chi

The Relationship between Ambidextrous Knowledge Sharing and Innovation within Industrial Clusters: Evidence from China

Aim/Purpose: This study examines the influence of ambidextrous knowledge sharing in industrial clusters on innovation performance from the perspective of knowledge-based dynamic capabilities. Background: The key factor to improving innovation performance in an enterprise is to share knowledge with other enterprises in the same cluster and use dynamic capabilities to absorb, integrate, and create knowledge. However, the relationships among these concepts remain unclear. Based on the dynamic capability theory, this study empirically reveals how enterprises drive innovation performance through knowledge sharing. Methodology: Survey data from 238 cluster enterprises were used in this study. The sample was collected from industrial clusters in China’s Fujian province that belong to the automobile, optoelectronic, and microwave communications industries. Through structural equation modeling, this study assessed the relationships among ambidextrous knowledge sharing, dynamic capabilities, and innovation performance. Contribution: This study contributes to the burgeoning literature on knowledge management in China, an important emerging economy. It also enriches the exploration of innovation performance in the cluster context and expands research on the dynamic mechanism from a knowledge perspective. Findings: Significant relationships are found between ambidextrous knowledge sharing and innovation performance. First, ambidextrous knowledge sharing positively influences the innovation performance of cluster enterprises. Further, knowledge absorption and knowledge generation capabilities play a mediating role in this relationship, which confirms that dynamic capabilities are a partial mediator in the relationship between ambidextrous knowledge sharing and innovation performance. Recommendations for Practitioners: The results highlight the crucial role of knowledge management in contributing to cluster innovation and management practices. They indicate that cluster enterprises should consider the importance of knowledge sharing and dynamic capabilities for improving innovation performance and establish a multi-agent knowledge sharing platform. Recommendation for Researchers: Researchers could further explore the role of other mediating variables (e.g., organizational agility, industry growth) as well as moderating variables (e.g., environmental uncertainty, learning orientation). Impact on Society: This study provides a reference for enterprises in industrial clusters to use knowledge-based capabilities to enhance their competitive advantage. Future Research: Future research could collect data from various countries and regions to test the research model and conduct a comparative analysis of industrial clusters.




chi

A New Typology Design of Performance Metrics to Measure Errors in Machine Learning Regression Algorithms

Aim/Purpose: The aim of this study was to analyze various performance metrics and approaches to their classification. The main goal of the study was to develop a new typology that will help to advance knowledge of metrics and facilitate their use in machine learning regression algorithms Background: Performance metrics (error measures) are vital components of the evaluation frameworks in various fields. A performance metric can be defined as a logical and mathematical construct designed to measure how close are the actual results from what has been expected or predicted. A vast variety of performance metrics have been described in academic literature. The most commonly mentioned metrics in research studies are Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), etc. Knowledge about metrics properties needs to be systematized to simplify the design and use of the metrics. Methodology: A qualitative study was conducted to achieve the objectives of identifying related peer-reviewed research studies, literature reviews, critical thinking and inductive reasoning. Contribution: The main contribution of this paper is in ordering knowledge of performance metrics and enhancing understanding of their structure and properties by proposing a new typology, generic primary metrics mathematical formula and a visualization chart Findings: Based on the analysis of the structure of numerous performance metrics, we proposed a framework of metrics which includes four (4) categories: primary metrics, extended metrics, composite metrics, and hybrid sets of metrics. The paper identified three (3) key components (dimensions) that determine the structure and properties of primary metrics: method of determining point distance, method of normalization, method of aggregation of point distances over a data set. For each component, implementation options have been identified. The suggested new typology has been shown to cover a total of over 40 commonly used primary metrics Recommendations for Practitioners: Presented findings can be used to facilitate teaching performance metrics to university students and expedite metrics selection and implementation processes for practitioners Recommendation for Researchers: By using the proposed typology, researchers can streamline development of new metrics with predetermined properties Impact on Society: The outcomes of this study could be used for improving evaluation results in machine learning regression, forecasting and prognostics with direct or indirect positive impacts on innovation and productivity in a societal sense Future Research: Future research is needed to examine the properties of the extended metrics, composite metrics, and hybrid sets of metrics. Empirical study of the metrics is needed using R Studio or Azure Machine Learning Studio, to find associations between the properties of primary metrics and their “numerical” behavior in a wide spectrum of data characteristics and business or research requirements




chi

A Knowledge Transfer Perspective on Front/Back-Office Structure and New Service Development Performance: An Empirical Study of Retail Banking in China

Aim/Purpose: The purpose of this study is to investigate the mechanism of the front/back-office structure affecting new service development (NSD) performance and examine the role of knowledge transfer in the relationship between front/back-office structure and NSD. Background: The separation of front and back-office has become the prevailing trend of the organizational transformation of modern service enterprises in the digital era. Yet, the influence of front and back-office separation dealing with new service development has not been widely researched. Methodology: Building on the internal social capital perspective, a multivariate regression analysis was conducted to investigate the impact of front/back-office structure on the NSD performance through knowledge transfer as an intermediate variable. The data was collected through a survey questionnaire from 198 project-level officers in the commercial banking industry of China. Contribution: This study advances the understanding of front/back-office structure’s influence mechanism on new service development activity. It reveals that knowledge transfer plays a critical role in bridging the impact of front and back-office separation to NSD performance under the trend of digitalization of service organizations. Findings: This study verified the positive effects of front/back-office social capital on NSD performance. Moreover, knowledge transfer predicted the variation in NSD performance and fully mediated the effect of front/back-office social capital on NSD performance. Recommendations for Practitioners: Service organizations should optimize knowledge transfer by promoting the social capital between front and back-office to overcome the negative effect organizational separation brings to NSD. Service and other organizations could explore developing an internal social network management platform, by which the internal social network could be visualized and dynamically managed. Recommendation for Researchers: The introduction of information and communications technology not only divides the organization into front and back-office, but also reduces the face-to-face customer contact. The impacts of new forms of customer contact to new service development and knowledge transfer between customer and service organizations call for further research. Along with the digital servitization, some manufacturing organizations also separate front and back-offices. The current model can be applied and assessed further in manufacturing and other service sectors. Impact on Society: The conclusion of this study guides us to pay attention to the construction of social capital inside organizations with front/back-office structure and implicates introducing and developing sociotechnical theory in front/back-office issue undergoing technological revolution. Future Research: As this study is based on the retail banking industry, similar studies are called upon in other service sectors to identify differences and draw more general conclusions. In addition, as the front and back-offices are being replaced increasingly by information technology such as artificial intelligence (AI), it is necessary to advance the research on front/back-office research with a new theoretical perspective, such as sociotechnical theory.




