible to evaluate this heterogeneity. In this review, we categorize currently established single-cell signaling network profiling approaches by their methodology, coverage, and application, and we discuss the advantages and limitations of each type of technology. We also describe the available computational tools for network characterization using single-cell data and discuss potential confounding factors that need to be considered in single-cell signaling network analyses.




eso

MaxQuant software for ion mobility enhanced shotgun proteomics [Technological Innovation and Resources]

Ion mobility can add a dimension to LC-MS based shotgun proteomics which has the potential to boost proteome coverage, quantification accuracy and dynamic range.  Required for this is suitable software that extracts the information contained in the four-dimensional (4D) data space spanned by m/z, retention time, ion mobility and signal intensity. Here we describe the ion mobility enhanced MaxQuant software, which utilizes the added data dimension. It offers an end to end computational workflow for the identification and quantification of peptides and proteins in LC-IMS-MS/MS shotgun proteomics data. We apply it to trapped ion mobility spectrometry (TIMS) coupled to a quadrupole time-of-flight (QTOF) analyzer. A highly parallelizable 4D feature detection algorithm extracts peaks which are assembled to isotope patterns. Masses are recalibrated with a non-linear m/z, retention time, ion mobility and signal intensity dependent model, based on peptides from the sample. A new matching between runs (MBR) algorithm that utilizes collisional cross section (CCS) values of MS1 features in the matching process significantly gains specificity from the extra dimension. Prerequisite for using CCS values in MBR is a relative alignment of the ion mobility values between the runs. The missing value problem in protein quantification over many samples is greatly reduced by CCS aware MBR.MS1 level label-free quantification is also implemented which proves to be highly precise and accurate on a benchmark dataset with known ground truth. MaxQuant for LC-IMS-MS/MS is part of the basic MaxQuant release and can be downloaded from http://maxquant.org.




eso

DEqMS: a method for accurate variance estimation in differential protein expression analysis [Technological Innovation and Resources]

Quantitative proteomics by mass spectrometry is widely used in biomarker research and basic biology research for investigation of phenotype level cellular events. Despite the wide application, the methodology for statistical analysis of differentially expressed proteins has not been unified. Various methods such as t-test, linear model and mixed effect models are used to define changes in proteomics experiments. However, none of these methods consider the specific structure of MS-data. Choices between methods, often originally developed for other types of data, are based on compromises between features such as statistical power, general applicability and user friendliness. Furthermore, whether to include proteins identified with one peptide in statistical analysis of differential protein expression varies between studies. Here we present DEqMS, a robust statistical method developed specifically for differential protein expression analysis in mass spectrometry data. In all datasets investigated there is a clear dependence of variance on the number of PSMs or peptides used for protein quantification. DEqMS takes this feature into account when assessing differential protein expression. This allows for a more accurate data-dependent estimation of protein variance and inclusion of single peptide identifications without increasing false discoveries. The method was tested in several datasets including E.coli proteome spike-in data, using both label-free and TMT-labelled quantification. In comparison to previous statistical methods used in quantitative proteomics, DEqMS showed consistently better accuracy in detecting altered protein levels compared to other statistical methods in both label-free and labelled quantitative proteomics data. DEqMS is available as an R package in Bioconductor.




eso

Immunopeptidomic analysis reveals that deamidated HLA-bound peptides arise predominantly from deglycosylated precursors [Technological Innovation and Resources]

The presentation of post-translationally modified (PTM) peptides by cell surface HLA molecules has the potential to increase the diversity of targets for surveilling T cells. Whilst immunopeptidomics studies routinely identify thousands of HLA-bound peptides from cell lines and tissue samples, in-depth analyses of the proportion and nature of peptides bearing one or more PTMs remains challenging. Here we have analyzed HLA-bound peptides from a variety of allotypes and assessed the distribution of mass spectrometry-detected PTMs, finding deamidation of asparagine or glutamine to be highly prevalent. Given that asparagine deamidation may arise either spontaneously or through enzymatic reaction, we assessed allele-specific and global motifs flanking the modified residues. Notably, we found that the N-linked glycosylation motif NX(S/T) was highly abundant across asparagine-deamidated HLA-bound peptides. This finding, demonstrated previously for a handful of deamidated T cell epitopes, implicates a more global role for the retrograde transport of nascently N-glycosylated polypeptides from the ER and their subsequent degradation within the cytosol to form HLA-ligand precursors. Chemical inhibition of Peptide:N-Glycanase (PNGase), the endoglycosidase responsible for the removal of glycans from misfolded and retrotranslocated glycoproteins, greatly reduced presentation of this subset of deamidated HLA-bound peptides. Importantly, there was no impact of PNGase inhibition on peptides not containing a consensus NX(S/T) motif. This indicates that a large proportion of HLA-I bound asparagine deamidated peptides are generated from formerly glycosylated proteins that have undergone deglycosylation via the ER-associated protein degradation (ERAD) pathway. The information herein will help train deamidation prediction models for HLA-peptide repertoires and aid in the design of novel T cell therapeutic targets derived from glycoprotein antigens.