chi

China’s Halal Food Industry: The Link Between Knowledge Management Capacity, Supply Chain Practices, and Company Performance

Aim/Purpose: The study attempts to analyse the influences of knowledge management capacity on company performance and supply chain practices. It also examines whether supply chain practices significantly and positively impact company performance. Background: Knowledge management capacity is an essential tactical resource that enables the integration and coordination among supply chain stakeholders, but research examining the link between knowledge management capacity and supply chain practices and their impacts on company performance remains scarce. Methodology: The study uses correlation analysis and factor analysis to confirm the theoretical framework’s validity and structural equation modelling to test hypotheses. The data are obtained from 115 halal food firms in China (with a response rate of 82.7%). Contribution: This study’s findings contribute to the Social Capital Theory by presenting the impacts of different supply chain practices on company performance. The findings also suggest the impact of intangible resources on enhancing company performance, contributing to the Resource-based View Theory. These results are a crucial contribution to both academicians and corporate managers working in the Halal food industry. Managers can apply these findings to discover and adopt knowledge management capacity with practical anticipation that these concepts will align with their company strategies. Also, the research motivates managers to concentrate their knowledge management on enhancing companies’ supply chain practices to achieve improved company performance. Findings: This study is an initial effort that provides empirical evidence regarding the relationships among supply chain, knowledge management, and company performance from the perspective of China’s halal food industry. The results prove that knowledge management capacity is the supply chains’ primary success determinant and influencer. Besides, knowledge management capacity positively influences company performance, and supply chain practices directly influence company performance. Recommendations for Practitioners: Managers can apply these study findings to determine and increase knowledge management capacity with practical anticipation that these concepts will align with their company strategies. Also, the research motivates managers to concentrate their knowledge management on enhancing companies’ supply chain practices to achieve improved company performance. Recommendation for Researchers: The study presents a new theoretical framework and empirical evidence for surveying halal food businesses in China. Impact on Society: These results are a significant contribution to the research field and industry focusing on halal foods. Future Research: First, this research focuses only on halal food businesses in China; thus, it is essential to re-examine the hypothesized relations between the constructs in other Chinese business segments and regions. Next, the effect of variables and practices on the theorized framework should be taken into account and examined in other industries and nations.




chi

A Framework for Ranking Critical Success Factors of Business Intelligence Based on Enterprise Architecture and Maturity Model

Aim/Purpose: The aim of this study is to identify Critical Success Factors (CSF) of Business Intelligence (BI) and provide a framework to classify CSF into layers or perspectives using an enterprise architecture approach, then rank CSF within each perspective and evaluate the importance of each perspective at different BI maturity levels as well. Background: Although the implementation of the BI project has a significant impact on creating analytical and competitive capabilities, the lack of evaluation of CSF holistically is still a challenge. Moreover, the BI maturity level of the organization has not been considered in the BI implementation project. Identifying BI critical success factors and their importance can help the project team to move to a higher maturity level in the organization. Methodology: First, a list of distinct CSF is identified through a literature review. Second, a framework is provided for categorizing these CSF using enterprise architecture. Interviewing is the research method used to evaluate the importance of CSF and framework layers with two questionnaires among experts. The first questionnaire was done by Analytical Hierarchy Process (AHP), a quantitative method of decision-making to calculate the weight of the CSF according to the importance of CSF in each of the framework layers. The second one was conducted to evaluate framework layers at different BI maturity levels using a Likert scale. Contribution: This paper contributes to the implementation of BI projects by identifying a comprehensive list of CSF in the form of a holistic multi-layered framework and ranking the importance of CSF and layers at BI maturity levels. Findings: The most important CSF in BI implementation projects include senior management support, process identification, data quality, analytics quality, hardware quality, security standards, scope management, documentation, project team skills, and customer needs transformation, which received the highest scores in framework layers. In addition, it was observed that as the organization moves to higher levels of maturity, the average importance of strategic business and security perspectives or layers increases. But the average importance of data, applications, infrastructure, and network, the project management layers in the proposed framework is the same regardless of the level of business intelligence maturity. Recommendations for Practitioners: The results of this paper can be used by academicians and practitioners to improve BI project implementation through understanding a comprehensive list of CSF and their importance. This awareness causes us to focus on the most important CSF and have better planning to reach higher levels of maturity according to the maturity level of the organization. Future Research: For future research, the interaction of critical success factors of business intelligence and framework layers can be examined with different methods.




chi

Predicting Software Change-Proneness From Software Evolution Using Machine Learning Methods

Aim/Purpose: To predict the change-proneness of software from the continuous evolution using machine learning methods. To identify when software changes become statistically significant and how metrics change. Background: Software evolution is the most time-consuming activity after a software release. Understanding evolution patterns aids in understanding post-release software activities. Many methodologies have been proposed to comprehend software evolution and growth. As a result, change prediction is critical for future software maintenance. Methodology: I propose using machine learning methods to predict change-prone classes. Classes that are expected to change in future releases were defined as change-prone. The previous release was only considered by the researchers to define change-proneness. In this study, I use the evolution of software to redefine change-proneness. Many snapshots of software were studied to determine when changes became statistically significant, and snapshots were taken biweekly. The research was validated by looking at the evolution of five large open-source systems. Contribution: In this study, I use the evolution of software to redefine change-proneness. The research was validated by looking at the evolution of five large open-source systems. Findings: Software metrics can measure the significance of evolution in software. In addition, metric values change within different periods and the significance of change should be considered for each metric separately. For five classifiers, change-proneness prediction models were trained on one snapshot and tested on the next. In most snapshots, the prediction performance was excellent. For example, for Eclipse, the F-measure values were between 80 and 94. For other systems, the F-measure values were higher than 75 for most snapshots. Recommendations for Practitioners: Software change happens frequently in the evolution of software; however, the significance of change happens over a considerable length of time and this time should be considered when evaluating the quality of software. Recommendation for Researchers: Researchers should consider the significance of change when studying software evolution. Software changes should be taken from different perspectives besides the size or length of the code. Impact on Society: Software quality management is affected by the continuous evolution of projects. Knowing the appropriate time for software maintenance reduces the costs and impacts of software changes. Future Research: Studying the significance of software evolution for software refactoring helps improve the internal quality of software code.




chi

Investigating Factors Affecting the Intention to Use Mobile Health from a Holistic Perspective: The Case of Small Cities in China

Aim/Purpose: This study aims to develop a comprehensive conceptual framework that incorporates personal characteristics, social context, and technological features as significant factors that influence the intention of small-city users in China to use mobile health. Background: Mobile health has become an integral part of China’s health management system innovation, the transformation of the health service model, and a necessary government measure for promoting health service parity. However, mobile health has not yet been widely adopted in small cities in China. Methodology: The study utilized a quantitative approach whereby web-based questionnaires were used to collect data from 319 potential users in China using China’s health management system. The data was analyzed using the PLS-SEM (the partial least squares-structural equation modeling) approach. Contribution: This study integrates the protection motivation theory (PMT), which compensates for the limitations of the unified theory of acceptance and use of technology theory (UTAUT) and is a re-examination of PMT and UTAUT in a small city context in China. Findings: The findings indicate that attitude and perceived vulnerability in the personal characteristic factors, social influence and facilitating conditions in the social context factors, and performance expectancy in the technological feature factors influence users’ intention to use mobile health in small cities in China. Recommendations for Practitioners: This study provides feasible recommendations for mobile health service providers, medical institutions, and government agencies based on the empirical results. Recommendation for Researchers: As for health behavior, researchers should fully explain the intention of mobile health use in terms of holism and health behavior theory. Impact on Society: This study aims to increase users’ intention to use mobile health in small cities in China and to maximize the social value of mobile health. Future Research: Future research should concentrate on the actual usage behavior of users and simultaneously conduct a series of longitudinal studies, including studies on continued usage behavior, abandonment behavior, and abandoned-and-used behavior.




chi

Enhancing Consumer Value Co-Creation Through Social Commerce Features in China’s Retail Industry

Aim/Purpose: Based on the stimulus-organism-response (SOR) model, the current study investigated social commerce functions as an innovative retailing technological support by selecting the three most appropriate features for the Chinese online shopping environment with respective value co-creation intentions. Background: Social commerce is the customers’ online shopping touchpoint in the latest retail era, which serves as a corporate technological tool to extend specific customer services. Although social commerce is a relatively novel platform, limited theoretical attention was provided to determine retailers’ approaches in employing relevant functions to improve consumer experience and value co-creation. Methodology: A questionnaire was distributed to Chinese customers, with 408 valid questionnaires being returned and analyzed through Structural Equation Modeling (SEM). Contribution: The current study investigated the new retail concept and value co-creation from the consumer’s perspective by developing a theoretical model encompassing new retail traits and consumer value, which contributed to an alternative theoretical understanding of value creation, marketing, and consumer behaviour in the new retail business model. Findings: The results demonstrated that value co-creation intention was determined by customer experience, hedonic experience, and trust. Simultaneously, the three factors were significantly influenced by interactivity, personalisation, and sociability features. Specifically, customers’ perceptions of the new retail idea and the consumer co-creation value were examined. Resultantly, this study constructed a model bridging new retail characteristics with consumer value. Recommendations for Practitioners: Nonetheless, past new retail management practice studies mainly focused on superficial happiness in the process of human-computer interaction, which engendered a computer system design solely satisfying consumers’ sensory stimulation and experience while neglecting consumers’ hidden value demands. As such, a shift from the subjective perspective to the realisation perspective is required to express and further understand the actual meaning and depth of consumer happiness. Recommendation for Researchers: New retailers could incorporate social characteristics on social commerce platforms to improve the effectiveness of marketing strategies while increasing user trust to generate higher profitability. Impact on Society: The new retail enterprises should prioritise consumers’ acquisition of happiness meaning and deep experience through self-realisation, cognitive improvement, identity identification, and other aspects of consumer experiences and purchase processes. By accurately revealing and matching consumers’ fundamental perspectives, new retailers could continuously satisfy consumer requirements in optimally obtaining happiness. Future Research: Future comparative studies could be conducted on diverse companies within the same industry for comprehensive findings. Moreover, other underlying factors with significant influences, such as social convenience, group cognitive ability, individual family environment, and other external stimuli were not included in the present study examinations.




chi

Analysis of the Scale Types and Measurement Units in Enterprise Architecture (EA) Measurement