eso

Cardiac Magnetic Resonance Myocardial Feature Tracking for Optimized Risk Assessment after Acute Myocardial Infarction in Patients with Type 2 Diabetes

Type 2 diabetes mellitus predicts outcome following acute myocardial infarction (AMI). Since underlying mechanics are incompletely understood, we investigated left ventricular (LV) and atrial (LA) pathophysiological changes and their prognostic implications using cardiovascular magnetic resonance (CMR). Consecutive patients (n=1147, n=265 diabetic; n=882 non-diabetic) underwent CMR 3 days after AMI. Analyses included LV ejection fraction (LVEF), global longitudinal, circumferential and radial strains (GLS, GCS and GRS), LA reservoir, conduit and booster pump strains, as well as infarct size, edema and microvascular obstruction. Predefined endpoints were major adverse cardiovascular events (MACE) within 12 months. Diabetic patients had impaired LA reservoir (19.8 vs. 21.2%, p<0.01) and conduit strains (7.6 vs. 9.0%, p<0.01) but not ventricular function or myocardial damage. They were at higher risk of MACE than non-diabetic patients (10.2% vs. 5.8%, p<0.01) with most MACE occurring in patients with LVEF≥35%. Whilst LVEF (p=0.045) and atrial reservoir strain (p=0.024) were independent predictors of MACE in non-diabetic patients, GLS was in diabetic patients (p=0.010). Considering patients with diabetes and LVEF≥35% (n=237), GLS and LA reservoir strain below median were significantly associated with MACE. In conclusion, in patients with diabetes, LA and LV longitudinal strain permit optimized risk assessment early after reperfused AMI with incremental prognostic value over and above LVEF.




eso

Genetic lineage tracing with multiple DNA recombinases: A user's guide for conducting more precise cell fate mapping studies [Methods and Resources]

Site-specific recombinases, such as Cre, are a widely used tool for genetic lineage tracing in the fields of developmental biology, neural science, stem cell biology, and regenerative medicine. However, nonspecific cell labeling by some genetic Cre tools remains a technical limitation of this recombination system, which has resulted in data misinterpretation and led to many controversies in the scientific community. In the past decade, to enhance the specificity and precision of genetic targeting, researchers have used two or more orthogonal recombinases simultaneously for labeling cell lineages. Here, we review the history of cell-tracing strategies and then elaborate on the working principle and application of a recently developed dual genetic lineage-tracing approach for cell fate studies. We place an emphasis on discussing the technical strengths and caveats of different methods, with the goal to develop more specific and efficient tracing technologies for cell fate mapping. Our review also provides several examples for how to use different types of DNA recombinase–mediated lineage-tracing strategies to improve the resolution of the cell fate mapping in order to probe and explore cell fate–related biological phenomena in the life sciences.




eso

HMC remains resolute in bid to keep out coronavirus

WESTERN BUREAU: THE HANOVER Municipal Corporation (HMC) has written to business operators in the parish, urging them to ensure that persons coming into their business places follow the health and safety protocols designed by the Ministry of Health...




eso

Obioma Ezekobe GP - patients need to be educated about resources

Obioma Ezekobe is a GP in an urgent care centre in Central Middlesex Hospital. She believes that the public need to be educated about the use of NHS resources, and be taught when it is appropriate to seek care. If you would like to contribute to this collection, please email a brief audio recording to voices@bmj.com or phone +44 (20) 3058 7427...




eso

Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents

G Perseghin
Aug 1, 1999; 48:1600-1606
Articles




eso

Troponin T Parallels Structural Nerve Damage in Type 2 Diabetes: A Cross-sectional Study Using Magnetic Resonance Neurography