Aim/Purpose: This study identifies the scale types and measurement units used in the measurement of enterprise architecture (EA) and analyzes the admissibility of the mathematical operations used. Background: The majority of measurement solutions proposed in the EA literature are based on researchers’ opinions and many with limited empirical validation and weak metrological properties. This means that the results generated by these solutions may not be reliable, trustworthy, or comparable, and may even lead to wrong investment decisions. While the literature proposes a number of EA measurement solutions, the designs of the mathematical operations used to measure EA have not yet been independently analyzed. It is imperative that the EA community works towards developing robust, reliable, and widely accepted measurement solutions. Only then can senior management make informed decisions about the allocation of resources for EA initiatives and ensure that their investment yields optimal results. Methodology: In previous research, we identified, through a systematic literature review, the EA measurement solutions proposed in the literature and classified them by EA entity types. In a subsequent study, we evaluated their metrology coverage from both a theoretical and empirical perspective. The metrology coverage was designed using a combination of the evaluation theory, best practices from the software measurement literature including the measurement context model, and representational theory of measurement to evaluate whether EA measurement solutions satisfy the metrology criteria. The research study reported here presents a more in-depth analysis of the mathematical operations within the proposed EA measurement solutions, and for each EA entity type, each mathematical operation used to measure EA was examined in terms of the scale types and measurement units of the inputs, their transformations through mathematical operations, the impact in terms of scale types, and measurement units of the proposed outputs. Contribution: This study adds to the body of knowledge on EA measurement by offering a metrology-based approach to analyze and design better EA measurement solutions that satisfy the validity of scale type transformations in mathematical operations and the use of explicit measurement units to allow measurement consistency for their usage in decision-making models. Findings: The findings from this study reveal that some important metrology and quantification issues have been overlooked in the design of EA measurement solutions proposed in the literature: a number of proposed EA mathematical operations produce numbers with unknown units and scale types, often the result of an aggregation of undetermined assumptions rather than explicit quantitative knowledge. The significance of such aggregation is uncertain, leading to numbers that have suffered information loss and lack clear meaning. It is also unclear if it is appropriate to add or multiply these numbers together. Such EA numbers are deemed to have low metrological quality and could potentially lead to incorrect decisions with serious and costly consequences. Recommendations for Practitioners: The results of the study provide valuable insights for professionals in the field of EA. Identifying the metrology limitations and weaknesses of existing EA measurement solutions may indicate, for instance, that practitioners should wait before using them until their design has been strengthened. In addition, practitioners can make informed choices and select solutions with a more robust metrology design. This, in turn, will benefit enterprise architects, software engineers, and other EA professionals in decision making, by enabling them to take into consideration factors more adequately such as cost, quality, risk, and value when assessing EA features. The study’s findings thus contribute to the development of more reliable and effective EA measurement solutions. Recommendation for Researchers: Researchers can use with greater confidence the EA measurement solutions with admissible mathematical operations and measurement units to develop new decision-making models. Other researchers can carry on research to address the weaknesses identified in this study and propose improved ones. Impact on Society: Developers, architects, and managers may be making inappropriate decisions based on seriously flawed EA measurement solutions proposed in the literature and providing undue confidence and a waste of resources when based on bad measurement design. Better quantitative tools will ultimately lead to better decision making in the EA domain, as in domains with a long history of rigor in the design of the measurement tools. Such advancements will benefit enterprise architects, software engineers, and other practitioners, by providing them with more meaningful measurements for informed decision making. Future Research: While the analysis described in this study has been explicitly applied to evaluating EA measurement solutions, researchers and practitioners in other domains can also examine measurement solutions proposed in their respective domains and design new ones.




chi

Investigating the Impact of Dual Network Embedding and Dual Entrepreneurial Bricolage on Knowledge-Creation Performance: An Empirical Study in Fujian, China

Aim/Purpose: This study investigates the relationship between dual network embedding, dual entrepreneurial bricolage, and knowledge-creation performance. Background: The importance of new ventures for innovation and economic growth has been fully endorsed. Establishing incubation organizations to help new startups overcome constraints and dilemmas has become the consensus of various countries. In particular, the number of Chinese makerspaces has rapidly increased. Startups in the makerspaces form a loosely coupled dual network to cooperate and share resources, especially knowledge. Methodology: By convenience sampling, 400 startups in the makerspaces in Fujian Province, China were selected for the questionnaire survey study. In total, 307 valid responses were collected, yielding a response rate of 76.8%. The survey data were analyzed for hypothesis testing, using the PL-SEM technique with the AMOS20.0 software. Contribution: At the theoretical level, this research supplements the exploration of the influencing factors of the entrepreneurial bricolage of startups at the network level. It deepens the research on the internal mechanism of the dual network embeddedness affecting the knowledge-creation performance. In practice, it provides a theoretical basis and management inspiration for startups in makerspaces to overcome the inherent disadvantage of being too small and weak to explore innovative paths. Findings: First, relational embedding of startups in makerspaces directly affects knowledge-creation performance. Second, dual entrepreneurial bricolage plays a mediating role in diversity. Selective entrepreneurial bricolage plays a partial mediating role between relationship embedding and knowledge-creation performance. Parallel entrepreneurial bricolage plays a complete intermediary role between structural embedding and knowledge-creation performance. Dual entrepreneurial bricolage plays a complete intermediary role between knowledge embedding and knowledge-creation performance. Recommendations for Practitioners: Enterprises in the makerspaces should make dynamic adjustments to the network embedded state and dual entrepreneurial bricolage to improve knowledge-creation performance. When startups conduct selective entrepreneurship bricolage, they should strengthen relational and knowledge embeddedness to improve their relationship strength and tacit knowledge acquisition. When startups conduct parallel entrepreneurship bricolage, structural and knowledge embedding should be strengthened to improve the position of enterprises in the network to acquire diversified knowledge to explore and discover new business opportunities and project resources. Recommendation for Researchers: The heterogeneity of industries and regions may impact the dual network embedding mechanism of startups. Researchers can choose a wider range of regions and industries for sampling. Impact on Society: This study provides a theoretical basis and management inspiration for startups to overcome the inherent disadvantage of being too small and weak to explore innovative paths. It provides a basis to support startups in unleashing innovation vitality and achieving healthy growth. Future Research: Previous studies have shown that network relationships and bricolage behavior have a certain relationship with the enterprise life cycle. Future research can adopt a longitudinal research design across time points, which will increase the explanatory power of research conclusions.




chi

Customer Churn Prediction in the Banking Sector Using Machine Learning-Based Classification Models

Aim/Purpose: Previous research has generally concentrated on identifying the variables that most significantly influence customer churn or has used customer segmentation to identify a subset of potential consumers, excluding its effects on forecast accuracy. Consequently, there are two primary research goals in this work. The initial goal was to examine the impact of customer segmentation on the accuracy of customer churn prediction in the banking sector using machine learning models. The second objective is to experiment, contrast, and assess which machine learning approaches are most effective in predicting customer churn. Background: This paper reviews the theoretical basis of customer churn, and customer segmentation, and suggests using supervised machine-learning techniques for customer attrition prediction. Methodology: In this study, we use different machine learning models such as k-means clustering to segment customers, k-nearest neighbors, logistic regression, decision tree, random forest, and support vector machine to apply to the dataset to predict customer churn. Contribution: The results demonstrate that the dataset performs well with the random forest model, with an accuracy of about 97%, and that, following customer segmentation, the mean accuracy of each model performed well, with logistic regression having the lowest accuracy (87.27%) and random forest having the best (97.25%). Findings: Customer segmentation does not have much impact on the precision of predictions. It is dependent on the dataset and the models we choose. Recommendations for Practitioners: The practitioners can apply the proposed solutions to build a predictive system or apply them in other fields such as education, tourism, marketing, and human resources. Recommendation for Researchers: The research paradigm is also applicable in other areas such as artificial intelligence, machine learning, and churn prediction. Impact on Society: Customer churn will cause the value flowing from customers to enterprises to decrease. If customer churn continues to occur, the enterprise will gradually lose its competitive advantage. Future Research: Build a real-time or near real-time application to provide close information to make good decisions. Furthermore, handle the imbalanced data using new techniques.




chi

Unveiling the Secrets of Big Data Projects: Harnessing Machine Learning Algorithms and Maturity Domains to Predict Success

Aim/Purpose: While existing literature has extensively explored factors influencing the success of big data projects and proposed big data maturity models, no study has harnessed machine learning to predict project success and identify the critical features contributing significantly to that success. The purpose of this paper is to offer fresh insights into the realm of big data projects by leveraging machine-learning algorithms. Background: Previously, we introduced the Global Big Data Maturity Model (GBDMM), which encompassed various domains inspired by the success factors of big data projects. In this paper, we transformed these maturity domains into a survey and collected feedback from 90 big data experts across the Middle East, Gulf, Africa, and Turkey regions regarding their own projects. This approach aims to gather firsthand insights from practitioners and experts in the field. Methodology: To analyze the feedback obtained from the survey, we applied several algorithms suitable for small datasets and categorical features. Our approach included cross-validation and feature selection techniques to mitigate overfitting and enhance model performance. Notably, the best-performing algorithms in our study were the Decision Tree (achieving an F1 score of 67%) and the Cat Boost classifier (also achieving an F1 score of 67%). Contribution: This research makes a significant contribution to the field of big data projects. By utilizing machine-learning techniques, we predict the success or failure of such projects and identify the key features that significantly contribute to their success. This provides companies with a valuable model for predicting their own big data project outcomes. Findings: Our analysis revealed that the domains of strategy and data have the most influential impact on the success of big data projects. Therefore, companies should prioritize these domains when undertaking such projects. Furthermore, we now have an initial model capable of predicting project success or failure, which can be invaluable for companies. Recommendations for Practitioners: Based on our findings, we recommend that practitioners concentrate on developing robust strategies and prioritize data management to enhance the outcomes of their big data projects. Additionally, practitioners can leverage machine-learning techniques to predict the success rate of these projects. Recommendation for Researchers: For further research in this field, we suggest exploring additional algorithms and techniques and refining existing models to enhance the accuracy and reliability of predicting the success of big data projects. Researchers may also investigate further into the interplay between strategy, data, and the success of such projects. Impact on Society: By improving the success rate of big data projects, our findings enable organizations to create more efficient and impactful data-driven solutions across various sectors. This, in turn, facilitates informed decision-making, effective resource allocation, improved operational efficiency, and overall performance enhancement. Future Research: In the future, gathering additional feedback from a broader range of big data experts will be valuable and help refine the prediction algorithm. Conducting longitudinal studies to analyze the long-term success and outcomes of Big Data projects would be beneficial. Furthermore, exploring the applicability of our model across different regions and industries will provide further insights into the field.




chi

Data Lost, Decisions Made: Teachers in Routine and Emergency Remote Teaching

Aim/Purpose: This study explored teachers’ data-driven decision-making processes during routine and emergency remote teaching, as experienced during the COVID-19 pandemic. Background: Decision-making is essential in teaching, with informed decisions promoting student learning and teachers’ professional development most effectively. However, obstacles to the use of data have been identified in many studies. Methodology: Using a qualitative methodology (N=20), we studied how teachers make decisions, what data is available, and what data they would like to have to improve their decision-making. We used an inductive approach (bottom-up), utilizing teachers’ statements related to decision-making as the unit of analysis. Contribution: Our findings shed an important light on teachers’ Data-Driven Decision-Making (DDDM), highlighting the differences between routine and Emergency Remote Teaching (ERT). Findings: Overall, we found that teachers make teaching decisions in three main areas: pedagogy, discipline-related issues, and appearance and behavior. They shift between making decisions based on data and making decisions based on intuition. Academic-related decisions are the most prominent in routine teaching, and during ERT, they were almost the only area in which teachers’ decisions were made. Teachers reported collecting data about students’ academic achievements and emotional state and considered the organizational culture, consultation with colleagues, and parents’ involvement before decision-making. Recommendations for Practitioners: Promote a culture of data-driven decision-making across the education system; Make diverse and rich data of different types accessible to teachers; Increase professional and emotional support for teachers. Recommendation for Researchers: Researchers have the potential to expand the scope of this study by conducting research using other methodologies and in different countries. Impact on Society: This study highlights the importance of teachers’ data-driven decision-making in improving teaching practices and promoting students’ achievement. Future Research: Additional research is required to examine data-driven decision-making in diverse circumstances.




chi

Navigating the Future: Exploring AI Adoption in Chinese Higher Education Through the Lens of Diffusion Theory