Clinical studies have suggested that changes in peripheral nerve microcirculation may contribute to nerve damage in diabetic polyneuropathy (DN). High-sensitivity troponin T (hsTNT) assays have been recently shown to provide predictive values for both cardiac and peripheral microangiopathy in type 2 diabetes (T2D). This study investigated the association of sciatic nerve structural damage in 3 Tesla (3T) magnetic resonance neurography (MRN) with hsTNT and N-terminal pro-brain natriuretic peptide serum levels in patients with T2D. MRN at 3T was performed in 51 patients with T2D (23 without DN, 28 with DN) and 10 control subjects without diabetes. The sciatic nerve’s fractional anisotropy (FA), a marker of structural nerve integrity, was correlated with clinical, electrophysiological, and serological data. In patients with T2D, hsTNT showed a negative correlation with the sciatic nerve’s FA (r = –0.52, P < 0.001), with a closer correlation in DN patients (r = –0.66, P < 0.001). hsTNT further correlated positively with the neuropathy disability score (r = 0.39, P = 0.005). Negative correlations were found with sural nerve conduction velocities (NCVs) (r = –0.65, P < 0.001) and tibial NCVs (r = –0.44, P = 0.002) and amplitudes (r = –0.53, P < 0.001). This study is the first to show that hsTNT is a potential indicator for structural nerve damage in T2D. Our results indirectly support the hypothesis that microangiopathy contributes to structural nerve damage in T2D.




eso

Addressing Resource Conflicts: Working Towards More Effective Resolution of Natural Resource Disputes

Invitation Only Research Event

26 June 2014 - 9:00am to 5:00pm

Chatham House, London

Disputes over resources are a persistent challenge to international peace and security. Natural resources (such as oil, natural gas, minerals, timber and water) are a major source of national income for many countries and, alongside land, are essential to the livelihoods of many millions of people. There is a growing recognition among researchers and decision-makers that in many fragile states disputes over these resources have fed into, and underpinned, violent conflict and instability. 

Although international engagement in national resource disputes is not always desirable or feasible, where it is necessary and possible to support, supplement (or even substitute) national dispute resolution processes it is important to think through the parameters of such action: Who gets involved? With what financial resources? When does an intervention begin? How do they act? 

This one-day roundtable will bring together around 30 experts from policy, academia and business to discuss these questions and more.

The event will be held under the Chatham House Rule. Attendance is by invitation only.

Event attributes

Chatham House Rule

Owen Grafham

Manager, Energy, Environment and Resources Programme
+44 (0)20 7957 5708




eso

Resource Development in Fragile and Conflict-Affected States: Can it Promote Peace?

Research Event

30 September 2014 - 1:30pm to 4:45pm

Chatham House, London

The discovery of valuable natural resources such as hydrocarbons or minerals in conflict-affected states or disputed regions can be a double-edged sword. While economic growth may help overcome conflict and consolidate peace, much of the academic literature links the economic, social and environmental impacts of resource development with an increased risk of violent conflict between or within fragile states. 

Recently however, the role of business in advancing peace has emerged as a topic of increasing discussion in academia and in forums such as the UN Global Compact. Resource development has also become a key objective for donor development strategies in fragile states such as Afghanistan, Somalia and Myanmar, on the assumption that extractive sector development can contribute to stability and security. 

This event will gather key stakeholders from business and policy to investigate if and where natural resource development has contributed to peace-building, built cooperation among stakeholders or helped to resolve, rather than exacerbate, tensions. If so, it will endeavour to draw out common, replicable lessons of what made these developments successful from a peace-building perspective.

The event will be held under the Chatham House Rule.

Event attributes

Chatham House Rule




eso

Valuing Vital Resources in India: Potential for Integrated Approaches to Water, Energy and Agricultural Sustainability

Invitation Only Research Event

16 January 2015 - 9:00am to 2:00pm

The India Habitat Centre, New Delhi, India

Event participants

Dr Ashwini Swain, Fellow, CUTS Institute for Regulation and Competition
Glada Lahn, Senior Research Fellow, Energy, Environment and Resources, Chatham House
Dr Gareth Price, Senior Research Fellow, Asia Programme, Chatham House

As part of the international dialogue on Valuing Vital Resources, this seminar will convene policy-makers, scholars, technical practitioners, NGOs, multilateral agencies and the media to discuss recommendations for new policy approaches in India to reorient energy and water use in agriculture. The aim is to gain input to practical policy proposals and identify the work now needed to make them robust. 

Attendance is by invitation only. Please note this event is held in New Delhi, all times are local. 

This event is organized together with the CUTS Institute for Regulation & Competition (CIRC).

Event attributes

External event

Glada Lahn

Senior Research Fellow, Energy, Environment and Resources Programme, Chatham House