Aim/Purpose: This paper aims to investigate and understand the intentions of management undergraduate students in Hangzhou, China, regarding the adoption of Artificial Intelligence (AI) technologies in their education. It addresses the need to explore the factors influencing AI adoption in the educational context and contribute to the ongoing discourse on technology integration in higher education. Background: The paper addresses the problem by conducting a comprehensive investigation into the perceptions of management undergraduate students in Hangzhou, China, regarding the adoption of AI in education. The study explores various factors, including Perceived Relative Advantage and Trialability, to shed light on the nuanced dynamics influencing AI technology adoption in the context of higher education. Methodology: The study employs a quantitative research approach, utilizing the Confirmatory Tetrad Analysis (CTA) and Partial Least Squares Structural Equation Modeling (PLS-SEM) methodologies. The research sample consists of management undergraduate students in Hangzhou, China, and the methods include data screening, principal component analysis, confirmatory tetrad analysis, and evaluation of the measurement and structural models. We used a random sampling method to distribute 420 online, self-administered questionnaires among management students aged 18 to 21 at universities in Hangzhou. Contribution: This paper explores how management students in Hangzhou, China, perceive the adoption of AI in education. It identifies factors that influence AI adoption intention. Furthermore, the study emphasizes the complex nature of technology adoption in the changing educational technology landscape. It offers a thorough comprehension of this process while challenging and expanding the existing literature by revealing the insignificant impacts of certain factors. This highlights the need for an approach to AI integration in education that is context-specific and culturally sensitive. Findings: The study highlights students’ positive attitudes toward integrating AI in educational settings. Perceived relative advantage and trialability were found to impact AI adoption intention significantly. AI adoption is influenced by social and cultural contexts rather than factors like compatibility, complexity, and observability. Peer influence, instructor guidance, and the university environment were identified as pivotal in shaping students’ attitudes toward AI technologies. Recommendations for Practitioners: To promote the use of AI among management students in Hangzhou, practitioners should highlight the benefits and the ease of testing these technologies. It is essential to create communication strategies tailored to the student’s needs, consider cultural differences, and utilize the influence of peers and instructors. Establishing a supportive environment within the university that encourages innovation through policies and regulations is vital. Additionally, it is recommended that students’ attitudes towards AI be monitored constantly, and strategies adjusted accordingly to keep up with the changing technological landscape. Recommendation for Researchers: Researchers should conduct cross-disciplinary and cross-cultural studies with qualitative and longitudinal research designs to understand factors affecting AI adoption in education. It is essential to investigate compatibility, complexity, observability, individual attitudes, prior experience, and the evolving role of peers and instructors. Impact on Society: The study’s insights into the positive attitudes of management students in Hangzhou, China, toward AI adoption in education have broader societal implications. It reflects a readiness for transformative educational experiences in a region known for technological advancements. However, the study also underscores the importance of cautious integration, considering associated risks like data privacy and biases to ensure equitable benefits and uphold educational values. Future Research: Future research should delve into AI adoption in various academic disciplines and regions, employing longitudinal designs and qualitative methods to understand cultural influences and the roles of peers and instructors. Investigating moderating factors influencing specific factors’ relationship with AI adoption intention is essential for a comprehensive understanding.




chi

Emphasizing Data Quality for the Identification of Chili Varieties in the Context of Smart Agriculture

Aim/Purpose: This research aims to evaluate models from meta-learning techniques, such as Riemannian Model Agnostic Meta-Learning (RMAML), Model-Agnostic Meta-Learning (MAML), and Reptile meta-learning, to obtain high-quality metadata. The goal is to utilize this metadata to increase accuracy and efficiency in identifying chili varieties in smart agriculture. Background: The identification of chili varieties in smart agriculture is a complex process that requires a multi-faceted approach. One challenge in chili variety identification is the lack of a large and diverse dataset. This can be addressed using meta-learning techniques, which allow the model to leverage knowledge learned from other related tasks or artificially expand the dataset by applying transformations to existing data. Another challenge is the variation in growing conditions, which can affect the appearance of chili varieties. Meta-learning techniques can help address this challenge by allowing the model to adapt to variations in growing conditions with task-specific embeddings and optimizations. With the help of meta-learning techniques, such as data augmentation, data characterization, selection of datasets, and performance estimation, quality metadata for accurate identification of chili varieties can be achieved even in the presence of limited data and variations in growing conditions. Furthermore, the use of meta-learning techniques in chili variety identification can also assist in addressing challenges related to the computational complexity of the task. Methodology: The research approach employed is quantitative, specifically comparing three models from meta-learning techniques to determine which model is most suitable for our dataset. Data was collected from the variety assembly garden in the form of images of chili leaves using a mobile device. The research successfully gathered 1,974 images of chili leaves, with 697 images of large red chilies, 649 images of curly red chilies, and 628 images of cayenne peppers. These chili leaf images were then processed using augmentation techniques. The results of image data augmentation were categorized based on leaf characteristics (such as oval, lancet, elliptical, serrated leaf edges, and flat leaf edges). Subsequently, training and validation utilized three models from meta-learning techniques. The final stage involved model evaluation using 2-way and 3-way classification, as well as 5-shot and 10-shot learning scenarios to select the dataset with the best performance. Contribution: Improving classification accuracy, with a focus on ensuring high-quality data, allows for more precise identification and classification of chili varieties. Enhancing model training through an emphasis on data quality ensures that the models receive reliable and representative input, leading to improved generalization and performance in identifying chili varieties. Findings: With small collections of datasets, the authors have used data augmentation and meta-learning techniques to overcome the challenges of limited data and variations in growing conditions. Recommendations for Practitioners: By leveraging the knowledge and adaptability gained from meta-learning, accurate identification of chili varieties can be achieved even with limited data and variations in growing conditions. The use of meta-learning techniques in chili variety identification can greatly improve the accuracy and reliability of the identification process. Recommendation for Researchers: Using meta-learning techniques, such as transfer learning and parameter optimization, researchers can overcome challenges related to limited data and variations in growing conditions in chili variety identification. Impact on Society: The findings from this research can help identify superior chili seeds, thereby motivating farmers to cultivate high-quality chilies and achieve bountiful harvests. Future Research: We intend to verify our approach on a more extensive array of datasets and explore the implementation of more resilient regularization techniques, going beyond image augmentation, within the meta-learning techniques. Furthermore, our goal is to expand our research to encompass the automatic learning of parameters during training and tackle issues associated with noisy labels. Building on the insights gained from our observed outcomes, a future objective is to enhance the refinement of model-agnostic meta-learning techniques that can effectively adapt to intricate task distributions with substantial domain gaps between tasks. To realize this aim, our proposal involves devising model-agnostic meta-learning techniques specifically designed for multi-modal scenarios.




chi

Exploring business students' Perry cognitive development position and implications at teaching universities in the USA

In the context of US universities where student evaluations of teaching play an important role in the retention and promotion of faculty, it is important to understand what a student expects in the classroom. This study took the perspective of Perry's cognitive development scheme with the following research question: what is the Perry level of cognitive development of business students? An established survey was used at two different universities. It was found that the median was position 3, and that there was large variation in three dimensions. First is the variation across program levels. Second, there was variation across universities. This becomes an issue when instructors move to a different university and questions the possibility to transfer 'best practices'. Third, variation was found within a specific program level. This means that instructors are faced with students who, from a cognitive perspective, have different demands which are unlikely to be simultaneously met.




chi

Teaching, Designing, and Sharing: A Context for Learning Objects




chi

Decoupling the Information Application from the Information Creation: Video as Learning Objects in Three-Tier Architecture




chi

Wiki as a Teaching Tool




chi

Analysing Online Teaching and Learning Systems Using MEAD




chi

Children's Participation Patterns in Online Communities:




chi

"Islands of Innovation" or "Comprehensive Innovation." Assimilating Educational Technology in Teaching, Learning, and Management: A Case Study of School Networks in Israel




chi

A CSCL Approach to Blended Learning in the Integration of Technology in Teaching




chi

Aptness between Teaching Roles and Teaching Strategies in ICT-Integrated Science Lessons




chi

Using the Interactive White Board in Teaching and Learning – An Evaluation of the SMART CLASSROOM Pilot Project




chi

Learning and Teaching in the Technological Era: Introduction to the IJELLO Special Series of Chais Conference 2011 Best Papers




chi

Teaching and Learning with Clickers: Are Clickers Good for Students?




chi

Kindergarten Children’s Perceptions of “Anthropomorphic Artifacts” with Adaptive Behavior




chi

Does Use of ICT-Based Teaching Encourage Innovative Interactions in the Classroom? Presentation of the CLI-O: Class Learning Interactions – Observation Tool




chi

Academic Literacy and Cultural Familiarity: Developing and Assessing Academic Literacy Resources for Chinese Students




chi

An Examination of Undergraduate Student’s Perceptions and Predilections of the Use of YouTube in the Teaching and Learning Process




chi

5-7 Year Old Children's Conceptions of Behaving Artifacts and the Influence of Constructing Their Behavior on the Development of Theory of Mind (ToM) and Theory of Artificial Mind (ToAM)

Nowadays, we are surrounded by artifacts that are capable of adaptive behavior, such as electric pots, boiler timers, automatic doors, and robots. The literature concerning human beings’ conceptions of “traditional” artifacts is vast, however, little is known about our conceptions of behaving artifacts, nor of the influence of the interaction with such artifacts on cognitive development, especially among children. Since these artifacts are provided with an artificial “mind,” it is of interest to assess whether and how children develop a Theory of Artificial Mind (ToAM) which is distinct from their Theory of Mind (ToM). The study examined a new theoretical scheme named ToAM (Theory of Artificial Mind) by means of qualitative and quantitative methodology among twenty four 5-7 year old children from central Israel. It also examined the effects of interacting with behaving artifacts (constructing versus observing the robot’s behavior) using the “RoboGan” interface on children’s development of ToAM and their ToM and looked for conceptions that evolve among children while interacting with behaving artifacts which are indicative of the acquisition of ToAM. In the quantitative analysis it was found that the interaction with behaving artifacts, whether as observers or constructors and for both age groups, brought into awareness children’s ToM as well as influenced their ability to understand that robots can behave independently and based on external and environmental conditions. In the qualitative analysis it was found that participating in the intervention influenced the children’s ToAM for both constructors and for the younger observer. Engaging in building the robot’s behavior influenced the children’s ability to explain several of the robots’ behaviors, their understanding of the robot’s script-based behavior and rule-based behavior and the children’s metacognitive development. The theoretical and practical importance of the study is discussed.




chi

Tuning Primary Learning Style for Children with Secondary Behavioral Patterns

Personalization is one of the most expected features in the current educational systems. User modeling is supposed to be the first stage of this process, which may incorporate learning style as an important part of the model. Learning style, which is a non-stable characteristic in the case of children, differentiates students in learning preferences. This paper identifies a new hybrid method to initiate and update the information of children’s learning style in an educational system. At the start-up phase, children’s learning style information is gathered through the modified Murphy-Meisgeier Type Indicator for Children (MMTIC) questionnaire, which is based on the well-known Myers-Briggs Type Indicator (MBTI). This primary information will be tuned by tracking children’s behaviors during the learning process. Analytical data mining helped us to cluster these behaviors and find their patterns. The proposed method was applied on 81 fourth grade children in elementary school. Delivering results suggest that this method provides a good precision in recognizing children learning style and may be an appropriate solution for non-stability problems in their preferences.




chi

The Impact of the National Program to Integrate ICT in Teaching in Pre-Service Teacher Training

Aim/Purpose: This study examines the impact of the Israeli National Program on pre-service teachers’ skills in the integration of ICT in teaching and discusses the influential factors of successful implementation of practices in the field. Background: In the current Information Age, many countries relate to education as an im-portant factor for national growth. Teacher education plays a significant role in coping with the challenge of educating a new generation of school students to compete in a technology-driven society. In 2011, the Israel Ministry of Education initiated the National Program for transforming teacher education colleges to meet the demands of the 21st century. Methodology: The study focuses on two research questions: (1) What was the impact of the National Program on pre-service teacher training concerning the integration of ICT in their teaching? (2) What are the predictors of the pre-service teachers’ practice of ICT integration in teaching? It is a quantitative study, based on data collected in two rounds two years apart that compares several indices of pre-service teachers’ preparation to teach with ICT. Contribution: The findings offer insights regarding influential factors of successful integration of ICT in education. Findings: Analyses showed a significant increase in most of the indices of teacher training according to the National Program, in particular in the number of ICT-based lessons that pre-service teachers taught in their teaching practice at schools. Predictors of ICT integration in teaching were modeling by faculty members and school mentor teachers, the number of ICT-based lessons taught by pre-service teachers, and pre-requisite conditions at schools and colleges. Recommendations for Practitioners: The current challenge is to promote innovative ICT-based teaching methods among teacher educators, school teacher mentors, and pre-service teachers. Recommendation for Researchers: The findings underscore the importance of modelling by the school mentors as well as pre-requisite conditions at schools. Impact on Society: Being acquainted with the most influential factors of successful integration of ICT in teaching by pre-service teachers can improve teacher education as well as the education system in educating future generations. Future Research: More research is needed to learn about the dissemination of innovative models of ICT integration in teaching by pre-service teachers and their educators.




chi

E-Safety in the Use of Social Networking Apps by Children, Adolescents, and Young Adults

Aim/Purpose: Following the widespread use of social networking applications (SNAs) by children, adolescents, and young adults, this paper sought to examine the usage habits, sharing, and dangers involved from the perspective of the children, adolescents, and young adults. The research question was: What are the usage habits, sharing, drawbacks, and dangers of using SNAs from the perspective of children, adolescents, and young adults? Background: Safety has become a major issue and relates to a range of activities including online privacy, cyberbullying, exposure to violent content, exposure to content that foments exclusion and hatred, contact with strangers online, and coarse language. The present study examined the use of social networking applications (SNAs) by children, adolescents, and young adults, from their point of view. Methodology: This is a mixed-method study; 551participants from Israel completed questionnaires, and 110 respondents were also interviewed. Contribution: The study sought to examine from their point of view (a) characteristics of SNA usage; (b) the e-safety of SNA; (c) gender differences between age groups; (d) habits of use; (e) hazards and solutions; and (f) sharing with parents and parental control. Findings: Most respondents stated that cyberbullying (such as shaming) happens mainly between members of the group and it is not carried out by strangers. The study found that children’s awareness of the connection between failures of communication in the SNAs and quarrels and disputes was lower than that of adolescents and young adults. It was found that more children than adolescents and young adults believe that monitoring and external control can prevent the dangers inherent in SNAs, and that the awareness of personal responsibility increases with age. The SNAs have intensified the phenomenon of shaming, but the phenomenon is accurately documented in SNAs, unlike in face-to-face communication. Therefore, today more than ever, it is possible and necessary to deal with shaming, both in face-to-face and in SNA communication. Recommendations for Practitioners: Efforts should be made to resolve the issue of shaming among members of the group and to explain the importance of preserving human dignity and privacy. The Internet in general and SNAs in particular are an integral part of children’s and adolescents’ life environment, so it can be said that the SNAs are part of the problem because they augment shaming. But they can also be part of the solution, because interactions are accurately documented, unlike in face-to-face communication, where it is more difficult to examine events, to remember exactly what has been said, to point out cause and effect, etc. Therefore, more than ever before, today it is possible and necessary to deal with shaming both in face-to-face and in the SNA communication, because from the point of view of youngsters, this is their natural environment, which includes smart phones, SNAs, etc. Recommendations for Researchers: The study recommends incorporating in future studies individual case studies and allowing participants to express how they perceive complex e-Safety situa-tions in the use of social networking apps. Impact on Society: Today more than ever, it is possible and necessary to deal with shaming, both in face-to-face and in SNA communication. Future Research: The study was unable to find significant differences between age groups. Fur-ther research may shed light on the subject.




chi

From an Artificial Neural Network to Teaching

Aim/Purpose: Using Artificial Intelligence with Deep Learning (DL) techniques, which mimic the action of the brain, to improve a student’s grammar learning process. Finding the subject of a sentence using DL, and learning, by way of this computer field, to analyze human learning processes and mistakes. In addition, showing Artificial Intelligence learning processes, with and without a general overview of the problem that it is under examination. Applying the idea of the general perspective that the network gets on the sentences and deriving recommendations from this for teaching processes. Background: We looked for common patterns of computer errors and human grammar mistakes. Also deducing the neural network’s learning process, deriving conclusions, and applying concepts from this process to the process of human learning. Methodology: We used DL technologies and research methods. After analysis, we built models from three types of complex neuronal networks – LSTM, Bi-LSTM, and GRU – with sequence-to-sequence architecture. After this, we combined the sequence-to- sequence architecture model with the attention mechanism that gives a general overview of the input that the network receives. Contribution: The cost of computer applications is cheaper than that of manual human effort, and the availability of a computer program is much greater than that of humans to perform the same task. Thus, using computer applications, we can get many desired examples of mistakes without having to pay humans to perform the same task. Understanding the mistakes of the machine can help us to under-stand the human mistakes, because the human brain is the model of the artificial neural network. This way, we can facilitate the student learning process by teaching students not to make mistakes that we have seen made by the artificial neural network. We hope that with the method we have developed, it will be easier for teachers to discover common mistakes in students’ work before starting to teach them. In addition, we show that a “general explanation” of the issue under study can help the teaching and learning process. Findings: We performed the test case on the Hebrew language. From the mistakes we received from the computerized neuronal networks model we built, we were able to classify common human errors. That is, we were able to find a correspondence between machine mistakes and student mistakes. Recommendations for Practitioners: Use an artificial neural network to discover mistakes, and teach students not to make those mistakes. We recommend that before the teacher begins teaching a new topic, he or she gives a general explanation of the problems this topic deals with, and how to solve them. Recommendations for Researchers: To use machines that simulate the learning processes of the human brain, and study if we can thus learn about human learning processes. Impact on Society: When the computer makes the same mistakes as a human would, it is very easy to learn from those mistakes and improve the study process. The fact that ma-chine and humans make similar mistakes is a valuable insight, especially in the field of education, Since we can generate and analyze computer system errors instead of doing a survey of humans (who make mistakes similar to those of the machine); the teaching process becomes cheaper and more efficient. Future Research: We plan to create an automatic grammar-mistakes maker (for instance, by giving the artificial neural network only a tiny data-set to learn from) and ask the students to correct the errors made. In this way, the students will practice on the material in a focused manner. We plan to apply these techniques to other education subfields and, also, to non-educational fields. As far as we know, this is the first study to go in this direction ‒ instead of looking at organisms and building machines, to look at machines and learn about organisms.




chi

RESQ for FLASHMEM, Inc.: An IS Teaching Case




chi

Matching Office Information Systems (OIS) Curriculum To Relevant Standards: Students, School Mission, Regional Business Needs, and National Curriculum




chi

Conceptions of an Information System and Their Use in Teaching about IS




chi

Managing Self-instructed Learning within the IS Curriculum: Teaching Learners to Learn




chi

Teaching Information Quality in Information Systems Undergraduate Education




chi

The Value of Information Systems Teaching and Research in the Knowledge Society




chi

Teaching Information Management to Honors Degree Students: The Information Challenges Approach




chi

Informing Science (IS) and Science and Technology Studies (STS): The University as Decision Center (DC) for Teaching Interdisciplinary Research




chi

WebSpy: An Architecture for Monitoring Web Server Availability in a Multi-Platform Environment




chi

Internal Data Market Services: An Ontology-Based Architecture and Its Evaluation




chi

Reflections on Researching the Rugged Fitness Landscape




chi

Stakeholder Perceptions Regarding eCRM: A Franchise Case Study




chi

Teaching IS to the Information Society using an “Informing Science” Perspective




chi

Online Learning and Case Teaching: Implications in an Informing Systems Framework